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Background: Exercise-induced muscle damage (EIMD) results in transient muscle 
inflammation, strength loss, and muscle soreness and may cause subsequent exercise 
avoidance. Research has recently proven that skeletal muscle can also release extracellular 
vesicles (EVs) into the circulation following a bout of exercise. However, EV’s potential 
role, including as a biomarker, in the response to eccentric resistance exercise stimulus 
remains unclear.

Methods: Twelve (younger, n = 7, 27.0 ± 1.5 years and older, n = 5, 63.0 ± 1.0 years) healthy, 
physically active males, undertaking moderate, regular physical activity (3–5 times per 
week) performed a unilateral high intensity eccentric exercise protocol. Venous plasma 
was collected for assessment of EVs and creatine kinase (CK) prior to EIMD, immediately 
after EIMD, and 1–72 h post-EIMD, and maximal voluntary isometric contraction (MVIC) 
and delayed onset muscle soreness (DOMS) were assessed at all time points, except 1 
and 2 h post-EIMD.

Results: A significant effect of both time (p = 0.005) and group (p < 0.001) was noted for 
MVIC, with younger participants’ MVIC being higher throughout. Whilst a significant 
increase was observed in DOMS in the younger group (p = 0.014) and in the older group 
(p = 0.034) following EIMD, no significant differences were observed between groups. CK 
was not different between age groups but was altered following the EIMD (main effect of 
time p = 0.026), with increased CK seen immediately post-, at 1 and 2 h post-EIMD. EV 
count tended to be  lower in older participants at rest, relative to younger participants 
(p = 0.056), whilst EV modal size did not differ between younger and older participants 
pre-EIMD. EIMD did not substantially alter EV modal size or EV count in younger or older 
participants; however, the alteration in EV concentration (ΔCount) and EV modal size 
(ΔMode) between post-EIMD and pre-EIMD negatively associated with CK activity. 
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INTRODUCTION

Resistance exercise has a myriad of beneficial effects that can 
offset negative physiological effects associated with ageing and 
is highly recommended as a strategy to minimise loss in muscle 
mass and function across the lifespan, and to improve quality 
of life (Little and Phillips, 2009; Bei et  al., 2017; Bagheri et  al., 
2019). In older adults, eccentric resistance exercise interventions 
have been suggested due to high load and potentially greater 
anabolic response at a low energy cost (Gault and Willems, 
2013; Lim, 2016; Franchi et al., 2017). It has also been proposed 
that eccentric exercise-induced muscle damage (EIMD) may 
be used to develop safer and more effective personalised training 
and recovery protocols (Givli, 2015). However, unaccustomed 
exercise, especially high load eccentric muscle contractions, is 
associated with temporary muscle damage, muscle pain, 
reductions in muscle force output, an avoidance of repeated 
loading and transient muscle inflammation (Jouris et  al., 2011; 
Hyldahl and Hubal, 2014; Owens et  al., 2019).

Whilst the characteristics of this eccentric type of EIMD 
have been well defined in healthy young participants (Nosaka 
et  al., 2002; Damas et  al., 2016; Kyriakidou et  al., 2021), less 
research has been conducted in older individuals. More 
specifically, ageing involves a reduction in function of most 
physiological systems, including muscle mass and function, 
and is coupled with increased inflammatory signalling (Franceschi 
and Campisi, 2014). Ageing has been also associated with 
decreased bone density, which in turn negatively affects physical 
performance (Reid et  al., 2016). Better understanding of any 
mechanistic ageing-associated differences in muscle damage, 
inflammation, and pain responses may thus aid both our 
understanding of physiological differences in older individuals, 
and also ultimately aid personalised exercise prescription in 
this population.

Extracellular vesicles (EVs) are lipid-bilayer membrane vesicles, 
released from the cell of origin, are found in most body fluids 
and participate in cellular communication via transfer of cargo 
proteins and genetic material systemically between cells (Inal 
et al., 2013; Colombo et al., 2014; Lange et al., 2017; Turchinovich 
et  al., 2019; Vagner et  al., 2019). As EV cargo is comprised 
of a large range of proteins, enzymes, and genetic material, 
circulating EVs and their amount, composition, and profile 
reflect the physiological and pathophysiological condition. 
Therefore, EV profiles can be  useful biomarkers and are easily 

isolated and quantified from a range of body fluids, including 
sera and plasma (Hessvik and Llorente, 2018; Ramirez et al., 2018).

Research into EV profiles has largely focussed on human 
pathologies, including cancer and autoimmune diseases (Withrow 
et  al., 2016; Garcia-Contreras et  al., 2017; Lange et  al., 2017; 
Dolcetti et  al., 2020; Urabe et  al., 2020; Zhao et  al., 2020), 
and is linked to crucial roles in the pathophysiology of 
inflammation-associated disorders, particularly in relation to 
larger sized EVs (Słomka et al., 2018). In comparison, explorations 
of the roles for EVs in normal physiology are fewer, with one 
plausible mechanism of action being adaptation and recovery 
from exercise stimuli. For instance, following treadmill running 
an increase in circulating EVs was seen in mice (Bei et  al., 
2017), whilst EV associated proteins were elevated in humans 
following 90 min exhaustive aerobic exercise (Fruhbeis et  al., 
2015). Different intensities of aerobic treadmill exercise equally 
increased circulating EV concentrations, whilst increases in 
modal size were only seen with moderate intensity, not low 
or high intensity exercise (Oliveira et  al., 2018). However, 
exercise modalities outside of endurance exercise have hitherto 
not been examined. Importantly, EVs have been shown to 
be  involved in acute responses to injury and inflammatory 
stimuli in non-exercise models (Middel et  al., 2016; Słomka 
et  al., 2018). Whilst it is known that eccentric exercise induces 
the greatest magnitude of EIMD (Clarkson and Hubal, 2002; 
Herzog, 2014; Owens et  al., 2019), it is likely that EVs will 
be  involved in acute aspects of this response.

To our knowledge, no studies to date have examined the 
effect of eccentric exercise or the effect of ageing on circulating 
EV profiles following exercise. Therefore, this study aimed at 
isolating, quantifying, and size profiling EVs from the plasma 
of exercised human participants, to investigate whether there 
is any interplay between acute EIMD-induced changes in EV 
release profiles in younger and older participants, and whether 
such EV-related changes would correlate with other biological 
and muscle functional markers of EIMD, such as creatine 
kinase (CK) activity, strength, and muscle soreness.

MATERIALS AND METHODS

Ethical Approval
Ethical approval was obtained by the College of Liberal of 
Arts and Sciences Research Ethics Committee, University of 

No significant associations were noted between MVIC or DOMS and either ΔCount or 
ΔMode of EVs at any time point.

Conclusion: These findings suggest that profile of EV release, immediately following 
exercise, may predict later CK release and play a role in the EIMD response. Exercise-
induced EV release profiles may therefore serve as an indicator for subsequent 
muscle damage.

Keywords: eccentric exercise, muscle damage, inflammation, extracellular vesicles, ageing, strength, delayed 
onset muscle soreness, recovery
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Westminster, United Kingdom (ETH1819-0328). All work herein 
conforms to the standards set by the Declaration of Helsinki. 
Written informed consent was obtained from all participants 
prior to their participation.

Participants
Twelve (younger n = 7, 27.0 ± 1.5 years and older n = 5, 
63.0 ± 1.0 years) healthy, physically active males, undertaking 
moderate, regular physical activity (3–5 times per week) 
volunteered to participate in this experimental study to perform 
a unilateral eccentric exercise protocol [seven sets of 10 repetitions 
at one repetition maximum (1RM), leg press machine]. The 
physical characteristics of the participants are presented in 
Table  1.

Exclusion criteria included smoking, sex, taking any 
medication (e.g., non-steroidal anti-inflammatory drugs), and/
or consuming anti-inflammatory (e.g., fish oil) supplements 
<6 months prior to commencing the study and the presence 
of any known immune, cardiovascular or metabolic disease. 
To further confirm participants were free from upper respiratory 
tract infections, they completed an illness-specific questionnaire 
(WURSS-21; Barrett et  al., 2009). Additionally, participants 
were free from any pain or injury as determined by the physical 
activity readiness questionnaire (PAR-Q) pre-exercise 
participation screening. Participants were also excluded if they 
regularly undertook downhill running or eccentric exercise 
(e.g., resistance exercise, squats, and lunges) as part of their 
normal training <6 months prior to commencing the study. 
Participants were required to refrain from any exercise for 
24 h prior to baseline visit and 48 h prior to EIMD visit, and 
from alcohol and caffeine 24 h before baseline and EIMD visit. 
Further, they were asked to refrain from exercise during the 
recovery phase (for the subsequent 72 h following the muscle-
damaging exercise bout).

Experimental Design
All participants were required to attend the human performance 
laboratory at the University of Westminster, London, 
United Kingdom, at the same time of day (±1 h) in the morning 
on five occasions over a 2-week period. During visit 1 (baseline), 
in an overnight fasted-state, participants performed baseline 

measurements to ensure familiarisation of testing equipment 
and 5RM was determined. The baseline visit included 
anthropometric measurements, a venous blood sample, perceived 
muscle soreness, and maximal voluntary isometric contraction 
(MVIC) on the leg, described fully below.

On visit 2 (7 days later), participants reported to the laboratory 
at 07:00 am having fasted overnight to complete the EIMD 
exercise protocol. All above measurements were repeated prior 
to (pre-EIMD) and immediately post (post-EIMD) the EIMD 
trial, and an additional blood sample was collected at 1 and 
2 h post-EIMD. Identical follow-up assessments were repeated 
at visits 3, 4, and 5 (24, 48, and 72 h post-EIMD). An overview 
of the study design is presented in Figure  1.

Anthropometric Measurements
Height (to nearest 0.1 cm) was measured using a wall-mounted 
Holtain Harpenden Stadiometer (Holtain Ltd., Crymych, Wales, 
United  Kingdom), and body weight (to nearest 0.1 kg), BMI 
and body fat % (to nearest 0.1%) were measured using Seca® 
(mBCA 514 Medical Body Composition Analyzer, Gmbh&Co. 
KG, Hamburg, Germany) with participants being fasted, with 
an empty bladder and with standardised exercise clothing.

Participants’ Determination of 1RM
A 5RM protocol was employed at baseline visit after 
anthropometric measurements, blood sampling and functional 
assessments to avoid residual EIMD from baseline affecting 
experimental measures. 5RM test was performed for the 
prediction of 1RM to minimise myofibrillar damage to the 
contractile proteins of the knee extensors, as well as to avoid 
adaptations to muscle damage and potential repeated bout 
effect for the EIMD trial. Each participant performed six 
concentric repetitions of incremental weight until failure, with 
3 min rest between sets. 5RM leg press predictive equation 
(Reynolds et  al., 2006) was then applied to determine 1RM 
for each participant. The predicted 1RM weight lifted 
concentrically was then used to calculate 120% of the weight 
to be  performed eccentrically at EIMD visit.

Eccentric Leg Press Exercise Protocol
Participants performed a muscle-damaging exercise protocol 
known to successfully induce delayed onset muscle soreness 
(DOMS) in younger individuals (Vaile et al., 2008). The protocol 
comprised of seven sets of 10 eccentric single-leg press repetitions 
on a leg press machine (Body-Solid G9S Multi-Station Home 
Gym, Taiwan), with the first five sets of 10 repetitions at 120% 
of 1RM and final two sets of 10 repetitions at 100% of 1RM. 
A timed rest period of 3 min took place between each set. 
The protocol was performed unilaterally on each participant’s 
dominant leg. Before performing each eccentric contraction, 
participants raised the weight using both legs, concentrically. 
Each eccentric contraction lasted 3–5 s, during which participants 
resisted the load with the dominant leg from full knee extension 
to 90 degrees angle of knee flexion (Vaile et  al., 2007, 2008). 
All participants completed all seven sets. Water was provided 
ad libitum every 15 min.

TABLE 1 | Characteristics of participants at baseline.

Total (n = 12) Younger 
(18–35; n = 7)

Older 
(≥60; n = 5)

p

Age (years) 42.00 (±5.32) 27.00 (±1.34) 63.00 (±0.93) 0.001*

Weight (kg) 74.02 (±2.77) 73.83 (±3.16) 74.30 (±5.46) 0.939
Height (cm) 180.50 (±1.45) 181.14 (±2.06) 179.60 (±2.16) 0.624
BMI (kg/m2) 22.73 (±0.77) 22.56 (±0.98) 22.98 (±1.35) 0.800
Body fat (%) 19.07 (±1.99) 16.90 (±2.60) 22.10 (±2.83) 0.212
Muscle mass (kg) 28.70 (±0.81) 29.53 (±1.04) 27.54 (±1.22) 0.243
1RM leg press (kg) 145.29 (±6.69) 152.16 (±7.66) 135.67 (±11.52) 0.241

Independent sample t-test comparison between younger (18–35 years of age) and older 
(≥60 years of age). Values are expressed as mean ± SEM. BMI, body mass index; RM, 

repetition maximum. *p < 0.05.
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Assessment of Muscle Function
Muscle Soreness
Magnitude of DOMS was quantified using a visual analogue 
scale (VAS), and it was self-rated by participants on a 10-point-
validated VAS indicating on a horizontal line with anchor points 
from 0 (no pain) to 10 (extreme pain; Carlsson, 1983; McCormack 
et  al., 1988). Participants were seated with both legs in passive 
90 degrees of flexion during a wall squat. Participants then placed 
a mark at the point on the VAS corresponding to their perception 
of soreness on the quadriceps muscle. Participants were blinded 
to the scores they had previously reported.

Maximal Voluntary Isometric Contraction
Maximal voluntary isometric contraction leg strength of the 
quadriceps was assessed on KINEO dynamometer (Globus 
Kineo 7000, Italy). Participants were seated upright and strapped 
into the dynamometer to limit excess motion. The chair was 
adjusted so that the leg pad was placed on the lower part of 
the tibialis anterior, and the pivot was located on the lateral 
epicondyle of the dominant leg. Maximal force was measured 
at an angle of 60 degrees leg extension. The protocol consisted 
of three maximal isometric contractions with 120 s recovery 
between each repetition. Following a 2-min rest period, 
participants employed maximal isometric force against the leg 
pad. Peak force was determined by the average of three maximal 
isometric contractions lasting 3–5 s. From pilot data (n = 6 
healthy younger participants) the within-day coefficient of 
variation (CV) for leg extension MVIC was calculated as 6.2% 
and the day-to-day CV was calculated as 8.7%. Verbal 
encouragement was given throughout each repetition.

Venous Plasma
A 6 ml vacutainer tube of venous blood was collected at each 
time point (lithium-heparin; BD, Oxford, United Kingdom). Whole 
blood was spun (Hettich Universal 320 R, Germany) at 3,857 g 
for 10 min at 4°C, with plasma aliquoted and frozen at −80°C.

Circulating CK activity was measured using a clinical 
chemistry analyser (Werfen ILab Aries, Italy). CK activity was 
determined using kinetic spectrophotometry at 340 nm with 
a minimum detection limit of 3 U/L, an undiluted linearity 
up to 900 U/L. CV for CK was within run <1.2%, total <2.5%. 
All samples and standards were analysed in duplicate.

EV Isolation and Characterisation From 
Human Plasma
Isolation of Plasma-EVs
Plasma EVs were prepared from the individual plasma (thawed 
on ice) aliquots (100 μl per individual) from each participant, 
under the different conditions, using sequential centrifugation 
and ultracentrifugation according to previously standardised 
and described protocols and procedures (Kosgodage et  al., 
2018; Criscitiello et  al., 2019; Pamenter et  al., 2019), also 
following the recommendations of The International Society 
for Extracellular Vesicles (MISEV2018; Thery et  al., 2018). For 
each individual plasma-EV preparation, 100 μl of plasma was 
diluted 1:5  in Dulbecco’s PBS (DPBS, ultrafiltered using a 
0.22 μm filter, before use). This was then centrifuged for 20 min 
at 3,000 g at 4°C, to remove apoptotic bodies and aggregates. 
Supernatants were then collected and ultra-centrifuged at 
100,000 g at 4°C for 1 h. This resulted in EV-enriched pellets, 
which were resuspended each in 500 μl DPBS and thereafter 

FIGURE 1 | Schematic of experimental procedures. BIA, body impedance analysis; CK, creatine kinase; MVIC, maximal voluntary isometric contraction for peak 
force; DOMS, delayed onset muscle soreness via visual analogue scale; RM, repetition maximum; and EIMD, exercise-induced muscle damage. Second visit 
combines both pre- and post-measurements, immediately prior and following EIMD stimulus, respectively.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kyriakidou et al. Muscle Damage and EV Release

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 723931

ultra-centrifuged again for 1 h at 100,000 g, at 4°C. The final 
resulting EV pellets were resuspended each in 100 μl of DPBS. 
The EV pellets were kept frozen at −80°C until used for 
nanoparticle tracking analysis (NTA) and transmission electron 
microscopy (TEM) in the procedures described below (all 
assessments were performed with EV preparations that had 
not been frozen for longer than 1 week).

Nanoparticle Tracking Analysis
Plasma-EV quantification and size distribution profiles were 
established by NTA, based on Brownian motion of particles 
in suspension, using the NanoSight NS300 system (Malvern, 
United  Kingdom). For NTA, the EV samples were diluted 
1/100  in DPBS (10 μl of EV preparation diluted in 990 μl of 
DPBS). The diluted EV samples were applied to the NanoSight 
NS300 (Malvern Panalytical, United  Kingdom), recording five 
repetitive reads, 60 s each. Particle numbers per frame were 
40–60, camera settings were at level 10 for recording and for 
post-analysis the detection threshold was set at 5. Replicate 
histograms were generated from these videos using the NanoSight 
software 3.0 (Malvern), representing mean and ±SEM of the 
five recordings for each sample.

Transmission Electron Microscopy
Plasma EVs were further assessed by morphological analysis 
using TEM. EVs were resuspended in 100 mM sodium cacodylate 
buffer (pH 7.4). One drop (~3–5 μl) of the EV suspension 
was placed onto a grid, which held a carbon support film 
which had been previously glow discharged. Following partial 
drying of the EV suspension, the sample was fixed for 1 min 
at room temperature (RT) by placing the grid onto a drop 
of a fixative solution (2.5% glutaraldehyde) in 100 mM sodium 
cacodylate buffer (pH 7.4). The grid was applied to the surface 
of three drops of distilled water for washing of the EV sample, 
removing excess water using a filter paper. The EVs were then 
stained for 1 min with 2% aqueous uranyl acetate (Sigma-
Aldrich), removing excess stain with a filter paper and air 
drying the grid. TEM imaging of EVs was carried out with 
a JEOL JEM 1400 transmission electron microscope (JEOL, 
Tokyo, Japan), which was operated at 80 kV, using a magnification 
of 30,000x to 60,000x. Recording of digital images was performed 
with an AMT XR60 CCD camera (Deben, United  Kingdom).

Western Blot Analysis
Extracellular vesicles were assessed for the EV-specific markers 
CD63 and Flotillin-1 (Flot-1), using western blotting. EV samples 
were diluted 1:1  in denaturing 2 × Laemmli sample buffer 
(containing 5% beta-mercaptoethanol, BioRad, United Kingdom) 
and heated for 5 min at 100°C. Protein separation was carried 
out at 165 V using 4–20% gradient TGX gels (BioRad 
United  Kingdom), followed by western blotting at 15 V for 1 h 
using a Trans-Blot® SD semi-dry transfer cell (BioRad, 
United  Kingdom). Membranes were blocked with 5% bovine 
serum albumin (BSA, Sigma, United  Kingdom) in Tris buffered 
saline (TBS) containing 0.1% Tween20 (BioRad, United Kingdom; 
TBS-T) for 1 h at RT and primary antibody incubation was 

carried out overnight at 4°C using the EV-marker CD63 (ab216130, 
Abcam, United  Kingdom) and Flot-1 (ab41927, Abcam); diluted 
1/1,000  in TBS-T. The membranes were then washed at RT in 
TBS-T for 3 × 10 min and thereafter incubated with HRP-conjugated 
anti-rabbit IgG secondary antibodies (BioRad), diluted 1/3,000 in 
TBS-T, for 1 h at RT. The membranes were then washed for 
4 × 10 min TBS-T, and visualised, using enhanced 
chemiluminescence (ECL, Amersham, United  Kingdom) in 
conjunction with the UVP BioDoc-ITTM System (Thermo Fisher 
Scientific, United  Kingdom).

Statistical Analysis
Normal distribution of data was examined by QQ plot visual 
inspection. Following Levene’s test of equality of variance, 
baseline characteristics were compared between groups using 
a two-tailed independent samples t-test. Exercise-induced changes 
in EV profiles, CK, and MVIC were analysed using a mixed 
model ANOVA with repeated measures [group (younger, 
older) × time (pre-, post-, at 1, 2, 24, 48, 72 h post-EIMD)]. 
Tukey’s correction was used for post hoc analysis to perform 
pairwise comparisons. As an ordinal measure, Mann-Whitney 
U test was used to determine between group differences in 
DOMS. The EIMD effects on DOMS within-group were 
determined across time using Freidman ANOVA, and the 
Wilcoxon matched pairs signed ranks test was performed for 
post hoc analysis to test differences in this variable. The 
relationship between EV profiles, and CK, MVIC, and DOMS 
were performed with Pearson correlation. Partial eta-squared 
(η2

p) values were calculated as measures of effect size for mixed 
model ANOVA when necessary, and were considered small 
(0.01), medium (0.06), or large (>0.14) effect, and for Wilcoxon 
matched pairs tests, effect size (r) was considered small (0.10), 
medium (0.30), or large (0.50) by the formula z/√n; where 
n = the number of observations over the two time points (Pallant, 
2016); all were calculated using methods proposed by Cohen 
(1988). Values were considered statistically significant if p < 0.05. 
Values were expressed as mean ± SEM for data from parametric 
tests, and as median and interquartile range for data from 
non-parametric tests. All figures were generated in, and statistical 
analysis performed in GraphPad Prism (Version 9.1.1, GraphPad, 
United  States), except generation of NTA curves which was 
carried out using the Nanosight 3.0 software (Malvern, 
United  Kingdom). Subsequent power calculations on data 
presented within was calculated using G*Power (3.1.9.7).

RESULTS

Participant characteristics are presented in Table  1. Besides 
age, participants were reasonably homogenous, with no differences 
noted between body fat [younger 16.90 (±2.60) % vs. older 
22.10 (±2.83) %, p = 0.212], or muscle mass [younger 29.53 
(±1.04) kg vs. older 27.54 (±1.22) kg, p = 0.243].

Extracellular vesicle profile (both modal size and particle 
concentration) was quantified by NTA (representative sample 
shown in Figure 2A) and were characterised by Western blotting 
for EV surface markers (CD63 and Flot-1; Figure 2B) and TEM 
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for morphology (Figure 2C). Pre-exercise circulating blood samples 
suggested that EV modal size did not differ between younger 
and older participants [younger 109.33 (±7.64) vs. older 115.68 
(±6.37) nm, p = 0.538, Figure  2D], whilst EV count showed a 
trend of being lower in older participants at rest, relative to 
younger participants [younger 1.15 × 1010 (±3.72 × 109) vs. older 
2.75 × 1010 (±3.08 × 109), p = 0.056, Figure  2E].

Repeated measures ANOVA showed no interaction between 
age group and time on leg MVIC (p = 0.064). However, following 
the EIMD protocol, a main effect of both time (p = 0.005, 
η2

p = 0.894) and age group (p < 0.001, η2
p = 0.437) was noted for 

MVIC with a large effect size, suggesting that younger participants’ 
MVIC was higher throughout, and the EIMD protocol successfully 
reduced muscle force in both groups (Figure  3A). Post hoc 

A

D E

B C

FIGURE 2 | Measurement of EV modal size and count in younger and older participants. (A) Representative example of nanoparticle tracking analysis (NTA), SEM 
shown in red and mean in black line. (B) Western blotting of human plasma extracellular vesicles (EVs) showing positive for Flot-1 and CD63. (C) Transmission 
electron microscopy (TEM) images of human plasma-EVs, showing EV morphology; scale bar indicates 100 nm. (D) EV modal size (nm) and (E) EV count 
(particles/ml) at pre-EIMD in younger (open circles) and older (closed circles) participants. Horizontal line indicates group means.
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testing suggests force significantly decreased immediately 
post-EIMD [pooled pre-MVIC, 17.21 (±1.40) kg to pooled 
post-MVIC, 14.15 (±0.99) kg, p = 0.006], and then started to 
return in a linear recovery at 24 h post-EIMD [pooled 24 h 
MVIC, 16.07 (±1.22) kg, p = 0.280] and at 48 h post-EIMD 
[pooled 48 h MVIC, 16.62 (±1.42) kg, p = 0.845], but was not 
fully restored by 72 h post-EIMD [pooled 72 h MVIC, 16.05 
(±1.32) kg, p = 0.334].

Mann-Whitney U test showed no significant difference in 
DOMS between groups at any timepoint. However, following 
the EIMD protocol, Freidman test suggests a significant increase 
in DOMS across time in the younger group (p = 0.014) and in 
the older group (p = 0.034). Nevertheless, DOMS returned to 
pre-EIMD values by 72 h post-EIMD in the younger group, but 
not in the older group (Figure 3B). Post hoc pairwise comparisons 
showed that both younger and older group had significantly 
elevated DOMS immediately post- [younger, Md = 4.00 (3.00), 
p = 0.042, r = 0.54; older, Md = 2.00 (3.75), p = 0.039, r = 0.65] and 
at 24 h post-EIMD [younger, Md = 5.00 (2.00), p = 0.034, r = 0.57; 
older, Md = 2.00 (3.25), p = 0.042, r = 0.64] relative to pre-EIMD 
[younger, Md = 1.50 (3.00) and older, Md = 0.00 (2.75)], indicating 
a large effect size for both time points.

Exercise-induced muscle damage showed no group by time 
interaction on CK activity (p = 0.398). However, CK was 
significantly altered following the EIMD (main effect of time 
p = 0.026, η2

p = 0.519, suggesting a large effect size), with increased 
CK seen at immediately post-EIMD [pooled pre-CK, 170.18 
(±27.26) vs. pooled post-CK 198.36 (±33.01) U/L; p = 0.041], 
at 1 h post- [pooled 1 h CK, 208.26 (±33.78) U/L; p = 0.034], 
and at 2 h post- [pooled 2 h CK, 216.13 (±35.40) U/L; p = 0.035] 
EIMD completion. Circulating CK was not different between 
age group (Figure  3C, main effect of age group p = 0.121).

Whilst the EIMD protocol visually appeared to induce increased 
expression and greater variability in circulating plasma-EV modal 
size in the younger group (Figure 4A), repeated measures ANOVA 
suggested EIMD had no significant effect on group by time 
interaction (p = 0.898), nor a main effect of either group (younger 
or older, p = 0.377), or time (p = 0.309; Figure  4A). In a similar 
manner, the EIMD protocol did not substantially alter plasma-EV 
count, with no group by time interaction (p = 0.416), nor a 
main effect of group (younger or older, p = 0.227) or time 
(p = 0.074; Figure 4B). These results are maintained if participants 
are examined independent of age (n = 12), with one-way ANOVA 
suggesting no effect of time on EV modal size (p = 0.269; 
Figure  4C) or count (p = 0.134; Figure  4D). As a preliminary 
study into changes in EV profile with EIMD in younger and 
older participants, required sample size for future studies using 
a condition × time model with seven time points (as presented 
in Figure  4) was calculated as n = 398 per group for EV modal 
size, and n = 57 per group for EV count (α = 0.05, power (1 − β = 0.8), 
effect size of 0.035 for EV modal and 0.093 for EV count).

To explore a correlation between EV release profiles as a 
putative biomarker of muscle damage, the numerical difference 
in EV modal size (ΔMode) and EV count (ΔCount) between 
post-EIMD and pre-EIMD was examined relative to CK (U/L), 
MVIC (kg), or DOMS at each time point measured. A significant 
association between ΔMode and circulating CK was seen at 

A

B

C

FIGURE 3 | Exercise-induced muscle damage reduces muscle force and 
increases circulating creatine kinase (CK) concentrations independent of age. 
(A) MVIC (kg), (B) DOMS [0–10 visual analogue scale (VAS)], and (C) plasma 
CK (U/L) of younger (open circles) and older (closed circles) participants. Red 
shaded zones indicate SEM in (A,C), and interquartile range in (B), and black 
connected line indicates group means in (A,C), and medians in (B), values of 
p between timepoints as indicated. The scale brake indicates from hourly 
testing to 24-h intervals.
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FIGURE 4 | Alterations in EV modal size and count with exercise, and EV correlations with muscle damage markers. (A) EV modal size (% pre-EIMD) and (B) EV count (% 
pre-EIMD) as a function of timepoint between younger and older groups, (C) EV modal size (% pre-EIMD) and (D) EV count (% pre-EIMD) as a function of timepoint 
combined younger and older participants (n = 12). Red shaded zones indicate SEM and black connected line indicates group means. The scale brake indicates from hourly 
testing to 24-h intervals. (E) Correlation matrix between change in EV modal size (ΔMode) or in EV count (ΔCount) as a function of CK (U/L), (F) as a function of MVIC (kg) 
and (G) as a function of DOMS (0–10 VAS) at each timepoint measured, with r values as shown. *Indicates significant association between variables (each p < 0.05). Colour 
intensity for r values (purple indicates positive r value, green negative, white = 0) as indicated. (H) CK (U/L) at 72 h as a function of ΔMode (post-EIMD – pre-EIMD and I) CK 
(U/L) at 48 h as a function of ΔCount (post-EIMD – pre-EIMD). Red shaded zone indicates 95% CIs. Open circles indicate younger, closed indicate older.
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72 h only, post-EIMD (Figure 4E; r2 = 0.372, p = 0.035 visualised 
in Figure  4H). Circulating CK was shown to significantly 
associate negatively with ΔCount at every time point measured, 
except 24 h post-EIMD (Figure  4E; largest r2 = 0.449 at 48 h 
visualised in Figure  4I, p = 0.017). No significant associations 
were noted between MVIC and either ΔMode or ΔCount 
(Figure  4F), or DOMS and either ΔMode or ΔCount at any 
time point measured (Figure  4G).

DISCUSSION

Exercise is associated with a number of immediate physiological 
responses. Circulating EVs can act as plasma-based biomarkers, 
reflecting physiological and pathophysiological conditions of 
the body (Withrow et  al., 2016; Zhao et  al., 2020). Thus, this 
study analysed EVs in blood plasma isolated during the acute 
phase of EIMD and during a recovery period of 72 h in younger 
and older healthy, physically active male adults. In this study, 
we  show that a single bout of EIMD triggers apparent changes 
to EV concentration and size distribution profiles, but in trained 
older men there is no clear differences in this EV signature 
from that of younger men. However, unlike prior studies on 
the effects of acute endurance exercise on EV release profiles, 
acute eccentric resistance exercise does not appear to predictably 
alter EV modal size or EV concentration. Furthermore, immediate 
changes in EV profiles as observed here may associate with 
later changes in biological markers of muscle damage, such 
as CK, as found in the current study.

No significant effect on EV profiles was observed in relation 
to age at pre-exercise values, with younger and older participants 
showing relatively homogeneous EV profile responses. 
Nonetheless, older participants had lesser magnitude of CK 
response than their younger counterparts. Whilst the younger 
group showed a greater signal in CK response and returned 
to pre-exercise values by the end of the experimental period, 
suggesting a better resolution in recovery, the older group did 
not attain absolute values by the end of the recovery period. 
Unexpectedly, both groups had similar recovery in leg strength 
changes following EIMD. Likewise, a previous study has reported 
no age differences in muscle function after muscle-damaging 
exercise (Heckel et  al., 2019). However, others concluded that 
younger individuals were able to recover and adapt quicker 
in functionality following EIMD, confirming that muscle function 
declines through the ageing process (Tieland et  al., 2018; 
Fernandes et  al., 2019). In the current study, muscle soreness 
significantly peaked immediately post- and at 24 h post-EIMD 
for both groups, but the younger group consistently scored 
higher on perception of pain than the older group during the 
experimental period. This may have been attributed to a higher 
muscle damage, as indicated by the increased CK activity for 
the younger men, or hypothetically due to the larger ratio of 
type II fibres typically seen in younger individuals, which have 
been suggested to be  more susceptible to injury (Byrne et  al., 
2004; Verdijk et  al., 2014). However, muscle biopsies would 
be  required to confirm the fibre type shift. Similarly, Lavender 
and Nosaka (2006) reported older males experienced lower 

muscle soreness than younger males following EIMD. A review 
by Gibson and Helme (2001) also reported that pain perception 
is decreased with ageing. This may explain the lower DOMS 
score of the older group compared with the younger group 
in the present study. Nevertheless, no significant differences 
were observed between groups following EIMD. Similarly, 
Nikolaidis (2017) and Heckel et  al. (2019) demonstrated no 
differences between age groups after lower-body resistance 
exercise. However, Lavender and Nosaka (2008) found opposite 
findings after eccentric exercise. The contrast in research findings 
was attributed to the magnitude of muscle damage induced 
by the exercise protocol used (bilateral vs. unilateral) or due 
to the different muscle group (arm vs. leg) involved in the 
studies. Overall, the current study showed that EIMD recovery 
took a similar course in both muscle function and DOMS for 
physically active younger and older individuals. Therefore, the 
data presented here suggests that when younger and older 
individuals are matched for activity status, ageing does not 
appear to impair recovery from voluntary eccentric exercise.

Endurance exercise has been shown to alter EV profiles 
(Oliveira et  al., 2020; Soares et  al., 2021). Chronic exercise in 
murine models (3 weeks swim training) was, for example, shown 
to significantly increase serum EV count (Bei et  al., 2017), 
whilst the modal size of EVs was unchanged. Both EV count 
and modal EV size were elevated in race horses following a 
single bout sustained (160 km) endurance exercise (Oliveira 
et  al., 2020), which may correlate with previous observations 
of larger EVs being associated with inflammation (Słomka 
et  al., 2018). Alternatively, in humans Fruhbeis et  al. (2015) 
reported a significant increase in EV concentration immediately 
after an incremental cycling exercise to failure (typically 
12–20 min), but EVs were found to be  cleared from the 
circulation during the early recovery period (90 min after 
exercise). However, the concentration of plasma-EVs remained 
elevated after exhaustive running. In murine models, Oliveira 
et al. (2018) showed that 40 min of moderate intensity endurance 
exercise immediately increased EV modal size, but neither low, 
nor high intensity exercise had any effect on modal size. It 
is therefore of interest that in the current study we did observe 
a shift in EV modal size towards larger EVs, at 48 h post-
EIMD (Supplementary Figure  1), albeit this trend was not 
statistically significant. Our findings are also in line with previous 
work of Lovett et al. (2018) who reported no significant change 
in EVs size or number over time after an acute muscle-damaging 
exercise (combination of plyometric jumping and downhill 
running). Thus, it may be  that exercise duration, intensity, 
and modality, in addition to differential species responses may 
yield variable results, and this warrants further exploration to 
fully understand effects of an acute exercise bout on circulating 
EVs. Indeed, as already noted, great individual variability is 
observed in human responses to various exercise modalities, 
and thus differing EV profile response may in part underlie 
differing adaptation to these modalities (Trovato et  al., 2019). 
Alternatively, in lieu of changes to the number and morphology 
of circulating EVs, their transported cargo may be more relevant 
to the exercise response, and thus future studies may choose 
to examine this variable.
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Unlike research on endurance models, the current literature 
is lacking in resistance training investigations, and specifically 
eccentric muscle-damaging protocols, such as those used in 
the current study. Whilst Cui et  al. (2017) assessed three 
different types of resistance exercise, they reported only changes 
in circulating microRNAs (miRNAs), not in EV profile states. 
Our study provides evidence that early changes in EV profile 
following EIMD significantly correlate with subsequent changes 
in CK, a known biomarker of muscle damage, and thus acute 
changes in EV profile post-exercise may indicate subsequent 
magnitude of muscle damage. Both processes may result from 
the mechanical EIMD stimulus (e.g., the mechanical “stretching” 
of the muscle cell membrane may promote both CK and EV 
release). Alternatively, it is tempting to speculate that the EV 
response may be  causative of subsequent changes in muscle 
damage markers, such as CK; however, such causality is not 
possible to ascribe with the data collected here. Outside of 
EIMD, other types of muscle damage, such as laser membrane 
ablation and cellular hypoxia, have been reported to induce 
rapid increases in EV release; however, these have hitherto 
been performed on either zebrafish (Middel et  al., 2016) or 
mouse models (Scheffer et  al., 2015), muscle tissue ex vivo, 
and thus the results presented here are the first to extend 
these findings into human models of muscle damage.

Whilst associations have previously been observed between 
EV release profiles in response to inflammatory disorders 
(Hosseinkhani et  al., 2018) and older individuals are noted to 
have elevated basal systemic inflammatory cytokines 
concentrations (Franceschi and Campisi, 2014), circulating 
miRNAs (Jung and Suh, 2014) and increased EV release is 
seen from senescent cells (Hitomi et  al., 2020; Riquelme et  al., 
2020). Therefore, we were interested in examining any putative 
age differences in EV release profiles between older and younger 
individuals following a bout of EIMD. Whilst our results 
presented here suggest no major differences in EV modal size 
or EV plasma concentration in younger vs. older individuals, 
following a single bout of EIMD, some caution should be taken 
in the interpretation of these results due to the small sample 
size assessed and volunteer selection. The findings presented 
here are with recreationally active younger and older participants, 
all participants habitually engaged in structured physical activity, 
and thus are not representative of wider physically inactive 
Western populations (Farrell et  al., 2013; Lindsay et  al., 2019). 
Importantly also, in the ageing population, reduced physical 
activity and increase in sedentary time are typically observed 
(Lindsay et  al., 2019). Furthermore, no difference in muscle 
mass or fat mass was seen in our study population, unlike 
that witnessed in wider society (Volpi et  al., 2004; Barrios-
Silva et  al., 2018). By studying highly active ageing cohorts, 
we can separate physiological differences of ageing from inactivity 
induced changes (Harridge and Lazarus, 2017). Our results, 
therefore, should be interpreted in light of the relatively physical 
trained cohort presented here. Any potential differences suggested 
by the results presented here between age groups may 
be  enhanced when expanding this study to exercise naive 
younger and older individuals; however, this may reflect effects 
of long-term inactivity, not ageing per se.

Whilst this pilot study on EIMD has presented some interesting 
results in relation to EVs as putative biomarkers for muscle 
damage, these findings will need further validation in larger 
cohorts that can be  guided in sample size collection by the 
results presented here. Future investigations should also conduct 
in depth analysis of EV cargo composition will be of considerable 
interest for the identification of EV-related biomarkers in EIMD. 
Therefore, it will be of great interest to perform full EV profiling 
analysis using RNA sequencing, proteomics and metabolomics 
to reveal the EV cargo profiles in response to EIMD, also in 
different age populations. Whilst EV cargo biomarkers have 
been implicated in the pathophysiology of inflammation-
associated disorders, research regarding their role in EIMD 
and ageing remains limited. This study therefore provides the 
first insights into the potential of EV-profiling in association 
with muscle-damaging exercise and ageing and paves the way 
for future studies, aiming to extend current knowledge on 
their roles as mediators of health-promoting effects, and as 
biomarkers, associated with physical activity.

In conclusion, here we show that physical responses to eccentric 
exercise induces plasma-EV changes that correlate with CK 
release post exercise, a biological marker of muscle damage. 
EV profiles did not appear to change significantly in relation 
to age groups assessed (active younger vs. older), which importantly 
may make them a reliable biomarker to assess effects of exercise 
interventions across age groups. As EV release has previously 
been associated with small animal models of muscle damage, 
our study further supports that EV release profiles immediately 
following exercise may also play a role in the EIMD response 
in humans. If the post-exercise EV response does indeed reflect 
physiological injury recovery responses, the magnitude and 
content of EV profile changes could be  of interest for strategies 
to reduce the impairing effects of EIMD.
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GLOSSARY

Term Definitions 

ANOVA Analysis of variance
BIA Bioelectrical impedance analysis
BMI Body mass index
BSA Bovine serum albumin
CK Creatine kinase
CV Coefficient of variation
DOMS Delayed-onset muscle soreness
ECL Enhanced chemiluminescence
EIMD Exercise-induced muscle damage
EVs Extracellular vesicles
Flot-1 Flotillin-1
miRNAs microRNAs
MVIC Maximal voluntary isometric contraction
NTA Nanoparticle tracking analysis
PAR-Q Physical activity readiness questionnaire
Post-EIMD Following exercise-induced muscle damage
Pre-EIMD Before exercise-induced muscle damage
RM Repetition maximum
RT Room temperature
SEM Standard error mean
TBS Tris buffered saline
TEM Transmission electron microscopy
VAS Visual analogue scale
WURSS Wisconsin upper respiratory symptom survey
ΔCount Difference between EV concentration at post-EIMD and pre-EIMD time points
ΔMode Difference between in EV modal size at post-EIMD and pre-EIMD time points
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