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Abstract: Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal
intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be
found as natural products in the marine environment. This review highlights the important class of
marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the
marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and
derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses
categorized, this review shall provide a clear and timely synopsis of this area.

Keywords: pyrroles; alkaloids; marine natural products; nitrogen heterocycles; bromopyrroles;
pyrrole-imidazole alkaloids; pyrrole-aminoimidazole alkaloids

1. Introduction

The oceans cover more than 70% of the earth’s surface and comprise around 95% of
the volume of the biosphere. This impressive size of the marine habitat and its biological
diversity known to date lead to the assumption of an enormous, yet still largely unexplored
world, carrying an unused potential for research areas such as pharmacology, medicine,
crop protection, or food technology. Furthermore, the uniqueness of marine life is reflected
by the fact that only a small fraction of the 30,000 marine natural products (MNPs) known
at present can also be found in terrestrial sources [1]. Additionally, the isolation and
investigation of MNPs is a rapidly expanding field of research at the interface of biology
and chemistry [2–10]. Looking back to 2009, when only 20,000 MNPs were known, an
impressive increase of 50% has been achieved in the past 11 years, which highlights the
importance of the marine habitat in this context [11].

Among the marine alkaloids, which are largely composed of nitrogen-containing
heterocycles, the pyrroles form a large group of intriguing natural products which occur
in marine organisms ranging from microbes over algae and sponges to animals. Their
structural diversity including terpenoid-, polyketide-, carbohydrate-, lipid-, and peptide-
frameworks [7,12] accompanied by attractive biological properties, has spurred a consider-
able interest of chemists [6,13–19].

This review focuses on marine pyrrole alkaloids containing at least one pyrrole moiety,
which were discovered during the decade of 2010 to 2020. The number of newly discovered
pyrrole MNPs surged in this decade and many structural revisions resulted in a deeper
knowledge of their biogenetic origin and structural relations.

In addition to the reported structures and their biological sources, known biological
activities and, where applicable, the first total syntheses of these compounds will be shown.
Furthermore, this review is subdivided by structural subclasses based on the substitution
pattern of the pyrrole core. As a delineation, only MNPs with intact pyrrole functionality
are described, whereas indole alkaloids [20], the saturated heterocycles pyrroline and
pyrrolidine [21], as well as other fused systems (e.g., carbazoles) and pyrrole derivatives
lacking a genuine pyrrole core [22–25], will not be covered. Several other specific overviews
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focusing on subclasses such as bromopyrroles [26,27] and pyrrole-imidazole alkaloids
(PIA) [13,14,28] or with the focus on the isolation source [14,25,27], have been published.
In contrast, we intend to provide the reader with an impression of the multiple facets of
pyrrole alkaloids in the marine environment.

The five-membered planar 6π heteroaromatic pyrrole core with its high electron
density is a reactive and privileged structural motif found in many biomolecules. It can
provide stacking interactions, coordinate metal ions, or form hydrogen bonds when devoid
of a substituent in the 1-position. Probably, the most well-known pyrrole derivatives in
nature possess a tetrapyrrole skeleton, which can, e.g., be found in heme, chlorophyll, and
several other porphyrinoid cofactors [29,30]. However, pyrroles possessing much simpler
architectures have also attracted considerable interest, e.g., as promising lead structures
in medicinal chemistry [15]. The biggest-selling drug of all time, the blood cholesterol
lowering HMG-CoA reductase inhibitor atorvastatin (Lipitor®), is a pyrrole derivative. Not
surprisingly, many pyrrole MNPs have also been associated with various pharmacological
activities, such as cytotoxic [31,32], anti-bacterial [33,34], anti-fungal [35], and anti-cancer
properties [6,36,37].

2. Non-Halogenated Marine Pyrrole Alkaloids

The alkaloids presented in this chapter are identified by a non-halogenated pyrrole
core. Despite their structural diversity, the biosynthetic origin of these alkaloids can
be traced back to a small number of possible biosynthetic pathways. According to the
stunning logic of nature, only a few building blocks such as the amino acids glycine, serine,
tryptophan, and proline are necessary to construct their pyrrole units.

A well-known pathway involves δ-aminolevulinic acid (ALA) as a key intermedi-
ate, which is produced from glycine and succinyl-CoA. An enzyme-catalyzed Knorr-type
condensation–cyclization reaction of two molecules of δ-aminolevulinate yields porpho-
bilinogen as a central intermediate, from which the trialkyl-substituted pyrroles are derived.
Porphobilinogen is prone to self-condensation under acidic conditions and can further
react to polypyrrolic systems, most notably the tetrapyrroles. Another major biosynthetic
pathway is the dehydrogenation of proline to the common pyrrole-2-carboxylate unit. The
activation of proline is suggested to involve a peptidyl carrier protein (PCP) forming a
thioester linkage. In the next step, a controlled four-electron oxidation process with a
flavoprotein desaturase occurs. These two C−N desaturation steps of the prolyl-S-PCP
and subsequent tautomerization lead to the desired pyrrolyl-2-carboxyl-S-PCP product.
Starting from this activated intermediate, a broad spectrum of reactions such as enzymatic
transfer to nucleophiles or enzymatic halogenations can occur to create the world of marine
pyrrole alkaloids [25,30,38,39].

2.1. Simple Pyrroles

The pyrrole derivative 1-(4-benzyl-1H-pyrrol-3-yl)ethanone (1) was found in a co-
culture of the marine-derived fungi Aspergillus sclerotiorum and Penicillium citrinum in
2017 (Figure 1). The acylated pyrrole 1 shows only medium toxicity against brine shrimp
(LC50 values of 46.2 µM) and oppositely increases the growth of Staphylococcus aureus at
100 µg/mL [40].
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Investigation of an endophytic strain of Fusarium incarnatum yielded another acylated
pyrrole, fusarine (2), isolated from the marine mangrove fruit Aegiceras corniculatum in 2012
(Figure 1). Alkaloid 2 is expected to be formed biosynthetically via a Paal–Knorr cyclization
of a primary amine and a 1,3-dicarbonyl, but showed neither antiproliferative nor cytotoxic
potential against HUVEC, K-562, and HeLa human cell lines [41].

Another simple pyrrole is represented by geranylpyrrol A (3), which is counted among
the small class of pyrrolomonoterpenoids and derives from pyrrolostatin (Figure 1). It was
isolated from a mutant strain of Streptomyces sp. CHQ-64 in 2017 but did not display any
toxicity against eight tested human cancer cell lines [42].

The pyrroloterpenoid glaciapyrrol A (10b) was already isolated along with its con-
geners glaciapyrrols B and C in 2005. Despite extensive investigations, the relative con-
figuration of C-11 and the overall absolute configuration could not be determined at this
time [43]. Through the first total synthesis of its four diastereomers by Dickschat in 2011,
the relative configuration of the three stereocenters could be unequivocally established [44].
The authors devised an enantioselective synthesis starting from geraniol (4) using a Sharp-
less epoxidation to furnish alcohol 5. Protection of the alcohol functionality and subse-
quent Sharpless dihydroxylation followed by intramolecular cyclization served as the key
step and stereoselectively generated compound 6. After several steps including a pro-
tection/deprotection sequence followed by oxidation and Horner–Wadsworth–Emmons
(HWE) reaction using phosphonate 7, ester 8 was obtained in 64% over four steps. Saponi-
fication, the addition of pyrrolyl Grignard 9, and final TBS-deprotection finally produced
ent-(−)-glaciapyrrol A (10a) showing the opposite optical rotation as the original publica-
tion from 2005. The authors, therefore, identified the natural product as (+)-glaciapyrrol A
(10b) (Scheme 1) [44].
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Sharpless epoxidation/dihydroxylation sequence, leading to the unnatural ent-(−)-glaciapyrrol A
(10a).

The bromotyrosine-derived pyrrole alkaloid pseudocerolide A (11), was isolated from
a marine sponge (Pseudoceratina sp.) from the South China Sea in 2020 and its proposed
structure could be confirmed by X-ray crystallography (Figure 2). Unfortunately, compound
11 exhibited no activities against methicillin-resistant Staphylococcus aureus, Escheriachia coli,
or Candida albicans [45].
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The unusual pyrrolyl 1-isoquinolone alkaloids 12 and 13 were discovered from a
habitat in the South China Sea within a co-culture of two mangrove endophytic fungi (strain
No. 1924 and 3893) in 2006 [46]. It took until 2011, when König and co-workers isolated
methyl marinamide (15) from the marine sponge (Ircinia variabilis) and reported a revised
structure of 15, in which the previously assumed 1-isoquinolone of 13 was reassigned
as a 4-quinolinone unit on the basis of X-ray crystallography. Unfortunately, 15 showed
only weak or no effects in the biological evaluation on cannabinoid receptors [47]. In
accordance with the findings of König, Zhu and Chen, chemically modified the previously
isolated compound 14 in 2013, which also led to the revision of the structure 12 to 14 for
marinamide in the same fashion, further confirming the revision of marinamide by König
and co-workers [48]. However, one year before the report of König, the Lin laboratory
isolated the same compound 14, but referred to it as penicinoline (Figure 2) [49]. Both
compounds 14 and 15 display promising in vitro cytotoxicity towards 95-D and HepG2
cell lines (IC50 values of 0.57 µg/mL and 6.5 µg/mL, respectively) as well as insecticidal
activity against Aphis gossypii (100% mortality at 1000 ppm) [48,49].

The related congener penicinoline E (16) was isolated from an endophytic fungus
Penicillium sp. ghq208 in 2012 alongside quinolactacide (17), which was isolated from a
marine source for the first time [50,51]. In biological assays, moderate cytotoxicity against
HepG2 was exclusively attributed to 4-quinolinones 14 and 15 (IC50 values of 11.3 µg/mL
and 13.2 µg/mL, respectively), indicating the importance of the free carboxy function at C3
(Figure 2) [51].

Based on the auspicious pharmacological activities of penicinoline E (16), marinamide
(14), and methyl marinamide (15), the Nagarajan group established their total synthesis
in 2017 for further biological testing [52]. They achieved a two- to three-step approach,
characterized by a Suzuki–Miyaura coupling and subsequent dearomatization as key steps
from their starting materials 18, 19, and 20. They were also able to unambiguously confirm
the structure of penicinoline E (16) by X-ray crystallography (Scheme 2) [52].
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Furthermore, the antimalarial properties against the 3D7 strain of Plasmodium falci-
parum were evaluated and the decarboxylated derivative 16, as well as the methyl ester
15, showed significant activity (IC50 value of 1.56 µM for both). These results have been
confirmed by binding mode studies of the synthesized ligands 14, 15, and 16 to the CYTB
protein of Plasmodium falciparum [52].

Another pharmacologically interesting compound class is the indanomycins, which
possess a variety of biological activities such as antibacterial [53], insecticidal [54], and
antiprotozoal [55] properties. In 2011, the group of Kelly and co-workers published a study
on the biosynthesis of indanomyincs, including an intramolecular Diels–Alder cyclization
of a tetraene as the key step [56]. Two years later, researchers isolated three new representa-
tives of these pyrrole ethers from the culture broth of a marine Streptomyces anibioticus strain
PTZ0016 which possess in vitro activity against Staphylococccus aureus (MIC values between
4.0 and 8.0 µg/mL). Based on their previous derivatives and on the α- or β-orientation
of the pyran ring, they were named 16-deethylindanomycins. The relative and absolute
configurations of iso-16-deethylindanomycin (23), iso-16-deethylindanomycin methyl ester
(24), and 16-deethylindanomycin methyl ester (25) were established by extensive NMR
and CD spectroscopy (Figure 3) [57].
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Another important source of bioactive MNPs is represented by the genus Agelas
(family Agelasidae), which provides a wide diversity of glycolipids [58,59], diterpene
alkaloids [60–62], and pyrrole alkaloids [63–66]. To date, more than 130 pyrrole alkaloids
have been isolated from over 20 Agelas species, all of which share a unique bromo- or
debromopyrrole-2-carboxamide moiety alongside several linear side chains, anellated ring
systems, or dimeric structural units [67].

In 2017, Li et al. reported the isolation of the nakamurines A–C (26–28) from the South
China Sea sponge Agelas nakamurai. They only differ in the side chain of the carboxamide
unit, however, no activity could be observed for any of the compounds in cytotoxicity
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tests and antiviral assays. In antimicrobial assays, only nakamurine B (27) showed weak
inhibitory effects against Candida albicans (MIC = 60 µg/mL, Figure 4) [67].
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Figure 4. Isolation of five pyrrole-2-carboxamides (26–30) from the sea sponge Agelas nakamurai.

A few weeks later, the same group published the extraction of two non-brominated
pyrroles, 29 and 30, from the same sponge Agelas nakamurai [68]. For structure elucidation,
the racemic pairs were resolved by chiral HPLC with the absolute stereochemistries de-
termined by quantum chemical calculations and measurements of molar rotations. The
carboxamide 30 was listed in SciFinder Scholar with no associated reference at that time,
but the analytical data were reported for the first time. In cytotoxicity and antimicrobial
tests, no activity could be observed for any of the enantiomers of nakamurine D (29) or for
compound 30 (Figure 4) [68].

In 2017, Li and co-workers were able to isolate a new class of racemic pyrroles, the
nemoechines A–C (31, 32, and 124), from the species Agelas aff. nemoechinata (Figure 5) [69].
Nemoechine A (31) differs from the two related congeners 32 and 124 by its unusual
bicyclic cyclopentane-fused imidazole skeleton, whereas nemoechine B (124) features a
fused pyrrole core and is therefore specified in Section 2.4. Nemoechine C (32), with its
butyric acid ester side chain, shows structural similarity to pyrrole 30 and differs only
by an additional methylene group. Unfortunately, nemoechine A (31) and C (32) did not
show any promising activities which complies with the inactivity of the structurally related
pyrroles 29 and 30 [69].
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Figure 5. Isolation of nemoechine A (31) and C (32), debromokeramadine (33), and clathrirole B (34).

The isolation of pyrrole-2-aminoimidazole (P-2-AI) debromokeramadine (33) from
the marine sponge Agelas cf. mauritiana was reported alongside the first total syntheses of
33 and keramadine (41) in 2015. Interestingly, 33 and the previously isolated derivative
keramadine (41), feature a (Z)-configuration at the C=C double bond, which is in contrast
to the well-known natural key-precursor oroidin featuring an (E)-configured double bond
(Figure 5) [70,71].

Clathrirole B (34), extracted from the marine sponge Clathria prolifera, represents
another P-2-AI alkaloid. The carboxylic acid ester 34 is a C-11 epimer of manzacidin D (35),
which was isolated from the marine sponge Astrosclera willeyana back in 1997 (Figure 5) [72].
Interestingly, compound 34 completely lacks antifungal activity against Saccharomyces
cerevisiae, whereas diastereomer 35 and derivatives thereof proved to be potent antifungals
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against this yeast [35]. Thus, the authors concluded that the absolute configurations at both
C-9 and C-11 may have a massive influence on the antifungal activity of this compound
class [73].

The authors applied a one-pot approach with a regioselective oxidative addition in
which partially brominated N-acylpyrrole-1,2-dihydropyridines 36 and 37 were reacted
with guanidine 38 in a double nucleophilic substitution to generate the aminoimidazoline
moiety. Finally, the cyclic aminal structure is ring-opened by TFA, resulting in the MNPs
33 and 41 (Scheme 3) [71].
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Scheme 3. Synthesis of keramadines 33 and 41, including a regioselective oxidative addition followed
by acid mediated bond cleavage of the aminal.

In the previously reported isolation of MNPs from Agelas aff. nemoechinata and naka-
murai, the class of nakamurines and nemoechines were presented [68,69]. It should be
mentioned that the group of Li isolated several structurally related pyrrole alkaloids from
marine sources and identified them as known compounds that had been synthesized but
not isolated from natural sources before. Therefore, carboxamides 42–47, isolated from
marine sources for the first time, are grouped together in Figure 6. The N-acylglycine
methyl ester 42 identified in both sponges is related to nakamurine C (28) but carries an
additional methylene group [68,69]. The synthetically known pyrrole 43 bearing two more
methylene groups in the side chain, was isolated from Agelas nakamurai [68,74,75].
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Figure 6. Synthetically known pyrrole-2-carboxamides 42–47, isolated for the first time from ma-
rine origin.

Some reduction products of the methyl esters and an amine derivative are represented
by compounds 44–46, of which 45 occurs in both sponges, whereas 44 and 46 were exclu-
sively isolated from the Nemoechinata sp. [68,69,76,77]. The carboxamide 47 is a debromo
analog of mukanadin B and is present in Agelas nakamurai [68,78,79]. Compounds 42–47
described show neither cytotoxicity nor antimicrobial activity.

The Arctic hydrozoan Thuiaria breitfussi (family Sertulariidae) produces a class of
indole-oxazole-pyrrole MNPs named breitfussins. Biosynthetically, the breitfussins may
share a similar biogenesis as the phorbazoles (cf. Figure 33), arising from the dipeptides Pro-
Trp or Pro-Tyr. In the first isolation and analysis of breitfussin A (48) in 2012, high-resolution
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mass spectrometry indicated a ratio of non-hydrogen atoms to hydrogen of 2:1 which makes
the structural elucidation by spectroscopic methods challenging [80]. The authors, however,
could identify a brominated 4-methoxyindole moiety, a 2-substituted pyrrole core as well
as an unresolved C3NO fragment suggestive of an oxazole core, which finally prevented
the unambiguous determination of the entire structure. By applying a combined approach
of atomic force microscopy (AFM), computer-aided structure elucidation (CASE) and
calculation of 13C-NMR shifts through density functional theory (DFT), the structure of
breitfussin A (48) could be unequivocally determined (Figure 7) [80]. A recently published
article describes the isolation of further non-halogenated congeners, namely breitfussins
C (49), D (50), and F (51), of which structures 49 and 50 could also be confirmed by total
syntheses (Figure 7) [81].
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Given the promising cytotoxic activities of the breitfussins C (49) and D (50) against
several cancer cell lines with IC50 values below 10 µM, extensive research on the breitfussin
scaffold in search for selective kinase inhibitors has been performed [81]. Due to their
promising bioactivity but extremely challenging heteroaromatic core in terms of structure
elucidation, the breitfussins are attractive starting points for ongoing synthetic work [82].

The first total synthesis and hence the structure validation of breitfussin A (48) was
published by the Bayer group in 2015 [83]. They used an approach involving two Suzuki
couplings in which the oxazole and pyrrole moieties were installed sequentially. First,
indole 52 was converted with oxazole 54 into coupling product 55, followed by double
lithiation of the oxazole core. Coupling with N-Boc-2-pyrrole boronic acid (20) furnished
pyrrole 57, which, after removal of all protection groups, resulted in the formation of
breitfussin A (48) [83]. Alongside the isolation of additional breitfussins in 2019, the Bayer
laboratory employed the same approach as in their previous publication for the synthesis
of breitfussin C (49) and D (50). Here, only the penultimate step varied by acid-mediated
Boc-deprotection, since deiodination of the oxazole core was required (Scheme 4) [81].

Bisindole pyrroles represent a class of MNPs having similar biological activities. The
lynamicins F (59) and G (60) were isolated from a marine-derived Streptomyces sp. SCSIO
03032 [84], extending the lynamicin family, of which lynamicins A–E have been isolated
back in 2008 (Figure 8) [85]. Unfortunately, no antimicrobial or cytotoxic activities were
observed for 59 and 60 against several indicator strains or cancer cell lines. In 2017, the first
total synthesis of the antimicrobial lynamicin D (72) was achieved, thereby enabling the
implementation of further biological assays (Scheme 5). It turned out that lynamicin D (72)
influenced the splicing of pre-mRNAs by upregulating the level of the key kinase SRPK1,
which is involved in both constitutive and alternative splicing [86].
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In addition to the alkaloids 59 and 60, a new family of MNPs consisting of a unique
1,3-dimethyl-2-hydroindole motif, the indimicins (IDMs) A–E (61–65), were discovered in
2015 (Figure 8) [84]. Besides the usual spectroscopic data, an X-ray structure of indimicin
A (61) could be obtained, which allowed determining the absolute configuration of the
hydroindole moiety. Of compounds 61–65, only indimicin B (62) was active against the
breast cancer cell line MCF-7 (IC50 value of 10.0 µM ± 0.3 µM), whereas all seven alkaloids
61–65 did not show any antimicrobial or cytotoxic activities against several indicator strains
or cancer cell lines [84].

Very recently, the Streptomyces sp. SCSIO 11791 revealed another bisindolylpyrrole (66),
displaying moderate cytotoxicity against a human breast cancer cell line (MDA-MB-435, IC50
value of 19.4 µM), while no antibacterial properties could be observed (Figure 8) [87].

In isohalitulin (67), isolated from the marine sponge haliclona tulearensis in 2010, the
structure is dominated by a bis-dihydroxyquinoline functionality (Figure 8) [88]. Com-
pound 67 exhibits a detectable toxicity to brine shrimp (Artemia salina, LD50 value of 0.9
mM). It is also worth mentioning that minute amounts and instability of isohalitulin (67)
prevented the unequivocal determination of its structure. However, 67 shows very similar
analytical data to its congener halitulin and should differ only in the position of the two
phenolic OH groups (Figure 8). Although no experiments were performed to deduce the
stereochemistry of 67, the authors mentioned that, on the grounds of common biogenetic
precursors, it most probably has the same absolute configuration as halitulin [88].

The total synthesis of lynamicin D (72) commenced with the synthesis of the coupling
partners 69 and 71, prepared from commercially available precursors 68 and 70. Dibromi-
nated pyrrole 69 was obtained by a Vilsmeier–Haack reaction, followed by oxidation,
esterification, and final bromination. On the other side, 5-chloro-1H-indole (70) was first
iodinated and Boc-protected and the introduction of the pinacol moiety on the basis of
Pd-catalysis resulted in the formation of indole precursor 71. Building blocks 69 and 71
were then subjected to the key Suzuki coupling. Final removal of the Boc-group gave
lynamicin D (72) in 73% yield over two steps (Scheme 5) [86].

The suberitamides and denigrins constitute another family of highly substituted
pyrrole alkaloids. The symmetrical, nearly planar suberitamide B (73) was isolated from
the marine sponge Pseudosuberties sp. in 2020 and bears a fully substituted pyrrole core.
This storniamide-related compound inhibits the enzymatic activity of Cb1-b (E3 ubiquitin
ligase) with an IC50 value of 11 µM, which, according to the authors, is caused by the rigid,
highly substituted pyrrole scaffold (Figure 9) [89].
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Figure 9. Highly substituted 3,4-diarrylpyrroles suberitamide B (73) and denigrin E (74).

In 2020, denigrin E (74) was isolated from a new Dactylia sp. along with several mem-
bers of the pyrrolone family. Unfortunately, no inhibitory activity against PAX3-FOXO1
luciferase expression was observed in biological assays (Figure 9) [90]. By considering the
substitution pattern of these 3,4-diarylpyrroles 73 and 74, a close relationship as potential
precursors of lamellarins (see Section 2.4.1) in a biosynthetic context can be suggested.

Among the huge variety of marine alkaloids, aromatic polyketides (APK) represent
another large class of MNPs and pyrrole-containing representatives have been described.
The group of Zhang and co-workers isolated the decaketide pyrrole SEK43F (75) generated
from pathway crosstalk of the host Streptomyces albus J1074 and the heterologous fls-gene
cluster from Micromonospora rosaria SCSIO N160 (Figure 10) [91]. It should be mentioned
that the configuration of the double bond in 75 could not be unequivocally determined.
The same group also isolated another tri-methylated bis-pyrrole 76 (Figure 10) [91], which
has only been known as a synthetic product before [92,93]. Both compounds 75 and 76
displayed negligible antibacterial activity, whereas the APK 75 showed weak to moderate
cytotoxicity against four human cancer cell lines (SF-268, MCF-7, NCI-H460, and HePG-2,
with IC50 values of 56.46 µM ± 0.87 µM, 35.73 µM ± 1.45 µM, 44.62 µM ± 2.49 µM, and
39.22 µM ± 3.00 µM, respectively, Figure 10).
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Figure 10. Representation of an APK (75) and three pyrroles 76–78 including the important class
of tambjamines.

The family of tambjamines consisting of a central bi-pyrrole unit is counted among
the 4-methoxypyrrolic natural products. In 2010, tambjamine K (77) was isolated as the
main secondary metabolite from the Azorean nudibranch mollusk Tambja ceutae and in
minute amounts from the bryozoan Bugula dentata (Figure 10) [94]. Just as its family
members, tambjamine K (77) exhibited remarkable to moderate antiproliferative activity
against tumor and non-tumor mammalian cells with IC50 values between 3.5 nM and 19
µM. It is suspected that the strong activity is caused by the bipyrrolic structure with its
DNA-targeting properties and by the ability to form ion complexes [94].

The macrocyclic tambjamine MYP1 (78) is produced by the marine bacterium Pseu-
doalteromonas citrea and was isolated in 2019 (Figure 10) [95]. The authors highlighted the
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important differences of the α- and β-rotamers in the tambjamine conformations, which
are thought to play an essential role in their bioactivity. Moreover, the group provides an
X-ray structure by co-crystallization of 78 with formic acid, unequivocally confirming the
proposed structure of compound 78 [95].

Based on the promising bioactivity of compound 77, Lindsley et al. were prompted to
publish their first three-step total synthesis of tambjamine K (77) four months after its initial
isolation [96]. The first step involved a Vilsmeier–Haack haloformylation which generated
enamine 80 in 59% yield. A Suzuki coupling with Boc-1H-pyrrol-2-ylboronic acid (20)
followed by acid-mediated condensation of isopentylamine resulted in the formation of
tambjamine K (77) in 31% over two steps (Scheme 6) [96]. In addition to the natural product
synthesis, a series of unnatural derivatives were synthesized followed by biological assays
to evaluate basic structure–activity relationships (SAR). However, the natural product
77 showed moderate activity (IC50 values of 13.7 µM and 15.3 µM against HCT116 and
MBA231, respectively), whereas the unnatural analogs were more potent in inhibiting
the viability, proliferation, and invasion of HCT116, MBA231, SW 620, and H520 NSCLC
cancer cell lines (IC50 values between 146 nM and 10 µM) [96].
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In addition to the tambjamines which consist of a bipyrrole core functionalized with
various imines, the functionalization with an additional pyrrole moiety in the prodiginine
structures represents another well-studied family. With the isolation of the marineosins
A (85a) and B (86) in 2008, this prodiginine-related family opened up a new field of re-
search with several new contributions being made in the last decade [97]. In 2014, the
Reynolds laboratory focused on the final steps of the marineosin biosynthesis, by explor-
ing the biosynthetic gene cluster mar which can produce marineosins by a heterologous
expression in a Streptomyces venezuelae derived JND2 strain. They replaced the marA
and marG gene with the spectinomycin resistance aadA gene which led to the isolation
and elucidation of 16-ketopremarineosin A (83) and premarineosin A (84) as well as
23-hydroxyundecylprodiginine (HUPG) (81) and its oxidized derivative 82, respectively
(Figure 11). As marineosin production was not observed, the authors concluded that both
genes, marA and marG, are essential for the biosynthesis of marineosins [98]. Three years
later, the Reynolds group reported another gene (marH) from the same cluster which has
the ability to catalyze the condensation of a methoxybipyrrole carbaldehyde (MBC) and
2-undecylpyrrole (UP) to generate undecylprodiginine (UPG). The gene also hydroxylates
the C-23 position of UPG to construct HUPG (81) and hence is essential for the biosynthetic
pathway of marineosins [99].
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Figure 11. Different prodiginine-based pyrrole alkaloids 81 and 82 together with marineosin-type
spiroaminals 83–86.

Not only the biosynthetic pathway but also the stereoselective synthesis of mari-
neosins, their substructures, and derivatives have attracted much attention. In 2014, the
Reynolds laboratory followed up on their previous publications regarding marineosins
and reported the first total synthesis of HUPG (81) and premarineosin A (84). To this
end, a divergent synthetic approach of nine steps in total stereospecifically provided 23-
hydroxyundecylprodiginine (81). The final cyclization forming the spiro-tetrahydropyran-
aminal unit of the premarineosin A (84) was then achieved by a biosynthetic approach via
the Rieske oxygenase MarG (Scheme 7) [100]. This strategy yields several other prodiginine
derivatives and premarineosin analogs that show promising cytotoxic and antimalarial
activities [100].
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Scheme 7. Divergent synthesis of premarineosin A (84) including a bioinspired MarG catalyzed
spirocyclization as the final step.

Based on unsuccessful synthetic attempts (with the exception of individual key motifs)
of several research groups [101–106], Shi and co-workers presented the first total synthesis
of marineosin A (85a) in 2016 [107]. The synthesis commenced with the commercially
available (S)-pyrone 89, which was converted into key fragment 90 in 10% yield over
14 steps. Lewis acid-mediated spirocyclization and ring-closing metathesis followed by
hydrogenation furnished spiro lactam 91 in 37% yield over three steps. The last two steps
consisted of a Paal–Knorr reaction and a Vilsmeier–Haack reaction, not only allowing
for the preparation of the sensitive pyrrole moieties in a late-stage procedure but also
directly giving access to marineosin A′ (Scheme 8). It is also worth mentioning that five
X-ray structures of important intermediates could be obtained, underpinning the validity
of the synthesis. However, the NMR spectra, appearance, and optical rotation of the
resulting marineosin A′ (85a) exhibited some deviations when compared to the isolated
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natural product, suggesting that the natural and synthetic compounds likely differ in their
stereochemistry [107].
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It was however not until 2019, that the Harran group solved the puzzle by a total
synthesis and concomitant reassignment of C7-(R) in 85a to C7-(S) resulting in the structure
85b for (+)-marineosin A [108]. To this end, a bioinspired approach with reversed fragment
polarity was applied, starting from the previously prepared bipyrrole 92 and cyclic ketone
93. Condensation product 94 was stabilized by quenching with NaOMe, generating a novel
but still unstable premarineosin 95. After exposure to acidic conditions, a prodiginine
chromophore was formed, which, after 6-exo trig cyclization mediated by acidic MnO2,
was converted to a premarineosin derivative. The formed vinylogous imidate was hydro-
genated from the less hindered face, resulting in the formation of (+)-marineosin A (85b),
whose spectroscopic data are in full agreement with those reported for the isolated natural
product 85b (Scheme 8) [108].

2.2. Formylpyrroles

In addition to the acyl-, carboxy-, and carboxamido-pyrroles (1–3, 23–25 and 26–34)
shown in the previous Section (cf. Section 2.1), the formylpyrroles constitute another
distinct family of the marine pyrrole alkaloids [109].

In the course of an investigation of the South China Sea sponge Mycale lissochela in 2017,
two new formylpyrroles 96 and 97 bearing an aliphatic side chain with a terminal nitrile
group were isolated (Figure 12) [110]. Both mycalenitrile-15 (96) and mycalenitrile-16 (97)
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showed excellent and good inhibition effects against PTP1B (protein-tyrosine phosphatase
1B, a recognized target for diabetes and obesity) with IC50 values of 8.6 µmol/L and
3.1 µmol/L, respectively, resulting from the unsaturated side chain [110].
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An additional formylpyrrole, cinerol I (98), was isolated from the sponge Dysidea
cinerea and belongs to the meroterpenoid family (Figure 12) [111]. Cinerol I (98), which
lacks the unsaturated side chain present in compounds 96 and 97, showed no inhibitory
activity against PTP1B, ATP-citrate lyase (ACL), or SH2 domain-containing phosphatase-1
(SHP-1) [111].

Five new formylpyrroles 99–103 were isolated from the marine cyanobacterium Moorea
producens in 2017 (Figure 13) [112]. Biosynthetically, they are suggested to originate from
the amino acid tryptophan, the indole moiety of which is partly reduced to forge the
annellated tetramethylenepyrrole framework. Further annellated pyrroles are depicted
in Section 2.4. All pyrroles described herein feature a 3-formyl group, and compound 103
additionally carries a purine unit. The five isolated pyrroles 99–103 showed no noteworthy
cytotoxicity or antibacterial properties [112].
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2.3. Nitropyrroles

A new subclass of pyrroleterpene MNPs is represented by 2-nitro-substituted pyrroles
carrying a diversely functionalized farnesyl chain attached to the 4-position of the pyrrole
core. The nitropyrrolin and heronapyrrole families known to date are formed biosyntheti-
cally by means of an electrophilic aromatic substitution of the pyrrole core by a farnesyl
pyrophosphate. Subsequent nitration, oxidation to epoxides and alcohols, as well as
cascade cyclization reactions then produce a variety of different substituted metabolites.

The first MNP from this subclass was isolated back in 2006, however, the structural
characterization appears to be incomplete and no information about the stereochemistry
was given [113]. In 2010, the group of Fenical reported the isolation of five farnesyl-2-
nitropyrroles 104–108 from the marine actinomycete strain CNQ-509 and referred to them
as nitropyrrolins A–E (104–108) (Figure 14) [114]. The authors performed several chemical
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modifications, including an acetonide formation from epoxide 105, and the Mosher method
was applied to unequivocally identify the full stereochemistry of nitropyrrolins A–E (104–
108). Among compounds 104–108, nitropyrrolin D (107) displayed the most promising
IC50 value of 5.7 µM in biological assays against HCT-116 colon carcinoma cells, whereas
a lower antibacterial activity against MRSA was observed for all nitropyrrolins 104–108
(MIC values >20 µg/mL). Some of the synthetic derivatives synthesized in the course
of the structure elucidation process showed strong to moderate cytotoxic (IC50 values
between 9.2 µM and 24.4 µM) and promising antibacterial properties (MIC value of 2.8
µg/mL) [114].
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In 2016, the Morimoto group reported the first total synthesis of nitropyrrolins A
(104), B (105), and D (107) in a sequential fashion (Scheme 9) [115]. As a key step, the
authors performed a lithium–halogen exchange on bromopyrrole 109 and reacted the
intermediary lithium species with epoxybromide 110, which was prepared from a known
epoxy alcohol. Subsequent deprotection and α-nitration of the pyrrole core then furnished
nitropyrrolin B (105) in 7% over two steps. Treatment of the epoxide 105 with BF3·OEt2 and
acetone produced the cis-acetonide, the stereochemistry of which could be investigated
by NOE spectroscopy. Cleavage of the acetonide under acidic conditions then generated
nitropyrrolin A (104) in 76% over two steps. When nitropyrrolin B (105) was reacted
with TMSOTf, a regio- and stereoselective epoxide ring-opening occurred. In a one-pot
approach, the intermediary allylic TMS-ether was cleaved under the addition of TBAF
producing nitropyrrolin D (107) in 90% yield (Scheme 9) [115].

Only a few days after disclosure of nitropyrrolins A–E (104–108) as natural products,
the group of Capon reported the extraction of three further 2-nitropyrroles, the heron-
apyrroles A–C (111–113) (Figure 15) [116]. These compounds share the same 4-farnesyl-2-
nitropyrrole scaffold and are closely related to the nitropyrrolins 104–108 (Figure 14). The
heronapyrroles 111–113 were isolated from a microbial culture of Streptomyces sp. strain
CMB-M0423 in only minor quantities, which prevented a meaningful analysis of the full
stereochemistries. However, on the basis of biosynthetic considerations, the absolute config-
urations were tentatively assigned as 7S and 15R. Although heronapyrroles A–C (111–113)
neither displayed cytotoxicity against several cell lines (HeLa, HT-29, AGS) nor showed
any activity towards Gram-negative bacteria such as Pseudomonas aeruginosa (ATCC 10145)
and Escherichia coli (ATCC 11775), promising activity against Gram-positive bacteria such
as Staphylococcus aureus (ATCC 9144, IC50 values between 0.6 µM and 0.8 µM) and Bacillus
subtilis (ATCC 6633, IC50 values between 0.8 µM and 4.2 µM) could be observed [116].
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Since the stereochemistries of heronapyrroles A–C (111–113) were only based on a
biosynthetic assumption, several total syntheses of members belonging to the heronapyr-
role family have been undertaken in the last decade. In 2012, Stark and co-workers focused
on biosynthetic considerations and published a bioinspired synthesis attempting to syn-
thesize heronapyrrole C (113) [117]. Starting with a lithium–halogen exchange-mediated
coupling of 3-bromopyrrole 109 and farnesyl bromide 115 followed by nitration of the
pyrrole core and Boc-protection, farnesylpyrrole 116 was generated in 13% over five steps.
Asymmetric dihydroxylation of compound 116, followed by a key double organocatalytic
epoxidation using the (+)-Shi catalyst enabled a biomimetic polyepoxide cyclization cas-
cade under acidic conditions, yielding pyrrole ent-113b. However, the product ent-113b
showed an opposite optical rotation compared to the isolated natural product, prompt-
ing the authors to propose the corresponding enantiomer (+)-113a to be the true natural
structure (Scheme 10) [117].



Mar. Drugs 2021, 19, 514 18 of 79
Mar. Drugs 2021, 19, x FOR PEER REVIEW 19 of 79 
 

 

 

Scheme 10. First total synthesis of (+)-heronapyrrole C (113a) by Brimble in 2014 and its enantiomer 

(−)-heronapyrrole C (ent-113b) by Stark. 
Scheme 10. First total synthesis of (+)-heronapyrrole C (113a) by Brimble in 2014 and its enantiomer
(−)-heronapyrrole C (ent-113b) by Stark.

Just as heronapyrroles A–C (111–113), heronapyrrole D (114) could be isolated by
Stark and co-workers from a microbial culture of Streptomyces sp. (strain CMB-M0423)
in 2014 and showed significant inhibition of Gram-positive bacteria Staphylococcus aureus
subsp. (ATCC 25923, IC50 value 1.8 µM), Staphylococcus epidermis (ATCC 12228, IC50 value
0.9 µM) and Bacillus subtilis (ATCC 6633, IC50 value 1.8 µM), but was inactive against Gram-
negative bacteria Pseudomonas aeruginosa (ATCC 10145), Escherichia coli (ATCC 25922) and
Candida albicans (ATCC 90028) [118]. Along with its isolation, the authors also published
the total synthesis of (+)-heronapyrrole D (114), using the same strategy as in their previous
synthesis of 2012. The only exception is represented by the Shi-epoxidation, in which sub-
stoichiometric amounts of the oxidant (Oxone®) were applied to generate mono-epoxides.
Cyclization furnished the desired (+)-heronapyrrole D (114) (Scheme 10) [118].

Although the Stark laboratory further elaborated their studies on the nitration step
and improved the entire synthesis in 2014 [119], the group of Brimble published the first
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total synthesis of the naturally occurring (+)-heronapyrrole C (113a) almost at the same
time [120]. Based on their key intermediates 117 and 118, synthesized in 4 and 11 steps,
respectively, a Julia–Kocienski olefination merged the pyrrole subunit and the terpenoid
side chain. A subsequent Shi-epoxidation then furnished compound 119 in 25% over two
steps. The authors mentioned that the use of N-benzoyloxymethyl (Boz) as a protecting
group was crucial to perform the final cyclization and deprotection under mild conditions.
In this way, (+)-heronapyrrole C (113a) could be obtained in 80% yield over two steps
(Scheme 10) [120]. The spectroscopic data of the (+)-isomer 113a match those of the natural
product and confirm the proposed reassignment by Stark et al. in 2012.

In 2015, the Morimoto group published the total synthesis of the remaining (+)-
heronapyrroles A (111) and B (112) [121]. Taking into account the reported syntheses of
(−)-heronapyrrole C (ent-113b) by Stark (2012) and (+)-heronapyrrole C (113a) by Brim-
ble (2014) together with the biogenetic relationship of heronapyrroles A–C (111–113), a
stereochemical reassignment of pyrroles 111 and 112 was proposed. Morimoto’s group es-
tablished a strategy similar to the approaches published by Stark and Brimble by installing
the farnesylated chain through alkylation of pyrrole 109 with epoxy bromides 120 or 121.
In the case of (+)-heronapyrrole A 111, the generated epoxide 122 was opened regiose-
lectively by BF3·OEt2, yielding a masked C7–C8 anti-diol, which, after sodium-mediated
ring-opening of the THF moiety and several further transformations, led to the formation
(+)-heronapyrrole A (111) in 3% yield over seven steps (Scheme 11). Just as (+)-111, (+)-
heronapyrrole B (112) was synthesized in a corresponding manner by opening the epoxide
123 via the same sequence to give a cis-acetonide, which, after nitration and acid-mediated
cleavage of the acetonide functional groups, gave (+)-heronapyrrole B (112) in 18% yield
over five steps (Scheme 11). In both cases, the absolute configuration was determined
by the Mosher method which confirmed the proposed structure. As a consequence, the
initially proposed stereochemistries for heronapyrroles A (111) and B (112) from the Stark
laboratory in 2012 were reassigned [121].
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This rare class of nitropyrroles has attracted some attention from synthetic chemists
in recent years. Not least because of previous synthetic work and the promising effects
against Gram-positive bacteria, nitropyrroles may represent interesting targets for further
drug design [115,117,118,120–123].

2.4. Annellated Pyrroles

In contrast to simple substituted pyrrole alkaloids, another structural class comprises
compounds with an annellated pyrrole core. The position of fusion thereby can differ
between 1,2-, 2,3- or 3,4-, with the fused ring being 6- or 7-membered. Additionally, these
alkaloids often share a carbonyl moiety in α-position to the bridgehead atom.

From a series of nemoechines isolated in 2017 (see Figure 5, 31 and 32), nemoechine
B (124) stands out with its 1,2-condensed pyrrole unit [69]. The synthetically known
compound 124 [124] was originally isolated in racemic form from Agelas aff. nemoechinata
and the enantiomers were separated by chiral HPLC. Like its family members 31 and 32, a
lack of cytotoxicity against HL-60, HeLa, P388, and K562 cell lines was reported for both
enantiomers (Figure 16) [69].
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In 2016, procuramine (125) was identified as a co-metabolite during the initial isolation
and investigation of the biosynthetic pathway of curindolizine (414) from Curvularia sp.
IFB-Z10 (see Figure 58). Structure elucidation was performed by spectroscopic methods
and X-ray crystallography (Figure 16) [125].

A new pyrrolooxazine (126) was isolated from the marine mudflat fungus Paecilomyces
formosus, yet the absolute configuration could not be determined because of decomposition
during the isolation process. Formoxazine (126) showed potential as a radical scavenger in
the DPPH assay with an IC50 value of 0.1 µM and antibacterial activity against MDRSA
and MRSA (MIC values of 6.25 µg/mL for both) (Figure 16) [126].

In the course of an investigation of marine-derived Aspergillus versicolor and in search
for new Bacille Calmette-Guérin-inhibiting antibiotics against tuberculosis, the unknown
brevianamide T (127) could be isolated in 2012 (Figure 16) [127]. Unfortunately, dike-
topiperazine 127, isolated along with other members of the brevianamide family, showed
no antibacterial properties against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC
6633) (Gram-positive bacteria) or Pseudomonas aeruginosa (PAO1), Escherichia coli (ATCC
25922) (Gram-negative bacteria) or Candida albicans (SC 5314, yeast) [127].

A 2,3-fused pyrrole alkaloid, microindolinone A (128), was isolated from the actinomycete
Microbacterium sp. MCCC 1A12207 from the deep sea in 2017 [128]. This tetrahydroindole
represents one of two known saturated indoles of natural origin [129]. The absolute configura-
tion at C5-OH was deduced with CD spectroscopy as 5R. No potent inhibition was found in
anti-allergic bioactivity tests against RBL-2H3 cells (Figure 17) [128].



Mar. Drugs 2021, 19, 514 21 of 79

Mar. Drugs 2021, 19, x FOR PEER REVIEW 22 of 79 
 

 

absolute stereochemistry at C2, but no definite conclusions could be drawn. In bioactivity 

assays, marinoazepinone B (134) exhibited antibacterial activity against the Gram-positive 

Pontibacillus strain CNJ-912 (16 mm inhibition zone), whereas no activity was observed 

against the Gram-negative Vibrio shiloi strain CUA-364 (Figure 17) [134]. 

 

Figure 17. Various 2,3-fused pyrrole alkaloids 128–134 isolated between 2010 and 2020. 

The rigidins represent another prominent class of 2,3-fused pyrrole alkaloids, sharing 

a pyrrolo [2,3-d]pyrimidine scaffold [135]. With the first rigidin isolated back in 1990 by 

Kobayashi and co-workers [136], many MNPs belonging to this family have been isolated 

until today [137,138]. Although several total syntheses of rigidins are known [139–143], 

we want to mention the one-pot multicomponent reaction reported by the Magedov 

laboratory in 2011, which provides synthetical access to tetrasubstituted 2-aminopyrroles 

in only four steps and includes the first total syntheses of rigidins B–D (147–149) [144]. In 

a first step, N-(methanesulfonamido)acetophenones 140 and 141 were prepared from 

starting materials 135 and 136, respectively. The multicomponent reaction was then 

realized by combining either 140 or 141 with aldehydes 138 or 139 under the addition of 

cyanoacetamide (137). The resulting 2-aminopyrroles 142–145, isolated in 83–86% yield, 

were then converted into pyrimidinediones and after final deprotection, the rigidins A–D 

(146–149) could be obtained in four steps at an overall yield of 53–61% (Scheme 12) [144]. 

 

Scheme 12. The so-far shortest synthetic approach towards rigidin A (146), including the first 

syntheses of rigidins B–D (147–149) in a one-pot multicomponent reaction. 

Figure 17. Various 2,3-fused pyrrole alkaloids 128–134 isolated between 2010 and 2020.

The natural product 129 was isolated from the gorgonian coral Verrucella umbraculum
in 2012 and features a pyrrolopyrimidin scaffold. According to the authors, the biosynthesis
of this purine alkaloid is similar to that of caffeine, which was also isolated from the same
source (Figure 17) [130].

Another important class of MNPs is comprised of the pyrrolactams, which most
probably derive from pyrrole-2-carboxamides. Axinelline A (130) was isolated alongside
its brominated analog 353 (see Figure 51) from the marine sponge Axinella sp. in 2017,
however, the absolute stereochemistry was not determined (Figure 17) [131].

The two diastereomers (11R)- and (11S)-debromodihydrohymenialdisine 131a and
131b were isolated from the sponge Cymbastela cantharella by the Debitus laboratory in
2011 (Figure 17) [132]. The authors assumed that compounds 131a and 131b biogenetically
arise from dispacamide derivates. Because of their close relationship to the strong kinase
inhibitor hymenialdisine, (11R)- and (11S)-debromodihydrohymenialdisine 131a and 131b
were tested for Polo-Like-Kinase-1 (PLK-1) inhibition. Unfortunately, but in analogy to the
bromo derivatives 386a and 386b (see Figure 55), a complete lack of activity was observed,
demonstrating the importance of the conjugation at C-10 and C-11 of the unique cyclic
system of hymenialdisine [132].

In 2018, the structurally related seven-membered pyrroloazepine stylisine F (132) was
isolated alongside several other MNPs from the marine sponge Stylissa massa. However, the
authors mentioned that stylisine F (132) most probably occurred as an artifact generated from
the corresponding acid upon EtOH extraction. In basic biological investigations, weak or no
inhibition against a variety of bacteria was detected (MIC≥ 128 µg/mL, Figure 17) [133].

In 2015, Fenical and co-workers reported a culture-dependent technique in a nutrient-
poor medium combined with long incubation times, which facilitated the cultivation of
several marine bacteria able to produce secondary metabolites. The organic extract from
strain CNX-216T of a cultivated bacterium belonging to the Mooreiaceae family showed
activity against Pontibacillus sp. and the authors were able to isolate the alkaloids mari-
noazepinones A (133) and B (134) from this extract [134]. Besides the incorporation of the
unusual amino acid 4-hydroxyphenylglycine, the marinoazepinones 133 and 134 represent
the first natural products featuring a rare azepin-3-one framework. CD spectroscopy, X-ray
crystallography, and optical rotation were used to elucidate the absolute stereochemistry at
C2, but no definite conclusions could be drawn. In bioactivity assays, marinoazepinone B
(134) exhibited antibacterial activity against the Gram-positive Pontibacillus strain CNJ-912
(16 mm inhibition zone), whereas no activity was observed against the Gram-negative
Vibrio shiloi strain CUA-364 (Figure 17) [134].

The rigidins represent another prominent class of 2,3-fused pyrrole alkaloids, sharing
a pyrrolo [2,3-d]pyrimidine scaffold [135]. With the first rigidin isolated back in 1990 by
Kobayashi and co-workers [136], many MNPs belonging to this family have been isolated
until today [137,138]. Although several total syntheses of rigidins are known [139–143], we
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want to mention the one-pot multicomponent reaction reported by the Magedov laboratory
in 2011, which provides synthetical access to tetrasubstituted 2-aminopyrroles in only four
steps and includes the first total syntheses of rigidins B–D (147–149) [144]. In a first step,
N-(methanesulfonamido)acetophenones 140 and 141 were prepared from starting materials
135 and 136, respectively. The multicomponent reaction was then realized by combining
either 140 or 141 with aldehydes 138 or 139 under the addition of cyanoacetamide (137).
The resulting 2-aminopyrroles 142–145, isolated in 83–86% yield, were then converted
into pyrimidinediones and after final deprotection, the rigidins A–D (146–149) could be
obtained in four steps at an overall yield of 53–61% (Scheme 12) [144].
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The annellated pyrrole alkaloids shown so far largely consist of a fused lactone or
lactam structure, whereas 3,4-fused pyrroles often share a quinone system. This motif
can be found in albumycin (150), a novel MNP isolated by heterologous expression from
Micromonospora rosaria SCSIO N160 genes in Streptomyces albus J1074 (Figure 18). In antibac-
terial tests, only weak activities against several indicator strains were encountered (MIC
values >64 µg/mL) [145].
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In 2016, another fused p-quinone, biscogniauxone (151), was isolated from the marine
fungus Biscogniauxia mediterranea and belongs to the rare family of isopyrrolonaphtho-
quinones (Figure 18) [146]. It should be mentioned that the authors assumed the existence
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of further derivatives of compound 151, as metabolites with similar UV spectra were
detected in the extracts, albeit without isolation. Significant inhibition of glycogen syn-
thase kinase (GSK-3β, IC50 value 8.04 µM ± 0.28 µM) was observed for biscogniauxone
(151), while weak inhibition of Staphylococcus epidermidis and Staphylococcus aureus was
found (IC50 values in the range of 100 µM) [146].The nitricquinomycins A–C (152–154), iso-
lated from Streptomyces sp. ZS-A45, complete the selection of isopyrrolonaphthoquinones
(Figure 18) [147]. By comparing the spectroscopic data with those of previously reported
naphthoquinones bearing a pyrrole core and using NOE experiments for the determination
of the relative configuration, as well as ECD spectroscopy for the determination of the
absolute configuration, the structure could be determined as indicated. Of compounds
152–154, nitricquinomycin C (154) exhibited significant cytotoxicity against the human
ovarian cancer cell line A2780 (IC50 value 4.77 µM ± 0.03 µM) but weak antibacterial
potential against Escherichia coli, Staphylococcus aureus, and Candida albicans (MIC values >
40 µM) [147].

Another 3,4-fused pyrrole family are the spiroindimicins (SPMs), which contain a
remarkable spirocyclic bisindole framework and are highly related congeners of the bisin-
dole pyrroles 59–66 (cf. Figure 8). Spiroindimicins A–D (155–158) were isolated from
Streptomyces sp. SCSIO 03032 in 2012 [148]. The molecular structures were resolved by
spectroscopic methods, with the 3D structures of spiroindimicin A (155) and B (156) be-
ing unambiguously confirmed by X-ray crystallography (Figure 19). Spiroindimicin A
(155) consists of a [5.6] spirocyclic core, whereas congeners B–D 156–158 contain a [5.5]
spirocyclic core. This structural difference also influences the bioactivity, which in the
case of [5.5] spirocyclic pyrroles 156–158 results in good to moderate antitumor activities
against various cancer cell lines with IC50 values ranging between 5 µg/mL and 22 µg/mL.
Biosynthetic studies suggest the formation of spiroindimicins are proposed to derive from
lynamicin by an aryl-aryl coupling of C-3′ and C-5′′ or by an aryl-aryl coupling of C-3′ and
C-2′′, furnishing the [5.6] or [5.5] spiro-cyclic alkaloids, respectively [148].
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The family of spiroindimicins was extended in 2017 by the monochlorinated com-
pounds 159 and 160, which were isolated from Streptomyces sp. MP131-18 (Figure 19) [149].
Spiroindimicins E (159) and F (160) did not show any activity against Gram-negative test
cultures, being in line with the biological properties of their biosynthetic lynamicin-type
precursors. In both cases, the antibacterial activity appears to increase with an increasing
degree of chlorination on the bisindole backbone [149]. In addition to studies on the biosyn-
thetic gene cluster of Streptomyces SCSIO 03032 [150], the group of Zhang, responsible for
the isolation of spiroindimicins A–D (155–158), discovered the halogenase SpmH involved
in the biosynthesis of SPMs and IDMs.

In 2019, inactivation of the encoding gene spmH then led to the isolation of spiroindimicins
G (161) and H (162), which displayed moderate cytotoxicity against four cancer cell lines
(IC50 values between 10.28 µM and 33.02 µM), comparable to their chlorinated congeners
155–160 (Figure 19) [151].
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The first syntheses of these compounds were achieved by Sperry and co-workers
in 2016 [152]. Starting with the alkylation of aniline 163 with bromide 164, a subsequent
Heck reaction and hydrogenation furnished the spirocyclic pentanone 165. One key step
is represented by the Fischer indolization, followed by Boc-protection and radical bromi-
nation. After hydrolysis and oxidation, ketone 166 was formed in 50% over five steps.
Sequentially, a thioketal and then a vinylsulfone 167 were prepared which allowed for
a Montforts pyrrole synthesis. After the final deprotection, (±)-spiroindimicin C (157)
could be obtained. Additionally, reductive amination furnished (±)-spiroindimicin B (156)
(Scheme 13) [152].
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Further studies and recent publications highlight the importance of these bisindole
alkaloids as promising bioactive compounds and potential new lead structures [153,154].

The structurally remarkable subtipyrrolines A–C (168–170) incorporating a pyrrole-
pyrrole-dihydropyridine framework, were isolated from the Bacillus subtilis SY2101 strain,
derived from sediment samples of the Mariana Trench collected at a depth of 11,000 m
(Figure 20) [155]. The structural elucidation was investigated by spectroscopic analysis and
supported by X-ray crystallography. Bioactivity assays revealed moderate antiproliferative
activities (human glioma U251 and U87MG cells, IC50 values of 36.3 µM and 26.1 µM) as
well as moderate antimicrobial potential (Escherichia coli and Candida albicans, IC50 values
between 34 µM and 46 µM, respectively) [155].
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2.4.1. Lamellarins and Related Natural Congeners

To date, more than 65 lamellarins have been discovered since the first isolation of
a member of this class by Faulkner et al. in 1985 [156,157]. Divided into type I (with
subsections a and b, comprising compounds with a saturated or unsaturated C-5–C-6
unit, respectively) containing a doubly annellated 2,3,4-triarylpyrrole core in form of a
1-aryl-6H-chromeno-[4′,3′:4,5]pyrrolo-[2,1-a]isoquinolin-6-one or type II with a simple
3,4-diarylpyrrol-2-carboxylate ring system, the lamellarins comprise a large and promi-
nent class of marine alkaloids. These compounds, derived from sponges, tunicates, and
mollusks, exhibit a broad range of often highly potent biological activities, making them
interesting targets for synthetic chemists [157,158].

In 2012, Capon and co-workers investigated Didemnum sp. and isolated five new
lamellarins A1–A5 (171–175) from the strain CMB-01656 and one further member (A6,
176) from the strain CMB-02127 (Figure 21) [159]. Together with eight known derivatives,
a structure–activity relationship (SAR) study was performed regarding the reversal of
multidrug resistance. In the SAR study, the P-glycoprotein (P-gp) inhibition activity
was proposed to increase with a higher degree of O-methylation. The synthesis of a
permethylated derivative, featuring potential non-cytotoxic P-gp inhibitory activities then
confirmed this assumption [159].
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Figure 21. Members of the lamellarins 171–182 (type I) isolated from Didemnum sp. in 2012 and 2019.

The lamellarin sulfates represent a small subclass within the lamellarin family. In
2019, the group of Keyzers isolated six new lamellarin sulfates (177–182) from Didemnum
ternerratum, a pacific tunicate (Figure 21) [160]. All of them showed similar analytical data
to previously reported lamellarins except for the sulfate functional group. The substantial
majority of naturally occurring lamellarins show no optical rotation with the exception of
lamellarin S (half-life of racemization ≈ 90 days). Surprisingly, the newly isolated sulfates
179–182 showed optical activity in ECD analysis, which is due to the hindered rotation
of ring F resulting in an axial chirality (atropisomerism). The bioactivity of lamellarins
177–182 against human colon carcinoma HCT-116 was investigated, with D-8-sulfate (182)
showing appreciable cytotoxicity (IC50 = 9.7 µM) [160].

In addition to the representative group of lamellarins [32,156,161–166], further related
pyrroles like the polycitons, polycitrins [167], storniamides [168], and denigrins [90,169]
as well as the fused alkaloids lukianols [170], dictyodendrins [171], purpurone [172],
ningalins [173] and baculiferins can also be included, which extend the family of 3,4-
diarylpyrroles. In the molecular backbone, structural variations from fused maleiimide
units to highly conjugated carbazole-2,7-diones can be found.

The Capon laboratory isolated the new ningalins E (183) and F (184) from the species
Didemnum (CMB-02127), which, according to the authors, share a biosynthetic pathway
similar to that of the lamellarins by merging a tyrosine with a defined number of catechols
(Figure 22). Only low cytotoxicities against human, bacterial, and fungal cell lines were
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observed, whereas the ningalins 183 and 184 showed moderate inhibition of the kinases
CK1δ, CDK5, and GSK3β, potential targets for the treatment of neurodegenerative diseases
(IC50 values between 1.6 µM and 10.9 µM) [174].
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The class of the baculiferins was established by Lin and Bringmann in 2010, yielding
pyrrole 185 alongside 14 other new members bearing a carbazole-2,7-dione central core
(Figure 22). Baculiferin O (185) as a C8 sulfate representative inhibits several tumor cell
lines with moderate activity around 33 µM [175].

Because of their promising biological activities such as antiproliferative, multidrug
resistance reversal activity, cytotoxicity, and anti-HIV-1 activity, the lamellarin core has
served as a potential lead structure for synthetic and medicinal chemists in the past
decade [157,158]. The published syntheses of the lamellarins and derivates in the past
decade, summarized in Table 1, provide an update of the existing summary by Opatz et al.
in 2014 [158] and concentrate the recent review by Iwao et al. in 2020 [157].

Table 1. Summary of published synthesis of lamellarins and related analogs in the decade of 2010–2020.

Year Author Lamellarin and Related
Congeners Linear Steps i Overall Yield

2010 Iwao [176]

Lamellarin α 20-sulfate 15 6%

Lamellarin α 13-sulfate 15 4%

Lamellarin α 13,20-disulfate 14 9%

2011

Banwell [177]
G trimethyl ether 10 3%

Lamellarin S 11 6%

Jia [178]

Lamellarin D 10 13%

Lamellarin H 10 13%

Lamellarin R 5 53%

Ningalin B 8 14%

2012

Vazquez [179]
Lamellarin Q 6 28%

Lamellarin O 7 25%

Banwell [180]

Lamellarin K 9 57%

Lamellarin T 9 43%

Lamellarin U 8 44%

Lamellarin W 9 45%

2013
Opatz [181]

(Dihydro-)/lamellarin η 8/9 62%/57%

Lamellarin G trimethyl ether 7 69%

Iwao [182] Lukianol A/B 6/11 36%/11%



Mar. Drugs 2021, 19, 514 27 of 79

Table 1. Cont.

Year Author Lamellarin and Related
Congeners Linear Steps i Overall Yield

2014

Yamaguchi [183]
Lamellarin C 9 3%

Lamellarin I 9 3%

Iwao [184]
Lamellarin N 11;13 42%;34%

Lamellarin L 13 29%

2015

Iwao [185]
Lamellarin L 10 14%

Lamellarin N 10 12%

Opatz [186]
Lamellarin D trimethyl ether 9 43%

Lamellarin H 10 41%

Ruchirawat [187]
Aza/lamellarin D 13/13 12%/9%

Aza/lamellarin N 13/13 28%/15%

Tan and Yoshikai [188] Lamellarin G trimethyl ether 5 20%

2016

Iwao [189] Lamellarin U 12 5%

Yang [190]
Lamellarin D trimethyl ether 3 8%

Lamellarin H 4 7%

2017

Iwao [191]
Lamellarin N analogues – –

Azalamellarin N analogues – –

Iwao [192]
Lamellarin α 12 22%

Lamellarin η 10 19%

Chandrasekhar [193]

Lamellarin D trimethyl ether 6 44%

Lamellarin D 7 29%

Lamellarin H 7 37%

Wu [194] Lamellarin G trimethyl ether 3 51%

Yang [195]

Lamellarin D trimethyl ether 2 37%

Lamellarin H 3 31%

Lamellarin D 6;8 12–14%

Lamellarin χ 6;8 12–14%

Ackermann [196]
Lamellarin D 10 30%

Lamellarin H 10 29%

2018
Opatz [197] Lamellarin G trimethyl ether 7;8 19–42%

Chiu and Tonks [198] Lamellarin R 5 18%

2019

Donohoe [199]
Lamellarin D 7 22%

Lamellarin Q 7 20%

Opatz and Michael [200] Lamellarin G trimethyl ether 6;7 56–73%

Khan [201]

Lamellarin G trimethyl ether 5 18%

Lamellarin D trimethyl ether 6 16%

Lamellarins H, U 7/6 11%/11%

Dihydro/lamellarin η 7/6 9%/10%
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Table 1. Cont.

Year Author Lamellarin and Related
Congeners Linear Steps i Overall Yield

2020

Saito [202]
Lamellarin G trimethyl ether 6 26%

Lamellarin H 8 17%

Tsay [203] Lamellarin R 3 50%

Liou [204]

Lamellarin R 5 26%

Lamellarin O 5 10%

Lukianol A 6 38%

Khan [205]
Lamellarins 6/6/6 21%/21%/21%

S,Z,G,L,N,D 6/7/7 21%/19%/16%
i The longest linear sequence in the synthesis was counted.

This astounding number of syntheses highlights the importance of these pyrrole
members of marine origin to many areas of life science. In addition to the constantly
increasing number of total syntheses of lamellarins and their natural congeners, the number
of synthetic derivatives and biological activity assays has increased similarly [206–214].

3. Halogenated Marine Pyrrole Alkaloids

This chapter presents the occurrence of halogenated pyrroles which constitute a highly
diverse and structurally complex subclass of marine alkaloids. It is considered that at least
25% of organohalogen natural products are halogenated alkaloids, mostly featuring pyrrole,
indole, carboline, and other N-heteroaromatic core structures [215,216]. This observation
is not too surprising as the marine environment provides both chloride and bromide in
virtually unlimited quantities as well as a variety of halogenase enzymes from different
organisms, resulting in an excellent environment for biohalogenation of these electron-
rich substrates [30,217,218]. From a medicinal point of view, the resulting structures
are associated with numerous different pharmacological activities such as selective anti-
histamine [219–221], anti-serotonergic [222], immunosuppressive [223], antibacterial [224],
anti-malarial [225], and antiproliferative properties [226]. Therefore, halogenated pyrrole
alkaloids can be viewed as potential lead compounds for the development of new, even
more potent drugs [15,227].

Given the enormous dimensions and (bio)chemical diversity of marine life and its
underexplored nature, it is not surprising that the number of isolated halogenated ma-
rine pyrroles is constantly increasing and that countless further halopyrroles are yet to
be discovered.

3.1. Simple Pyrroles

Ethyl 3,4-dibromo-1H-pyrrole-2-carboxylate (186) was first isolated from the sponge
Stylissa massa in 2014 and shows a weak antiproliferative activity against mouse lymphoma
cells (L5178Y growth in 27.2% at 10 µg/mL, Figure 23) [228].
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A related bromopyrrole 187 was isolated from another sponge (Agelas cerebrum) in
2011 and subjected to several antiproliferative tests (Figure 23) [229]. Here, compound 187
and other isolated bromopyrroles did not show any activity against cancer cells (A549 lung
cancer cells, HT29 colonic cancer cells, and MDA-MB-231 breast cancer cells). However,
when the crude mixture, from which 187 and further bromopyrroles were isolated, was sub-
jected to biological tests, a strong cytotoxic activity (IC50 values around 1 µg/mL) against
all three human tumor cell lines could be observed. The authors attributed this effect to the
yet underexplored synergism of natural product mixtures containing bromopyrroles [229].
Both compounds 186 and 187 were previously only known as synthetic products [230,231].

Two further simple substituted halopyrroles, 188 and 189, could be isolated from the
South China Sea sponge Agelas sp. in 2016. The enantiomers (+)-188, (−)-188, (+)-189 and
(−)-189 did not appear to have any antifungal activities using the Caenorhabditis elegans
candidiasis model (Figure 23) [66]. However, the racemic mixtures of (±)-188 and (±)-189
showed effective antifungal activity. Unfortunately, the authors did not provide any values
or an explanation of this observation. Despite these results, the authors found out that
the corresponding intramolecularly cyclized pyrroloketopiperazine natural products (see
Figure 49, 342–344) exhibited significant antifungal activities with survival rates around
50% [66].

Very recently, the corresponding agesasines A (190) and B (191) featuring the free alcohol
functional groups, were isolated from Okinawan marine sponges Agelas spp. (Figure 23) [232].
Both compounds were isolated as racemates and, according to the authors, might be
artifacts from the extraction process under acidic conditions. In basic antiproliferative
tests against human cancer cell lines (HeLa, A549, and MCF7), no cytotoxicity could be
observed [232].

In 2012, a new bromopyrrole, 4-bromo-N-(butoxymethyl)-1H-pyrrole-2-carboxamide
(192), featuring an unusual ether group in its side chain, could be isolated from the marine
sponge Agelas mauritiana (Figure 24) [233].
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Further structurally similar halopyrroles 193–199 possessing different substituents
at their amide side chains were isolated from the Indonesian marine sponges Agelas lin-
naei (Figure 24) [234]. While mauritamide D (193), 4-(4,5-dibromo-1-methylpyrrole-2-
carboxamido)-butanoic acid (194), and agelanin B (195) were inactive against L1578Y
mouse lymphoma cell lines, the tyramine-unit bearing agelanesins A–D (196–199) showed
prominent to good activity with IC50 values between 9.25 µM and 16.76 µM in this assay.
The authors mentioned that the cytotoxicity of the agelanesins 196–199 is interconnected
with the degree of bromination of the pyrrole ring, resulting in an increased reactivity for
the monobrominated agelanesins A (196) and B (197) compared to 198 and 199 [234].

The tribrominated pyrrole 4′-((3,4,5-tribromo-1H-pyrrol-2-yl)methyl)phenol (200) was
isolated from the surface of the coralline alga Neogoniolithon fosliei in 2014 and exhibited
broad-spectrum antibacterial activity against several Pseudoalteromonas, Vibrio, and Staphylo-
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coccus spp. (inhibition zones > 10 mm, Figure 25). However, no antifungal or antiprotozoal
activity was observed by investigating compound 200 [235].
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A new class of bromopyrrole pigments derived from bromotyrosine were isolated
from the marine ciliate Pseudokeronopsis riccii in 2010 and were named keronopsamides
A–C (201–203) (Figure 25) [236].

In 2020, pyrrolosine (204), a tetrabrominated alkaloid symmetrically dimerized via
two amide functionalities, was isolated from Agelas oroides [237] and should not be confused
with another natural product named pyrrolosine (206), the structure of which had been
identified as 205 and revised 206 during the 1990s (Figure 26) [238].
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Further marine bromopyrrole alkaloids 207–211 substituted via amide groups were
isolated from the Patagonian bryozoan Aspidostoma giganteum (Figure 26) [239]. The
aspidostomides A–C (207–209), G (210) and H (211) bear the well-known bromotyrosine
and bromotryptophan structural motifs frequently found in marine natural products [240].
While for aspidostomide A (207) the absolute configuration was determined as R by
a modified Mosher method [241], the configurations of aspidostomides B (208) and C
(209) were assumed to be the same as in compound 207. The absolute configuration of
aspidostomide H (211) could not yet be established [239].

In 2019, the first total syntheses of the enantiomeric aspidostomides B (208) and C
(209) were realized by Khan and co-workers (Scheme 14) [242].
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Scheme 14. First total syntheses of aspidostomides B (208) and C (209) starting from compound 212.

Here, compound 212 was reacted in a Wittig olefination and then subjected to bro-
mohydroxylation. Substitution of the bromine with NaN3 followed by reduction fur-
nished amine (±)-215 in 67% yield over four steps. Amidation of (±)-215 with either
4,5-dibromopyrrole carboxylic acid (213) or 3,4,5-tribromopyrrole carboxylic acid (214)
delivered products 216 and 217, respectively. Final demethylation by applying BBr3 then
gave the natural products aspidostomides B (208) in 67% and C (209) in 72% over two steps
(Scheme 14) [242].

In 2018, nine new pseudoceratidines (218–226), of which the tedamides A–D (223–226)
possess an unprecedented 4-bromo-4-methoxy-5-oxo-4,5-dihydro-1H-pyrrole-2-carboxamide
moiety, were isolated from the marine sponge Tedania brasiliensis (Figure 27) [243]. It is important
to mention that 3-debromopseudoceratidine (218) and 20-debromopseudoceratidine (219),
4-bromopseudoceratidine (220), and 19-bromopseudoceratidine (221), tedamides A and
B (223 and 225), and tedamides C and D (224 and 226) have been isolated as pairs of
inseparable structural isomers differing in their sites of bromination and oxidation. The
inseparable mixture of compounds 218 and 219 showed antiparasitic activity on Plasmodium
falciparum (EC50 value of 5.8 µM ± 0.5 µM) and displayed weak cytotoxicity in the human
liver cancer HepG2 cell line (MDL50 ≥ 400 µM), but with excellent selectivity, as reflected
by a dramatically reduced toxicity to healthy cells. The authors also synthesized a number
of derivatives that were assayed against several protozoan parasite species, evidencing that
the bromine substituents in the pyrrole unit of pseudoceratidine derivatives are inevitable
for antiplasmodial activity [243].
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Figure 27. Nine new pseudoceratidines 218–226 from the marine sponge Tedania brasiliensis.

Another bromopyrrole alkaloid, clathrirole A (227), was isolated from the Myanmarese
marine sponge Clathria prolifera in 2018 (Figure 28) [73]. It should be noted that the stere-
ogenic centers of the tetrahydropyrimidinium ring of 227 were only assumed to have R con-
figuration by comparison of its optical rotation with the enantiomeric N-methylmanzadicin
C (228) which had been isolated and synthesized several years earlier [35,244,245].
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In this context, the correction of the stereoconfiguration of manzacidin B (232a) should
also be mentioned. This MNP was synthesized by the Ohfune group in 2007 and its config-
uration was erroneously determined to match compound 232b [246]. Three years later, the
same group published an alternative synthetic route (Scheme 15) and with the aid of X-ray
crystallography, the revised structure of manzacidin B (232a) was unambiguously con-
firmed [247]. Here, aldehyde 229 was transformed into compound 230 using Oppolzer’s
sultam as a chiral auxiliary, and subsequently generated the N-formyl lactone 231 already
featuring the stereochemistry of natural manzacidin B (232a). Several further steps, in-
cluding the installation of the pyrrole unit, then delivered the natural product 232a [247].
Unfortunately, the correction did not provide any information about the experimental
section, including reaction conditions and yields.
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Scheme 15. An alternative synthetic route towards manzacidin B (232a) in 2010 revealed that it was
incorrectly assigned as compound 232b in 2007.

In 2015, the group of Köck isolated N-methylagelongine (233) from the Caribbean
sponge Agelas citrina (Figure 29) [63].
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Figure 29. Simple bromopyrrole alkaloids 233–236 isolated from the Agelas sp.

Two new halopyrroles, nagelamide U and V (234 and 235) were isolated from a marine
sponge Agelas sp. in 2013 and possess a γ-lactam ring with a taurine unit (Figure 29). Here,
the relative stereochemistry was examined by ROESY correlations [65].

A related compound, 2-debromonagelamide U (236) was isolated from the Okinawan
marine sponge Agelas sp. two years later. Compound 236 could inhibit the growth of
Trichophyton mentagrophytes (IC50 value 16 µg/mL), a common fungus causing ringworm
in companion animals (Figure 29) [248].

In 2019, three new pyoluteorin analogs, mindapyrroles A–C (237–239) were isolated
from Pseudomonas aeruginosa strain 1682U.R.oa.27, a bacterium from the tissue homogenate
of the giant shipworm Kuphus polythalamius (Figure 30) [249]. The chlorinated pyrrole
alkaloids 237 and 239 inhibit the growth of multiple clinically relevant microbial pathogens
(MIC values between 2 µg/mL and >32 µg/mL), with mindapyrrole B (238) showing
the most potent antimicrobial activity (MIC values between 2 µg/mL and 8 µg/mL) and
widest selectivity index over mammalian cells [249].
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Figure 30. Mindapyrroles A–C (237–239) featuring several central resorcinol-cores.

New diterpene alkaloids, the agelasines O–R (240–243) bearing a bromopyrrole core,
were isolated from the Okinawan marine sponge Agelas sp. in 2012 (Figure 31) [61]. The
relative stereochemistries of compounds 240–243 were elucidated via ROESY-correlations.
The agelasines O–R (240–243) showed good to moderate antimicrobial activities (IC50
values ranging between 8 µg/mL and >32 µg/mL) against a wide range of bacteria,
including strains of Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. However, no
cytotoxicity against murine leukemia L1210 and human epidermoid carcinoma KB cells
was observed [61].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 34 of 79 
 

 

 

Figure 30. Mindapyrroles A–C (237–239) featuring several central resorcinol-cores. 

New diterpene alkaloids, the agelasines O–R (240–243) bearing a bromopyrrole core, 

were isolated from the Okinawan marine sponge Agelas sp. in 2012 (Figure 31) [61]. The 

relative stereochemistries of compounds 240–243 were elucidated via ROESY-

correlations. The agelasines O–R (240–243) showed good to moderate antimicrobial 

activities (IC50 values ranging between 8 µg/mL and >32 µg/mL) against a wide range of 

bacteria, including strains of Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. 

However, no cytotoxicity against murine leukemia L1210 and human epidermoid 

carcinoma KB cells was observed [61]. 

 

Figure 31. Agelasines O–R (240–243) with a 9-N-methyladenine unit from a marine sponge Agelas 

sp. 

In 2010, Fenical and co-workers isolated marinopyrroles C–E (244–246) from the deep 

ocean actinomycete strain CNQ-418 [250], thereby extending the interesting class of 

biologically active marinopyrroles, of which marinopyrroles A (250) and B (253) had been 

isolated before (Figure 32) [251]. These metabolites contain an unprecedented, highly 

halogenated 1,3′-bipyrrole core which gives them an axis of chirality that, for 

marinopyrroles A and B as well as C–E (244–246), results in a stable M-configuration at 

room temperature. Marinopyrrole C (244) displayed significant activity against 

methicillin-resistant Staphylococcus aureus with MIC90 values of less than 1 µg/mL. With 

derivatization experiments, the authors could also show that the presence of the 

hydrogen-bonding capacity of the salicyloyl hydroxyl groups, the free N–H functionality 

and the C-5′ chlorine substituent were indispensable for the biological activity [250]. 

Figure 31. Agelasines O–R (240–243) with a 9-N-methyladenine unit from a marine sponge Agelas sp.

In 2010, Fenical and co-workers isolated marinopyrroles C–E (244–246) from the deep
ocean actinomycete strain CNQ-418 [250], thereby extending the interesting class of bio-
logically active marinopyrroles, of which marinopyrroles A (250) and B (253) had been
isolated before (Figure 32) [251]. These metabolites contain an unprecedented, highly halo-
genated 1,3′-bipyrrole core which gives them an axis of chirality that, for marinopyrroles A
and B as well as C–E (244–246), results in a stable M-configuration at room temperature.
Marinopyrrole C (244) displayed significant activity against methicillin-resistant Staphylo-
coccus aureus with MIC90 values of less than 1 µg/mL. With derivatization experiments,
the authors could also show that the presence of the hydrogen-bonding capacity of the
salicyloyl hydroxyl groups, the free N–H functionality and the C-5′ chlorine substituent
were indispensable for the biological activity [250].
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Figure 32. The unusual structure of marinopyrroles C–E (244–246) contain a rare 1,3′-bispyrrole
functionality.

The first total synthesis of a member of the marinopyrrole family was realized by the
Li laboratory in 2010 (Scheme 16) [252]. Starting with a TsOH-catalyzed condensation and
cyclization of aminopyrrole 247 with α-ketoester 248 furnished an intermediary bi-pyrrole
skeleton. After N-protection and transforming the diester to the dialdehyde via a reduc-
tion/oxidation sequence, the addition of 2-methoxyphenylmagnesium bromide followed
by CrO3 oxidation furnished the diketone 249 in 50% over six steps. After deprotection and
chlorination of the pyrrole units with NCS, a final demethylation involving BBr3 gave the
natural product, (±)-marinopyrrole A (250) in 68% yield over three steps. Unfortunately,
selective bromination towards (±)-marinopyrrole B (253) under various conditions was
unsuccessful [252].
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Scheme 16. First total synthesis of (±)-marinopyrrole A (250) by Li in 2010 and its congener marinopy-
rrole B (253) by Chen in 2013.

Three years later, the Chen laboratory synthesized (±)-marinopyrrole B (253) using a
similar approach (Scheme 16) [253]. Here, the brominated chloropyrrole 252 was generated
over nine steps starting from commercially available pyrrole 251. The next seven steps
were performed almost in the same manner as in the synthesis of marinopyrrole A reported
by Li and co-workers, although some reaction conditions were improved. In this way,
(±)-marinopyrrole B (253) could be obtained in 15% over seven steps [253].
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Between 2012 and 2019, several pyrrolyloxazoles belonging to the phorbazole series
were isolated from marine organisms. The first study of the Indo-Pacific dorid nudibranch
Aldisa andersoni resulted in the isolation of 9-chloro-phorbazole D (254) and N1-methyl-
phorbazole A (Figure 33) (255). Both compounds exhibit similar in vitro inhibitory ac-
tivity against several human cancer lines with IC50 values ranging between 18 µM and
34 µM [254].
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A related class of natural bromopyrroles containing the pyrrolyloxazole functionality
is the breitfussins. In analogy to breitfussin B (256), isolated from the hydrozoan Thuiaria
breitfussi in 2012 [80], six new breitfussins C–H were discovered in the same producing
organism as breitfussins E (257), G (258), and H (259) feature a brominated pyrrole core
(Figure 33, for non-halogenated congeners see Figure 7) [81]. Compounds 258 and 259
were isolated as a mixture and thus not evaluated in cytotoxic activity assays, whereas
breitfussins 256 and 257 did not show any cytotoxic activity against several tested cancer
cell lines [81].

In 2015, breitfussin B (256) was synthesized by the Bayer group in the same manner as
breitfussin A (48) (compare Scheme 4) [83]. In analogy to breitfussin A (48), the synthesis
commenced with the readily available phenol 260. After forming the indole building block
261, iodination and TIPS-protection furnished compound 52. The oxazole core 54 was
installed and carefully iodinated with iodine to get access to compound 262. Coupling with
Boc-protected pyrrole boronic acid 20 then delivered intermediate 57 possessing the right
indole-pyrrolyloxazole functionality. Bromination, protodeiodination, and removal of all
protecting groups then furnished breitfussin B (256) in 4.3% overall yield (Scheme 17) [83].
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Simple Pyrrole (Amino)-Imidazole Alkaloids

The pyrrole-imidazole alkaloid (PIA) family comprises a myriad of simple to struc-
turally complex molecules originating from marine organisms. The simplest PIA, oroidin, is
believed to be the biogenetic precursor of any natural products belonging to this family and
it is considered to be biosynthesized from the fundamental amino acids proline, ornithine,
lysine, and/or histidine [13,38,255–257]. However, numerous further considerations on the
biogenetical origin of PIAs can be found in the literature so that the biosynthesis of most
of these alkaloids still lies in the realm of speculations. Many PIAs are reported to exhibit
significant biological activities resulting in a great interest among synthetic chemists to
provide solutions to finally get access to potent pharmaceutically relevant substances.

In 9-oxethyl-mukanadin F (263), isolated in 2016 by the Lin group from a not fully
identified sponge Agelas sp., the oroidin 2-aminoimidazole moiety is replaced by a hydan-
toin ring (Figure 34) [66]. Compound 263 was isolated as a racemic mixture and displayed
no antifungal activity against Candida albicans [66].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 37 of 79 
 

 

3.1.1. Simple Pyrrole (Amino)-Imidazole Alkaloids 

The pyrrole-imidazole alkaloid (PIA) family comprises a myriad of simple to 

structurally complex molecules originating from marine organisms. The simplest PIA, 

oroidin, is believed to be the biogenetic precursor of any natural products belonging to 

this family and it is considered to be biosynthesized from the fundamental amino acids 

proline, ornithine, lysine, and/or histidine [13,38,255–257]. However, numerous further 

considerations on the biogenetical origin of PIAs can be found in the literature so that the 

biosynthesis of most of these alkaloids still lies in the realm of speculations. Many PIAs 

are reported to exhibit significant biological activities resulting in a great interest among 

synthetic chemists to provide solutions to finally get access to potent pharmaceutically 

relevant substances. 

In 9-oxethyl-mukanadin F (263), isolated in 2016 by the Lin group from a not fully 

identified sponge Agelas sp., the oroidin 2-aminoimidazole moiety is replaced by a 

hydantoin ring (Figure 34) [66]. Compound 263 was isolated as a racemic mixture and 

displayed no antifungal activity against Candida albicans [66]. 

In 2018, the Barker group published a comprehensive work addressing 

stereochemical issues of related mukanadin-based alkaloids substituted at C-9 [79]. The 

publication also describes the total synthesis of (+)- and (−)-mukanadin F (264a and 264b), 

which finally resulted in the reassignment of its absolute stereochemical configuration 

and shed light upon many inconsistencies concerning the stereochemistry of C-9-

functionalized ene-hydantoin/imidazole marine natural products published as racemic or 

scalemic mixtures before (Figure 34 and Scheme 18) [220,258–261]. 

 

Figure 34. C-9 functionalized ene-hydantion marine pyrrole alkaloids 263 and 264. 

The authors began the synthesis with a selective protection/deprotection sequence of 

aminodiol (R)-265 producing alcohols (R)-266 and (R)-267, sequentially. After Swern 

oxidation and HWE reaction with hydantoin phosphonate 268, compound (S)-269 could 

be obtained as a mixture of E/Z isomers (1:2) in 66% yield over two steps. Simultaneous 

Boc and PMB deprotection followed by a final C−N coupling step involving 

trichloroacetyl dibromopyrrole 270 gave (S)-mukanadin F ((S)-264b) as a mixture of E/Z 

isomers (1:1.3). The same procedure starting from (S)-265 delivered (R)-mukanadin F 

((R)-264a) as a mixture of E/Z isomers (1:2) (Scheme 18) [79]. 

Successful separation of the E/Z isomers of ((S)-264b) and ((R)-246a) and comparison 

of NMR spectroscopic data of the synthetic Z-configured enantiomers of mukanadin F 

(264) with those reported for the natural product were a match, confirming the alkene 

geometry [258]. However, new optical rotation measurements revealed that 

(S)-mukanadin F ((S)-264b) corresponds to the natural product, which is opposite to that 

proposed for the isolated sample in 2009 [258]. As a last point, the Baker group found out 

that C-9 functionalized ene-hydantoin/imidazole marine alkaloids are prone to 

isomerization and racemization with both effects occurring upon light irradiation or 

under acidic or basic conditions and therefore is likely to occur upon extraction [79]. These 

findings reveal that compounds of this class most likely exist in nature as pure 

enantiomers and that other publications concerning their isolation and stereochemical 

elucidation should be checked carefully. 

Figure 34. C-9 functionalized ene-hydantion marine pyrrole alkaloids 263 and 264.

In 2018, the Barker group published a comprehensive work addressing stereochemical
issues of related mukanadin-based alkaloids substituted at C-9 [79]. The publication also
describes the total synthesis of (+)- and (−)-mukanadin F (264a and 264b), which finally
resulted in the reassignment of its absolute stereochemical configuration and shed light
upon many inconsistencies concerning the stereochemistry of C-9-functionalized ene-
hydantoin/imidazole marine natural products published as racemic or scalemic mixtures
before (Figure 34 and Scheme 18) [220,258–261].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 38 of 79 
 

 

 

Scheme 18. Total synthesis of (S)-mukanadin F (264b). 

Recently, E-dispacamide (271) and slagenin D (272) were isolated from the sponge 

Agelas oroides in 2020 (Figure 35). The absolute configuration of compound 272 was 

established by comparison of its specific rotation with that of synthetic ent-slagenin A, 

indicating its stereogenic centers to be 9S, 11S, 15S configured [237]. 

A bromopyrrole marine alkaloid 273, very similar to compound 271, was isolated 

from the sponge Stylissa massa in 2014 and was given the name dispacamide E (273) 

(Figure 35) [228]. It showed significant inhibitory activities against the kinases GSK-3, 

DYRK1A, and CK-1 with IC50 values below 19 µM [228]. The reader is advised that careful 

reading is required to distinguish between the (E/Z) dispacamides, as the original trivial 

names relate to the Z-configured natural compounds [219,220]. However, new 

dispacamides possessing E-configuration are not consistently given either new trivial 

names or E/Z-designated former trivial names. 

In nemoechine H (274), isolated from the sea sponge Agelas nemoechinata in 2019, only 

the hydantoin core is different compared to compound 273 (Figure 35). Compound 274 

exhibited good to moderate cytotoxic activity against K562 and L-02 cell lines with IC50 

values of 6.1 µM and 12.3 µM, respectively [262]. 

 

Figure 35. Related bromopyrrole alkaloids 271–274 bearing hydantoin. 

Very recently, three new related congeners, 9-hydroxydihydrodispacamide (275), 

9-hydroxydihydrooroidin (276), and 9E-keramadine (277) were isolated from two 

different marine sponges Agelas spp. (Figure 36). Compounds 275 and 276 were isolated 

as racemates with the relative configuration of compound 275 still to be deduced [232]. 

Compound 277 was already known as a synthetic product but was isolated the first time 

from a natural source [263]. All three compounds 275–277 did not show any promising 

cytotoxicity against human cancer cell lines (HeLa, A549, MCF7) in basic antiproliferative 

tests [232]. 

Scheme 18. Total synthesis of (S)-mukanadin F (264b).

The authors began the synthesis with a selective protection/deprotection sequence
of aminodiol (R)-265 producing alcohols (R)-266 and (R)-267, sequentially. After Swern
oxidation and HWE reaction with hydantoin phosphonate 268, compound (S)-269 could be
obtained as a mixture of E/Z isomers (1:2) in 66% yield over two steps. Simultaneous Boc
and PMB deprotection followed by a final C−N coupling step involving trichloroacetyl di-
bromopyrrole 270 gave (S)-mukanadin F ((S)-264b) as a mixture of E/Z isomers (1:1.3). The



Mar. Drugs 2021, 19, 514 38 of 79

same procedure starting from (S)-265 delivered (R)-mukanadin F ((R)-264a) as a mixture of
E/Z isomers (1:2) (Scheme 18) [79].

Successful separation of the E/Z isomers of ((S)-264b) and ((R)-246a) and comparison
of NMR spectroscopic data of the synthetic Z-configured enantiomers of mukanadin F
(264) with those reported for the natural product were a match, confirming the alkene
geometry [258]. However, new optical rotation measurements revealed that (S)-mukanadin
F ((S)-264b) corresponds to the natural product, which is opposite to that proposed for
the isolated sample in 2009 [258]. As a last point, the Baker group found out that C-9
functionalized ene-hydantoin/imidazole marine alkaloids are prone to isomerization and
racemization with both effects occurring upon light irradiation or under acidic or basic
conditions and therefore is likely to occur upon extraction [79]. These findings reveal
that compounds of this class most likely exist in nature as pure enantiomers and that
other publications concerning their isolation and stereochemical elucidation should be
checked carefully.

Recently, E-dispacamide (271) and slagenin D (272) were isolated from the sponge Age-
las oroides in 2020 (Figure 35). The absolute configuration of compound 272 was established
by comparison of its specific rotation with that of synthetic ent-slagenin A, indicating its
stereogenic centers to be 9S, 11S, 15S configured [237].
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Figure 35. Related bromopyrrole alkaloids 271–274 bearing hydantoin.

A bromopyrrole marine alkaloid 273, very similar to compound 271, was isolated from
the sponge Stylissa massa in 2014 and was given the name dispacamide E (273) (Figure 35) [228].
It showed significant inhibitory activities against the kinases GSK-3, DYRK1A, and CK-1
with IC50 values below 19 µM [228]. The reader is advised that careful reading is required
to distinguish between the (E/Z) dispacamides, as the original trivial names relate to
the Z-configured natural compounds [219,220]. However, new dispacamides possessing
E-configuration are not consistently given either new trivial names or E/Z-designated
former trivial names.

In nemoechine H (274), isolated from the sea sponge Agelas nemoechinata in 2019, only
the hydantoin core is different compared to compound 273 (Figure 35). Compound 274
exhibited good to moderate cytotoxic activity against K562 and L-02 cell lines with IC50
values of 6.1 µM and 12.3 µM, respectively [262].

Very recently, three new related congeners, 9-hydroxydihydrodispacamide (275), 9-
hydroxydihydrooroidin (276), and 9E-keramadine (277) were isolated from two different
marine sponges Agelas spp. (Figure 36). Compounds 275 and 276 were isolated as racemates
with the relative configuration of compound 275 still to be deduced [232]. Compound 277
was already known as a synthetic product but was isolated the first time from a natural
source [263]. All three compounds 275–277 did not show any promising cytotoxicity against
human cancer cell lines (HeLa, A549, MCF7) in basic antiproliferative tests [232].
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Figure 36. Three new PIAs 275–277 isolated from the sponge Agelas spp. in 2020.

The Berlinck group isolated debromooroidin 278 from a sponge identified as Dicty-
onella sp. in 2018, which displayed proteasome inhibition activity with IC50 values of 27 µM
± 6 µM (Figure 37) [264]. The authors also mentioned that the proteasome inhibitory
activity is strongly influenced by the position of the bromine substituent in the pyrrole ring
thereby confirming the findings of previous investigations [265,266].
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Figure 37. Oroidin-derived bromopyrrole alkaloids 278–283 bearing imidazole moieties.

In 2009, the acetone/methanol extract of the sponge Agelas linnaei permitted the
isolation of agelanin A (279) and mauritamides B (280) and C (281) (Figure 37) [234]. The
sulfonic acid congeners 280 and 281 contain a taurine unit which is quite a rare structural
motif in marine sponge metabolites when combined with a bromopyrrole unit.

Further oroidin-derived pyrrole alkaloids, stylisines B (282) and C (283), were isolated
in 2018 from the sponge Stylissa massa (Figure 37). Here, the stereogenic centers could be
unambiguously determined via electronic circular dichroism experiments. Unfortunately,
compounds 279–283 have not shown any promising biological activities so far [133].

In 2010, another new set of halopyrroles, the stylissazoles A–C (284–286), were isolated
from species from the Stylissa genus (Figure 38) [267]. No absolute configuration could be
determined for the dimeric pyrrole-2-aminoimidazoles 285 and 286 as no optical activity
was observed. The authors mentioned that the interconversion of the configurationally
unstable chiral carbons C6 and C7 might be the reason for this issue. However, the relative
configuration of both stereogenic centers in stylissazole C (286) could be determined by
NOESY experiments [267].
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The absolute stereochemistry of the two new hexacyclic analogs of palau’amine and 

styloguanidine, debromokonbu’acidin (292) and didebromocarteramine (293), was 
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Figure 38. Stylissazoles A–C (284–286) isolated from the marine sponge Stylissa carteri.

The unique bromopyrrole alkaloids agelamadin F (287) and tauroacidin E (288) were
isolated from an Okinawan marine sponge of the genus Agelas in 2015 (Figure 39) [64].
Compound 287 is the first example of a bromopyrrole alkaloid bearing an aminoimidazole
moiety connected to a pyridinium ring. Tauroacidin E (288), possessing an uncommon
taurine unit, was isolated as a racemic structure. Both halopyrroles 287 and 288 showed
moderate activities against KB and human leukemia K562 cells with IC50 values in the
range of 10 µg/mL [64].
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Figure 39. Unusual aminoimidazole pyrrole alkaloids 287–291 with compounds 289–291 incorporat-
ing a complex contiguous imidazole ring system.

The complex class of massadines was extended by the isolation of three new com-
pounds 289–291 from a deep-water sponge of the genus Axinella in 2012 (Figure 39) [268].
The eight stereogenic centers of 14-O-sulfate massadine (289), 14-O-methyl massadine
(290), and 3-O-methyl massadine chloride (94) were determined by NMR spectroscopy and
optical rotation measurements. The generated data confirmed the absolute stereochem-
istry earlier defined by Köck [269] and Fusetani [270] for related massadines and was also
consistent with the data from its enantioselective total synthesis [271]. While compounds
289–291 did not show any inhibitory activity against the neurodegenerative disease kinase
targets CDK5/p25, CK1δ, and GSK3β, 3-O-methyl massadine chloride (291) exhibited
antibacterial activity against several Gram-positive and -negative bacteria with IC50 values
below 5 µM [268].

Three structurally similar alkaloids (292–294), possessing two or more contiguous ring
systems were isolated from the sponge Stylissa aff. carteri in 2020 (Figure 40) [272]. The
absolute stereochemistry of the two new hexacyclic analogs of palau’amine and styloguani-
dine, debromokonbu’acidin (292) and didebromocarteramine (293), was determined by
comparison of experimental and theoretical ECD spectra. While compound 293 did not
show any neuroprotective activity, compound 292 could reduce reactive oxygen species
in neuroblastoma SY-SY5Y cells by 35% over a wide range of concentrations [272]. The
stereochemistry of futunamine (294), featuring a new pyrrolo[1,2-c]imidazole core, was
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also deduced by ECD analyses. Furthermore, futunamine (294) showed neuroprotective
effects at 10 µM. Unfortunately, none of the three new compounds 292–294 showed any
cytotoxic activity [272].
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Figure 40. Biologically active bromopyrrole imidazole alkaloids 292–295 possessing unique struc-
tural motifs.

Nagelamide W (295), the first monomeric bromopyrrole alkaloid bearing two aminoim-
idazole moieties, was isolated from a marine sponge Agelas sp. by the Kobayashi group in
2013 (Figure 40) [65]. The relative stereochemistry of 295 was elucidated by ROESY correla-
tions and the natural product 295 exhibited inhibitory activity against Candida albicans with
an IC50 value of 4 µg/mL [65].

In 2014, five new bromopyrrole alkaloids (296–300) were isolated from an Okinawan
marine sponge of the genus Agelas (Figure 41) [273]. Tauroacidin C (298), tauroacidin D
(299), and mukanadin G (300) were isolated as racemic mixtures. However, the relative
stereochemistry of mukanadin G (300) was established by ROESY and computational ex-
periments. While compounds 296–298 did not show any antimicrobial activity, mukanadin
G (300) exhibited good to moderate antifungal activity against the human-pathogenic yeast
Candida albicans and the invasive pathogenic fungus Cryptococcus neoformans with IC50
values between 8 and 16 µM [273].
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In decarboxyagelamadin C (301), isolated from the sponge Agelas sceptrum in 2016, a rare
morpholine core is located between the pyrrole and imidazole moiety with the relative and
absolute stereochemistry being established by NMR and ECD spectroscopy (Figure 42) [274].
Unfortunately, compound 301 did not show any activity in cytotoxicity tests and in antimi-
crobial assays.
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reevaluation in 2020.

A new bromopyrrole alkaloid also incorporating a fused 6-membered ring, 2-debromo-
mukanadin G (302), was isolated from another Agelas sp. alongside 2-debromonagelamide
P (303) (Figure 42) [248]. While both substances 302 and 303 were isolated as racemates,
the relative configuration of compound 302 could be deduced by comparison of its cou-
pling constants with those from mukanadin G (300). Compound 303 showed moderate
antimicrobial activity against Trichophyton mentagrophytes (IC50 value 32 µg/mL), whereas
compound 302 exhibited moderate activity against Cryptococcus neoformans (IC50 value
32 µg/mL). However, no cytotoxicity was observed against human epidermoid carcinoma
KB and murine lymphoma L1210 cells [248].

We also want to mention an inconsistency in the assigned structure for the struc-
turally related nagelamide D (304), which was originally isolated in 2004 as a racemate
by the Kobayashi group (Figure 42) [275]. Five years later, a total synthesis by the Lovely
group [276] revealed that either the assigned structure or the reported NMR data of
Kobayashi’s work was in error. However, no final evidence was given at this point. A
recently published synthetical approach [277] of the same laboratory towards alkaloids
belonging to the nagelamide class then corroborated the correctly proposed but incorrectly
assigned structure by Kobayashi. In this case, crystallographic measurements [277] un-
equivocally demonstrated that the assignments for C9, C9′, C10′ as well as H9′a and H9′b
were inadvertently switched in the original literature [275].

The Lovely group commenced their synthesis with the iodoimidazoles 305 and 306,
which were transformed into the corresponding coupling partners 307 and 308 over several
steps, respectively. A Stille cross-coupling then delivered compound 309. A reaction
sequence involving several protection and deprotection reactions as well as the installation
of the azide group via TsN3 furnished diol 310. Replacing the alcohol functional groups by
a pyrrole hydantoin 311, hydrolysis, and deprotection of the corresponding urea followed
by azide hydrogenation finally furnished nagelamide D (304) in 32% over four steps
(Scheme 19) [277].
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Scheme 19. A total synthesis of nagelamide D published by the Lovely group led to the correct
assignment of nagelamide D (304).

A very similar class of compounds, the citrinamines A–D (312–315), were isolated
from the Caribbean sponge Agelas citrina in 2015 by the Köck group (Figure 43) [63]. All
four compounds 312–315 were isolated as racemic mixtures, with the relative configuration
of citrinamine C (314) being elucidated with the aid of NOESY correlations and comparison
of its NMR data with those of nagelamide B, a related congener isolated back in 2004 [275].
It should be mentioned that the same group isolated citrinamines C (314) and D (315) as
a mixture, the separation of which by preparative chromatography failed. Citrinamines
B–D (313–315) showed “considerable” inhibition zones in agar diffusion assays with My-
cobacterium phlei (no values for the size of the inhibition zones were given). However, all
compounds 312–315 exhibited no inhibition of cell proliferation of mouse fibroblasts [63].
Here, we would like to mention that the only structural difference between citrinamine A
(312) and 2-debromonagelamide P (303) lies in the additional proton present in compound
303 (Figure 43). As the NMR spectra of both compounds 303 and 312 also appear to be
identical, it is highly likely that both compounds 303 and 312 are in fact the same substance,
although compound 303 was isolated as a salt and compound 312 as the free base.
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Figure 43. The dimeric bromopyrrole alkaloids citrinamines A–D (312–315).

The known class of nagelamides was extended by nagelamides I (316) and 2,2′-
didebromonagelamide B (317), isolated from a marine sponge Agelas sp. (Figure 44) [278]. The
relative configuration of compound 317 could be deduced by extensive NMR-spectroscopic
analysis but the absolute configuration remains unknown. Both compounds 316 and
317 did not show cytotoxicity against murine lymphoma L1210 and human epidermoid
carcinoma KB cells in vitro [278].
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Nagelamides X–Z (318–320) were isolated from a marine sponge of the genus Age-
las in 2013 (Figure 44) [279]. Here, the nagelamides X (318) and Y (319) incorporate a
unique tricyclic skeleton consisting of spiro-connected tetrahydrobenzaminoimidazole and
aminoimidazolidine moieties. Compounds 318 and 319 were isolated as racemic mixtures
with the relative configuration being determined by 2D NMR spectroscopy. Nagelamide Z
(320) was isolated as an optically active molecule, but its absolute configuration remains
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unsolved. Nagelamides X–Z (318–320) displayed antimicrobial activities against several
bacteria and fungi, with IC50 values partly being below 5 µg/mL [279].

In 2012, a new pair of dimeric pyrrole-aminoimidazole alkaloids, (−)-donnazoles A
(321) and B (322), was isolated from the marine sponge Axinella donnani (Figure 45). The
absolute configurations of 321 and 322 were determined via NOE correlations and ECD
measurements [280].
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Figure 45. Donnazoles A (321) and B (322) from a marine sponge Axinella donnani and further
agelamadins C–E (323–325).

The agelamadins C–E (323–325), isolated from a marine sponge of the genus Agelas
in 2014, share the same flat structure but differ in their stereochemistries (Figure 45) [281].
The configurations of compounds 323–325 were elucidated by 2D NMR spectroscopy, ECD
calculations, and by a phenylglycine methyl ester (PGME) method. To this end, (R)- and
(S)-PGME are condensed with a carboxylic acid functionality, to generate amides enabling
the determination of the absolute configuration by means of the diamagnetic anisotropic
effect [282]. While agelamadin D (324) did not show any antimicrobial activity, agelamadins
C (323) and E (325) displayed moderate inhibitory activity against the human pathogen
Cryptococcus neoformans with IC50 values of 32 µg/mL each [281].

3.2. Annellated Pyrroles

Annellated pyrroles are prevalent in nature. For example, many well-known biologi-
cally active alkaloid families, including the lamellarins and indolizidins, as well as many
stemona alkaloids, feature annellated pyrrole moieties [283–285].

Between 2010 and 2012, the highly halogenated 5- and 8-ring annellated pyrroles
326–328 were isolated from marine bacteria (Figure 46). The Pseudoalteromonas-derived
2,3,5,7-tetrabromobenzofuro[3,2-b]pyrrole (326) displayed significant antimicrobial activity
against methicillin-resistant Staphylococcus aureus (ATCC 43300, IC50 value of 1.93 µM ±
0.05 µM) [286].
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Figure 46. Annellated halopyrroles 326–328 derived from marine bacteria.

The biologically active (−)-chlorizidine A (327) was isolated from a marine Strepto-
myces sp. and exhibited noteworthy activity in a human colon cancer cytotoxicity bioassay
with IC50 values of 3.2–4.9 µM (Figure 46) [287]. Interestingly, the alkaloid 327 completely
lost its activity when both phenolic functionalities were methylated. The authors also
mentioned that a series of derivatives lacking the key 5H-pyrrolo[2,1-a]isoindol-5-one
moiety led to inactivity, strongly suggesting its presence is indispensable for biological
activity [287].

The structure of (±)-marinopyrrole F (328), isolated from a Streptomyces sp. in 2010,
contains an unusual eight-membered ring (Figure 46) [250]. In contrast to its enantiop-
ure metabolites, marinopyrroles C–E (244–246, see Figure 32), (±)-marinopyrrole F (328)
was isolated in racemic form. With the help of chiral HPLC, the authors found out that
enantioenriched 328 completely racemizes within 18 h, most probably caused by the fused
ether ring lowering the barrier for atropisomerism. However, (±)-marinopyrrole F (328)
was much less active against MRSA and HCT-116 (MIC90 value 3.1 µg/mL) compared to
(−)-marinopyrrole C (244, MIC90 value 0.16 µg/mL) [250].

In 2018, 4-debromougibohlin (329) and 5-debromougibohlin (330) were isolated from
a marine sponge Dictyonella sp. by the Berlinck group (Figure 47). Unfortunately, both
compounds did not show any proteasome inhibitory activity in a respective assay [264].
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Figure 47. Structures of 2,3-annellated marine pyrrole alkaloids 329–332.

In 2019, a related halopyrrole alkaloid incorporating the carbamoylpyrrole-like core
structure, 1-N-methylugibohlin (331), was isolated from the sea sponge Agelas nemoechinata,
but did not show cytotoxic activity against K562, A549, HeLa, or HCT-116 cells in vitro
(Figure 47) [262].

Longamide C (332), obtained from an organic extract of Agelas nakamurai in 2010, was
isolated as a racemic mixture (Figure 47). However, ROESY correlations indicated a half
chair conformation of the six-membered ring. Compound 332 did not show any promising
antimicrobial or cytotoxic activity [234].

In 2017, the Lin group isolated stylisines A–F (333, 282, 283, 334, 335, 132) from the
marine sponge Stylissa massa, of which stylisine A, D, and E (333–335) feature an annellated
bromopyrrole moiety (Figure 48) [133]. The absolute stereochemistry of compounds 334
and 335 was deduced from ECD experiments. However, no antibacterial activity was
observed for all three compounds 333–335 [133]. One year later, 5-debromougibohlin (330,
Figure 47) was isolated and erroneously presented as a “new” bromo alkaloid [264], since
it has the same structure as stylisine A (333).
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At this point, the stereoselective synthesis of (−)-stylisine D (334) reported by Petkovic
and Savic in 2019 should be mentioned (Scheme 20) [288]. The synthesis commenced with
an N-protection and propargylation followed by routine transformations to generate allene
337 in 55% yield over three steps. After installing Boc-L-proline (338) which furnished
compound 339 possessing the right configuration, compound 340 was obtained over four
steps under transfer of chirality. After bromination and hydrolysis, a final oxidation
step delivered (−)-longamide B (341), another bromopyrrole isolated from the sponge
Stylissa massa. (−)-Stylisine D (334) was obtained by amidation of the carboxylic group of
(−)-longamide B (341).
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Scheme 20. Synthesis of stylisine D (334) and intermediate longamide B (341) via a metal-catalyzed
cyclisation of allene 339 in a stereoselective manner.

In 2016, the family of longamides was extended by the isolation of longamides D–F
(342–344) from a marine sponge Agelas sp. (Figure 49) [66]. Compounds 342–344 were
isolated as racemic mixtures which were separated into pure enantiomers. The absolute
stereochemistry of 342–344 was then determined by chiral HPLC and ECD spectroscopy.
In the Caenorhabditis elegans candidiasis model, metabolites (+)-342, (−)-343 and (+)-344
exhibited significant antifungal activity with survival rates around 50%, whereas the
corresponding enantiomers (−)-342, (+)-343 and (−)-344 did not show any activity, strongly
suggesting the absolute configuration at C-9 to have an appreciable effect [66].
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from the Patagonian bryozoan Aspidostoma giganteum by Palermo and co-workers (Figure 
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Figure 49. Longamides D–F (342–344) from the South China Sea sponge Agelas sp.

In 2014, several structurally unique annellated halopyrroles 345–348 were isolated from
the Patagonian bryozoan Aspidostoma giganteum by Palermo and co-workers (Figure 50) [239].
The absolute configurations of bromotryptophan-derived aspidostomides D (345) and E
(346) were determined by a modification of Mosher’s method in combination with NOE
correlations. While the elimination product of 345 and 346, aspidostomide F (347), the
N–N-linked dimeric aspidazide A (348) and compound 345 only exhibited moderate to
weak cytotoxic activity against the 786-O human renal carcinoma cell line (IC50 values
between 27.0 µM and >100 µM), aspidostomide E (346) proved active with an IC50 value of
7.8 µM [239].
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Figure 50. New aspidostomides D–F (345–347) and aspidazide A (348) from the patagonian bryozoan
Aspidostoma giganteum.

In 2017, a new family of annellated halopyrroles, the callyspongisines, were isolated from
the Great Australian Bight marine sponge Callyspongia sp. (CMB-01152) (Figure 51) [289]. In
callyspongisines A (349), a very rare imino-oxazoline core is spirocyclic to a seven-membered
ring contiguous to a pyrrole unit. Due to insufficient quantities of 349–352, the stereochemistry
could not be determined and the authors also mentioned that callyspongisines B–D (350–352)
could be storage and handling artifacts of 349 instead of being of natural origin [289]. The
potent kinase inhibitory activity observed in Callyspongia sp. was attributed to hymenial-
disine, while compounds 349–352 did not show any cytotoxic activity against a range of
prokaryotic, eukaryotic, and mammalian cell lines [289].
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Figure 51. Callyspongisines A–D (349–352) and pyrrololactam 353 of which only compound 349 is
speculated to be of natural origin.

A related pyrrolactam alkaloid, axinelline B (353), was isolated from the n-BuOH
extract of a marine sponge of the genus Axinella in 2017 (Figure 51). Unfortunately, the
authors did not give any information about the stereochemistry or biological activity of
compound 353 [131].
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Annellated Pyrrole (Amino)-Imidazole Alkaloids

Several contiguous tetracyclic brominated pyrrole-imidazole alkaloids 354–356 were
isolated or synthesized between 2016 and 2019.

In 5-bromophakelline (354), isolated from an Indonesian marine sponge of the genus
Agelas, the relative and absolute configuration was deduced with the help of NOESY
correlations and X-ray crystallography (Figure 52). However, no antimicrobial activity
against Mycobacterium smegmatis (NBRC 3207), a model organism for tuberculosis was
observed [290].
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Figure 52. Brominated pyrrole-imidazole alkaloids 354–356 bearing guanidine units.

Compound 355 was isolated from the sponge Agelas nemoechinata in 2019 (Figure 52).
The relative and absolute configuration of 9-N-methylcylindradine A (355) was determined
by NOESY correlations and by the comparison of its optical rotation with the known
(+)-cylindradine A. Unfortunately, no cytotoxic activity against K562 and L-02 cell lines
could be observed [262].

At this point, we would also like to mention the first total synthesis of (+)-cylindradine
B (356) (Scheme 21) [291], which was isolated from the marine sponge Axinella cylindratus
back in 2008 [292].
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Scheme 21. First total synthesis of (+)-cylindradine B (356) via key Pictet–Spengler reaction.

The authors commenced their synthesis with prolinol derivative 357 which was
transformed with pyrrole 358 into the Pictet–Spengler precursor 359 over several steps.
The Pictet–Spengler reaction then selectively gave compound 360 under addition of (±)-
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1,1′-binaphthyl-2,2′-diyl hydrogen phosphate. In the next steps, the guanidine group was
attached via an isothiourea intermediate 361, which reacted with NH3/MeOH furnishing
compound 362. After changing the protective groups, the Boc-protected pyrrole 363 was
brominated by using bromine and a final deprotection by applying TFA furnished (+)-
cylindradine B (356) in 14% yield over four steps (Scheme 21) [291].

In 2010, a compound very similar to 354, dibromohydroxyphakellin (364), was isolated
from Agelas linnaei and represents the first described 12-OH analog of the phakellin family
(Figure 53) [234]. By comparison of its optical rotation data with those of related com-
pounds, it was assumed that dibromohydroxyphakellin (364) was isolated as a scalemic
mixture. No cytotoxicity was observed against the murine L1578Y mouse lymphoma cell
line [234].
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Figure 53. Structurally complex annellated bromopyrroles 364–369 isolated from Dyctionella sp. or
Agelas sp.

In 5-bromopalau’amine (365), isolated from Dictyonella sp. (marine sponge), the
relative configuration of the eight stereogenic centers was determined by ROESY corre-
lations [264] and was in accordance with the data reported for the revised structure of
palau’amine (Figure 53) [293]. Compound 365 displayed proteasome inhibition activity
with an IC50 value of 9.2 µM ± 3.2 µM, whereas the debrominated analog, palau’amine,
was fourfold more active. Due to these data, the authors mentioned that both, bromination
and the position of the bromine substituent in the pyrrole moiety seem to significantly
influence the ability to inhibit the 20S yeast proteasome [264].

In 2019, a new class of annellated bromopyrroles, the agesamines A (366) and B
(367), were isolated as an inseparable epimeric mixture from an Indonesian sponge of the
genus Agelas (Figure 53). The absolute configuration of both compounds 366 and 367 was
elucidated by ECD measurements [294].

The related agelastatins E (368) and F (369) were isolated from the marine sponge
Agelas dendromorpha in 2010 (Figure 53) [295]. The relative configuration of both compounds
368 and 369 was determined by NOESY correlations and by comparison to the known con-
gener agelastatin A. As agelastatin A is a highly cytotoxic compound, agelastatins E (368)
and F (369) were screened for cytotoxicity against the human KB cell line. Unfortunately,
both compounds 368 and 369 lacked significant activity [295].

Concerning the agelastatin family, the total synthesis of agelastatins A–F (375–378, 368,
369), published by the Movassaghi group in 2010, should be mentioned (Scheme 22) [296].
The synthesis commenced with the known pyrrole 370, which was converted into the annel-
lated pyrrole 371 in 62% yield over four steps. After the addition of a stannylmethylurea in
the presence of Liebeskind’s CuTC reagent and treatment with methanolic HCl, (+)-O-Me-
pre-agelastatin A (372) was obtained. Subsequent heating in aqueous methanesulfonic acid
then furnished the natural product agelastatin A (375) in 49% yield as well as a side prod-
uct (374). Bromination or OH-methylation of agelastatin A (375) gave agelastatin B (376)
or E (368), respectively. Moreover, (−)-O-Me-di-epi-agelastatin A (374) could be further
converted to agelastatin C (377) by an elimination/epoxidation/aqueous epimerization
sequence. By reacting the former intermediate 371 with a stannylurea, agelastatins D (378)
and F (369) could be synthesized in a similar way (Scheme 22) [296].
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Scheme 22. Enantioselective synthesis of all known (−)-agelastatins, including the first total synthesis
of agelastatins C–F (377, 378, 368, 369).

In 2020, a new member of the agesamine family, agesamine C (379), could be isolated
from the sea sponge Agelas oroides collected off the Tel Aviv coast (Figure 54). The relative
and absolute configuration of the bicyclic moiety in 379 was deduced by comparison of its
J-values with those of agesamines A (366) and B (367) [237].
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Figure 54. Structurally diverse bromopyrrole alkaloids 379–383 isolated from Agelas oroides.

Monobromoagelaspongin (380) was first isolated from the sponge Agelas oroides as a
racemic mixture in 2017 and no information was given on the relative configuration or its
biological activities [297]. However, in 2020, the relative and absolute configuration could
be determined alongside the isolation of further bromopyrroles (Figure 54) [237].

The same sponge also delivered the agelaspongin analogs 381 and 382, the relative
and absolute configurations of which were either determined by NOESY data combined
with ECD spectroscopy or by comparison of its chiroptical properties with those of model
compounds (Figure 54) [237]. The sponge also was the source of a new compound, named
dioroidamide A (383). Compound 383 presents a negative specific rotation value which
is also the case for many other structurally related marine alkaloids, and based on their
shared biosynthesis, the authors assumed that 383 should possess the same absolute config-
uration as depicted in Figure 54 [237]. With the isolated natural products 379–383 itself, no
biological tests were performed. However, as the antimicrobial and antibacterial activity of
the sponge extract was attributed to other natural products contained, compounds 379–383
have not been found to show any promising activities so far [237].

In 2014, two structurally unique dimeric bromopyrroles, named agelamadins A (384)
and B (385), were isolated from a sponge of the genus Agelas by the Kobayashi group [298].
Both compounds 384 and 385 were isolated as racemic mixtures, with their relative con-
figurations determined by ROESY correlations (Figure 55). Agelamadins A (384) and B
(385) showed antimicrobial activity against several Gram-positive species with IC50 values
ranging between 4 µM and 16 µM. However, no cytotoxicity was observed against human
murine lymphoma L1210 cells and human epidermoid carcinoma cells in vitro [298].
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Two new bromopyrroles 368a and 368b, annellated by a seven-membered ring and
structurally related to hymenialdisine, were isolated from the marine sponge Cymbastela can-
tharella in 2011 (Figure 55) [132]. The absolute structure of (+)-dihydrohymenialdisine (368a)
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was unequivocally determined by X-ray crystallography, whereas the absolute configura-
tion of (−)-dihydrohymenialdisine (368b) could not be deduced. Since the corresponding
lead structure, hymenialdisine, is active against the kinase PLK-1, both substances 368a and
368b were also tested for PLK-1 inhibition but did not show any activity. Apparently, the
conjugation of hymenialdisine through the C-10/C-11 double bond (which is saturated in
368a and 368b) is indispensable for its strong activity on a wide range of cyclin-dependent
kinases [132].

The structurally similar compounds 387–390 were isolated from a marine sponge of
the genus Stylissa in 2012 (Figure 55) [299]. While 12-N-methylstevensine (387) displayed
strong cytotoxic activity against L5178Y mouse lymphoma cells with an EC50 value of
3.5 µg/mL, 12-N-methyl-2-debromostevensine (388), 3-debromolatonduine B methyl ester
(389), and 3-debromolatonduine A (390) only exhibited weak activity (no values given).
These data suggest that the presence or absence of bromine atoms significantly influences
the antiproliferative activity [299].

At this stage, it should also be mentioned the recently published total synthesis of the
related pyrroloazepinone-containing alkaloid 2-debromohymenin (396) (Scheme 23) [300].
First, the commercially available 4-iodoimidazole 305 was transformed into alkyne 391 by a
Sonogashira reaction. Subsequent deprotection and reaction with pyrrolecarbonyl chloride
392 furnished compound 393. An intramolecular gold-catalyzed alkyne hydroarylation
then resulted in the formation of the core pyrroloazepinone moiety in 394. Subsequent
hydrogenation followed by the installation of an azide group generated azido derivative
395. Bromination using NBS, removal of the sulfonyl urea, and final conversion of the
azide to an amine group as well as removing the N-OMe group at the same time using
Mo(CO)6, furnished 2-debromohymenin (396) [300].
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3.3. Sceptrins

The members of the exceptional family of the sceptrin alkaloids are characterized
by their cyclobutane ring which is constructed by the dimerization of oroidin and its
derivatives [301]. They are known to exhibit a broad range of biological activities, such as
anticancer, antifungal, antibacterial, and anti-inflammatory [226,302–304]. Sceptrin was
isolated and fully elucidated in 1981 by Faulkner and co-workers who also established its
absolute configuration [224]. Many sceptrin derivatives have been isolated since.

In 2017, agelestes A (397) and B (398) were isolated from a South China sponge of
the genus Agelas (Figure 56) [305]. Although nakamuric acid (400) was already isolated in
1999 [306], the authors revealed its absolute configuration for the first time (Figure 56) [306].
The same sponge Agelas sp. also led to the isolation of hexazosceptrin (401), bearing a



Mar. Drugs 2021, 19, 514 54 of 79

rare cyclohexane-fused-cyclobutane skeleton. All relative and absolute configurations
were determined by extensive spectroscopic analyses and ECD. All four compounds 397,
398, 400, and 401 displayed moderate antimicrobial activity (MIC values ranging between
16 µg/mL and 32 µg/mL) [305].
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One year later, two sceptrin derivatives, ageleste C (399) and dioxysceptrin (402)
were isolated from the marine sponge Agelas Kosrae (Figure 56) [307]. The relative and
absolute configurations of compounds 399 and 402 were determined by ROESY correlations
and by ECD spectroscopy. However, due to the absence of reliable ROESY correlations,
the configuration at C-11 and C-11′ could not be determined. Ageleste C (399) and the
bisepimeric dioxysceptrin (402) showed good to moderate anti-proliferative activity against
six cancer cell lines (IC50 values ranging between 7.92 µM and > 50 µM), however, only
compound 399 displayed moderate inhibition of Candida albicans-derived isocitrate lyase
(IC50 value 22.09 µM), a key enzyme in microbial metabolism [307].

In 2010, the New Caledonian sponge Agelas dendromorpha led to the isolation of
benzosceptrin C (403) featuring a rare benzocyclobutane moiety (Figure 57). Unfortunately,
no cytotoxicity against the KB cell line was observed [295].
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In 2016, the Köck group investigated the tropical sponge Agelas sceptrum which led to
the isolation of 15′-oxoadenosceptrin (404), a hybrid PIA incorporating an adenine moiety.
Unfortunately, no cytotoxic or antimicrobial activity was observed for compound 404
(Figure 57) [274].

In 2019, a unique alkaloid 405 bearing an imidazo [1,5-a] azepine nucleus was isolated
from the marine sponge Agelas nemoechinata, with its relative and absolute configuration
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being determined by NOESY correlations and ECD spectroscopy, respectively. Agelanemoe-
chine (405) showed potent pro-angiogenic activity in zebrafish (effect equivalent to the
established Danhong injection as a positive control, Figure 57) [308].

At this point, the very recently published total synthesis of the dimeric PIA sceptrin
(411) should be mentioned, which enables direct entry to this class of biologically active
metabolites (Scheme 24) [309]. Astonishingly, sceptrin (411) was synthesized in only
four steps by applying a photochemical intermolecular [2+2] dimerization of compound
408. The authors synthesized building block 408 by initial hydroboration of protected
propargylamine 406 to give pinacol ester 407 which then underwent a Suzuki–Miyaura
cross-coupling with 3-bromoimidazopyrimidine. The key dimerization was carried out
with blue LEDs in the presence of an iridium catalyst and provided the all-trans dimer 409 in
41% yield. Completion of the synthesis included acid-promoted deprotection, installation
of the bromopyrrole unit 410, and hydrazine-based conversion of the guanidine unit to an
imidazole moiety in one pot [309].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 55 of 79 
 

 

 

Figure 57. Further sceptrins 403 and 404 together with the congener agelanemoechine (405). 

At this point, the very recently published total synthesis of the dimeric PIA sceptrin 

(411) should be mentioned, which enables direct entry to this class of biologically active 

metabolites (Scheme 24) [309]. Astonishingly, sceptrin (411) was synthesized in only four 

steps by applying a photochemical intermolecular [2+2] dimerization of compound 408. 

The authors synthesized building block 408 by initial hydroboration of protected 

propargylamine 406 to give pinacol ester 407 which then underwent a Suzuki–Miyaura 

cross-coupling with 3-bromoimidazopyrimidine. The key dimerization was carried out 

with blue LEDs in the presence of an iridium catalyst and provided the all-trans dimer 409 

in 41% yield. Completion of the synthesis included acid-promoted deprotection, 

installation of the bromopyrrole unit 410, and hydrazine-based conversion of the 

guanidine unit to an imidazole moiety in one pot [309]. 

 

Scheme 24. A four-step synthesis of sceptrin (411), including a photochemical intermolecular [2 + 2] 

dimerization as the key step. 

Although there have been successful approaches towards sceptrin (411) since 2004, 

this new approach gives synthetic access to the sceptrin family in a minimum number of 

steps compared to the 11–25 steps required before [310–312]. It should also be mentioned 

that the synthetic work of the Chen laboratory in 2014 led to the revision of the absolute 

stereochemistry of many sceptrin-based natural products and of sceptrin (411) itself [312]. 

For more than 30 years, many groups have based their stereochemical results on the 

comparison with the incorrectly determined absolute configuration of sceptrin (411) from 

a publication of 1981 [224]. Hence, careful reading and checking are strongly 

recommended to avoid confusion. 

4. Miscellaneous 

Among the known marine pyrroles, there are also complex architectural frameworks 

containing macrocyclic ring systems, not only one or more sugar residues, but also 

multiple amide bonds forming peptides or even cyclopeptides. Therefore, in the following 

Scheme 24. A four-step synthesis of sceptrin (411), including a photochemical intermolecular [2 + 2]
dimerization as the key step.

Although there have been successful approaches towards sceptrin (411) since 2004,
this new approach gives synthetic access to the sceptrin family in a minimum number of
steps compared to the 11–25 steps required before [310–312]. It should also be mentioned
that the synthetic work of the Chen laboratory in 2014 led to the revision of the absolute
stereochemistry of many sceptrin-based natural products and of sceptrin (411) itself [312].
For more than 30 years, many groups have based their stereochemical results on the
comparison with the incorrectly determined absolute configuration of sceptrin (411) from a
publication of 1981 [224]. Hence, careful reading and checking are strongly recommended
to avoid confusion.

4. Miscellaneous

Among the known marine pyrroles, there are also complex architectural frameworks
containing macrocyclic ring systems, not only one or more sugar residues, but also multiple
amide bonds forming peptides or even cyclopeptides. Therefore, in the following section,
structures and classes are presented that could not be classified in the previous chapters
due to their mostly complex and intriguing scaffolds.

In 2019, a scalarane sesterterpenoid featuring a 6/6/6/6/5-pentacyclic core was
isolated from the sponge Scalarispongia sp. The fused pyrrole 412 represents the first
pyrrole derivative in the rare class of N-heterocyclic scalaranes (Figure 35). MNP 412 was
found to show moderate inhibition against six human cancer cell lines in bioactivity assays
(GI50 values ranging between 14.9 µM and 26.2 µM) [313].

The bispyrrole curvulamine (413) originates from the fungus Curvularia sp. IFB-Z10,
produced in a symbiontic way with the host, the White Croaker (Argyrosomus argentatus)
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(Figure 58) [314]. In the course of structure elucidation and determining the crystal struc-
ture of the unprecedented framework of curvulamine A, the authors also made efforts to
elucidate the biosynthetic pathway using NMR-based 13C labeling experiments. Curvu-
lamine (413) possesses antibacterial activity in the sub-micromolar range [314], whereas the
biogenetic related trispyrrole curindolizine (414) lacks these bioactivities. However, anti-
inflammatory activities in lipopolyssacharide (LPS)-stimulated RAW 264.7 macrophages
(IC50 = 5.31 µM ± 0.21 µM) could be observed. Surprisingly, as a by-product of reisolating
curvulamine (413), curindolizine (414) was discovered in 2016, two years after the initial
isolation of curvulamine (413) from the same fungus (Figure 58). On this basis, it is also
assumed that curindolizine (414) represents the product of an in vivo Michael addition of
the metabolites curvulamine (413) and the elimination product derived from procuramine
(125) (cf. Figure 16) [125].
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Another complex polycyclic scaffold is displayed by the densanins A (415) and B (416)
(Figure 58) [315]. After extensive NMR studies, including the application of the Mosher
ester method, the 3D structure featuring seven stereogenic centers and a 1-azabicyclo[3.2.1]
octane core was determined to be biosynthetically derived from 3-alkylpyridines. The
hexacyclic diamines 415 and 416, isolated from the sponge Haliclona densaspicula in 2012,
showed no cytotoxicity but promising inhibition of the NO production in LPS-induced
BV2 microglial cells (IC50 values of 1.05 µM and 2.14 µM, respectively) [315].

Their promising bioactivity and challenging structures have inspired organic chemists ever
since to develop a successful total synthesis of these MNPs [316–318]. The group of Maimone
published the first successful synthesis of (−)-curvulamine (413a) in 2012, which was only
feasible after extensive reconnaissance and several failures (Scheme 25) [319,320]. Starting
from commercially available chemicals, they employed a feasible 10 step sequence to
(−)-curvulamine (413a). The first key step was the coupling of racemic cyanohydrin 417, as
a masked acyl anion, with pyrroloazepinone 418. This regioselective process was mediated
by NaHMDS, followed by quenching the resulting enolate with NIS. After extensive inves-
tigation, the iodide was found to undergo cyclization under simple irradiation conditions
in MeOH.

In this way, compound 419 was prepared in a 30% yield over two steps. After addition
of lithiated ethyl vinyl ether, subsequent epimerization to the favored diastereomer 421, and
activation of the secondary alcohol with ClCSOPh, the thiocarbonate epimers (1R/1S)-422
could be separated. The desired isomer 422 was reduced by deoxygenation and hydrolysis
of the enol ether. The final step involves a diastereoselective reduction of the racemic
ketone under CBS reduction conditions, yielding a 1:1 epimeric mixture of alcohols 413a
and 413b that was readily separated into the enantiopure MNPs (Scheme 25) [319].
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Syntheses such as the one shown by Maimone et al. play a significant in the develop-
ment of potential active pharmaceutical ingredients as marine organisms often cannot be
easily cultivated for mass production [319]. Further synthetic attempts, e.g., to prepare den-
sanins, were undertaken by Yang and co-workers in 2016, whereas only the BCD tricyclic
core could be achieved [321].

4.1. Pyrroloiminoquinone and Related Analogs

The pyrroloiminoquinones feature a central core in a broad variety of MNPs, divided
into subclasses of iso-/batzellins, damirons, discorhabdins, epinardins, makaluvamines,
prianosins, tsitsikammamins, wakayins, and veiutamines [322–324]. Among them, a new
subclass of the heteroatom-rich macrophilones was established in 2017. Macrophilone
A (423), isolated from the Macrorhynchia philippina, represents a rare example of the un-
derexplored group of hydroids (Figure 59) [325]. Macrophilone A (423), together with a
synthetic derivative prepared in the same study, was able to block the conjugation cascade
of small ubiquitin-like modifier (SUMO). The SUMO conjugation to protein substrates
occurs through an enzymatic cascade and is critical for the regulation of various cellular
processes. It is often disrupted in diseases, including cancer, resulting in the disturbance of
the protein balance [325].



Mar. Drugs 2021, 19, 514 58 of 79

Mar. Drugs 2021, 19, x FOR PEER REVIEW 58 of 79 
 

 

Once more, the group of Gustafson and co-workers published the isolation of six 

further macrophilones B–G (424–429) from the same source one year later (Figure 59) 

[326]. Just as its related congener macrophilone A (423), compounds 424–429 showed 

moderate to weak inhibition effects of SUMO conjugation cascade (IC50 values ranging 

between 11.9 µM and >100 µM). Furthermore, they exhibited significant toxicity against 

several cancer cell lines (no values given) [326]. 

 

Figure 59. Members of the macrophilones group 423–429. 

To investigate their bioactivity potential, the first isolation of macrophilone A (423) 

was accompanied by its synthesis [325]. The authors started their ingeniously short 

approach from commercial formylindole 430, which was nitrated and the aldehyde 

functionality reduced subsequently to furnish compound 431. Oxidation by Fremy’s salt 

yielded the iminoquinone, which, after the introduction of the thioether group by sodium 

methanethiolate, furnished the natural product 423 in just 4% yield over three steps 

(Scheme 26) [325]. 

 

Scheme 26. Synthesis of macrophilone A (423) in a linear sequence of 5 total steps. 

In 2019, makaluvamine Q (432) was discovered, marking the first time a 

makaluvamine derivative was isolated from a marine Tsitsikamma sponge within the 

Latrunculiidae family (Figure 60). Besides the shown DNA intercalation and 

topoisomerase I inhibition (27% inhibition of DNA nicking), makaluvamine Q (432) was 

found to be most active against HeLa cells in cell viability assays (14.7% ± 0.5% metabolic 

activity at 10 µM). In addition, the authors showed possible biosynthetic relationships 

between the isolated subclasses [327]. 

Only a few months later, the Keyzers lab isolated makaluvamine W (433) and 

6-bromodamirone B (434) from the sponge Strongylodesma tongaensis (Figure 60). Both 

isolated pyrrole derivatives 433 and 434 lacked cytotoxic activity against the leukemia cell 

line HL-60, highlighting the importance of an iminoquinone scaffold in bioactivity 

considerations [328]. 

The benzoxazole moiety in makaluvamine W (433) is also found in citharoxazole 

(435), isolated from the sponge Latrunculia (Biannulata) citharistae in 2011 (Figure 60). The 

latter compound represented the first oxazole derivative in this family at that time [329]. 

In 2013, the Hamann laboratory isolated a complex heptacyclic pyrroloiminoquinone 

436 containing seven stereogenic centers together with five different heterocycles (Figure 

60). The TFA salt of atkamine (436) was isolated from the sponge Latrunculia sp. The 

structure elucidation of this complex framework was guided by spectroscopic methods, 

including ECD spectroscopy to analyze the absolute configuration. Furthermore, 

preparative olefin metathesis was used to localize the (E)-configured double bond [330]. 

Figure 59. Members of the macrophilones group 423–429.

Once more, the group of Gustafson and co-workers published the isolation of six
further macrophilones B–G (424–429) from the same source one year later (Figure 59) [326].
Just as its related congener macrophilone A (423), compounds 424–429 showed moderate
to weak inhibition effects of SUMO conjugation cascade (IC50 values ranging between
11.9 µM and >100 µM). Furthermore, they exhibited significant toxicity against several
cancer cell lines (no values given) [326].

To investigate their bioactivity potential, the first isolation of macrophilone A (423) was
accompanied by its synthesis [325]. The authors started their ingeniously short approach
from commercial formylindole 430, which was nitrated and the aldehyde functionality
reduced subsequently to furnish compound 431. Oxidation by Fremy’s salt yielded the imi-
noquinone, which, after the introduction of the thioether group by sodium methanethiolate,
furnished the natural product 423 in just 4% yield over three steps (Scheme 26) [325].
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In 2019, makaluvamine Q (432) was discovered, marking the first time a makalu-
vamine derivative was isolated from a marine Tsitsikamma sponge within the Latrunculiidae
family (Figure 60). Besides the shown DNA intercalation and topoisomerase I inhibition
(27% inhibition of DNA nicking), makaluvamine Q (432) was found to be most active
against HeLa cells in cell viability assays (14.7% ± 0.5% metabolic activity at 10 µM). In
addition, the authors showed possible biosynthetic relationships between the isolated
subclasses [327].
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Only a few months later, the Keyzers lab isolated makaluvamine W (433) and 6-
bromodamirone B (434) from the sponge Strongylodesma tongaensis (Figure 60). Both iso-
lated pyrrole derivatives 433 and 434 lacked cytotoxic activity against the leukemia cell
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line HL-60, highlighting the importance of an iminoquinone scaffold in bioactivity consid-
erations [328].

The benzoxazole moiety in makaluvamine W (433) is also found in citharoxazole (435),
isolated from the sponge Latrunculia (Biannulata) citharistae in 2011 (Figure 60). The latter
compound represented the first oxazole derivative in this family at that time [329].

In 2013, the Hamann laboratory isolated a complex heptacyclic pyrroloiminoquinone
436 containing seven stereogenic centers together with five different heterocycles (Figure 60).
The TFA salt of atkamine (436) was isolated from the sponge Latrunculia sp. The structure
elucidation of this complex framework was guided by spectroscopic methods, including
ECD spectroscopy to analyze the absolute configuration. Furthermore, preparative olefin
metathesis was used to localize the (E)-configured double bond [330].

Due to their promising bioactivity, a large number of synthetic studies have been
conducted on these pyrrole alkaloids (e.g., makaluvamines [331,332], damirones [333,334],
batzellines [335,336]). The first synthesis of makaluvone was completed by the Tokuyama
group in 2012 [337]. Starting with 4-methoxy-2-nitroaniline and using a procedure reported
by the Buchwald group [338], the 4-iodoindoline 437 was prepared in a 22% yield over
nine steps. Subsequent construction of the quinoline scaffold using a benzyne intermediate
generated by LiTMP and trapping of the carbanion by a bromine donor resulted in the
formation of tricyclic system 438. DDQ-oxidation to form the indole, removal of the N-
protecting groups, and oxidation of the aromatic core yielded the iminoquinone 439. The
last two steps included the methylation of the pyrrole nitrogen, methyl ether cleavage, and
isomerization to makaluvone 442 (Scheme 27) [337].
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biomimetic approach with a late-stage quinoline ring closure.

A shorter and more efficient synthetic sequence to several aminoquinolines was
reported five years later by the Spiteller group (Scheme 27) [339]. Using vanillin as starting
material, the indole 440 was prepared in 23% yield over seven steps. Vilsmeier formylation,
Henry reaction, and LiAlH4 reduction of the nitroolefin then furnished the tryptamine 441.
Removal of the benzylic protecting groups under hydrogenolytic conditions, oxidation
of the prepared hydroquinone followed by biomimetic intramolecular Michael addition



Mar. Drugs 2021, 19, 514 60 of 79

and aerobic reoxidation then gave the targeted pyrroloquinoline. The last step involved
halogenation to obtain makaluvamine O (443) and batzelline D (444), respectively [339].

A new member of the tsitsikammamines, namely 16,17-dehydrotsitsikammamine A
(445), was identified from the Antarctic sponge Latrunculia biformis in 2018 (Figure 61). The
crude extract of bis-pyrroloiminoquinone 445 showed promising anticancer activity against
seven cancer cell lines (inhibition percentage >90% each at 200 µg/mL) [340].
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The new tsitsikammamine C (446) was isolated as the TFA-salt from Zyzzya sp. in 2012
and represents the 18-methyl derivative of tsitsikammamine B (Figure 61). In biological
assays, a potent growth inhibition of Plasmodium falciparum chloroquine-sensitive (3D7,
IC50 value of 13 nM) and chloroquine-resistant (Dd2, IC50 value of 18 nM) cell lines was
observed [341].

Thiazine-derived metabolites were discovered in the Australian marine sponge Plako-
rtis lita in 2013 and given the names thiaplakortones A–D (447–450) (Figure 61) [342].
The structures were determined by using NMR and MS analytics as well as compar-
ing chiroptical data to literature values to confirm the absolute configuration of the 2-
methylaminopropanoic acid side chain of thiaplakortone C (449) and D (450). This sub-
stituent also suggests the biosynthesis from L-tryptophan and cysteine to yield the tricyclic
framework. As the aforementioned tsitsikammamine C (446), all tested thiaplakortones
447–450 display significant antimalarial activity against chloroquine-sensitive (3D7, IC50
values ranging between 51 nM and 650 nM) and chloroquine-resistant (Dd2, IC50 values
ranging between 6.6 nM and 171 nM) Plasmodium falciparum cell lines [342].

In 2014, the first synthesis of thiaplakortone A (447) was realized by the Quinn lab-
oratory (Scheme 28) [343]. Starting from commercially available 4-hydroxyindole (451),
indole 452 was obtained in 54% yield over five steps. Benzyl-deprotection, oxidation, and
treatment with 2-aminoethanesulfinic acid, generated an intermediary dihydrothiazine,
which, upon saponification and final deprotection, led to the formation of thiaplakortone
A (447) (Scheme 28) [343].
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Another subclass of biologically active pyrrole alkaloids is the zyzzyanones, merg-
ing the bis-pyrrolo functionality together with a pyrroloquinone scaffold. The known
zyzzyanones A–D (457–460), isolated in 1996, were synthesized for the first time by Velu
and co-workers in 2013 (Scheme 29) [344]. The authors developed a modular approach
that provides access to all four zyzzyanones A–D (457–460). Starting with the known tosyl-
protected indole-4,7-dione (453) [345], treatment with benzylamine resulted in amination.
The bispyrroloquinone framework was constructed by ring-closing procedure with diethyl
acetal 454 and Mn(OAc)3. After methylation with MeI, the expected monomethylated
amine 455 was obtained alongside the unexpected demethylated amine 456. Both interme-
diates 455 and 456 were converted in a series of deprotection and/or formylation reactions
to generate the zyzzyanones A–D (457–460) [344].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 61 of 79 
 

 

In 2014, the first synthesis of thiaplakortone A (447) was realized by the Quinn 

laboratory (Scheme 28) [343]. Starting from commercially available 4-hydroxyindole (451), 

indole 452 was obtained in 54% yield over five steps. Benzyl-deprotection, oxidation, and 

treatment with 2-aminoethanesulfinic acid, generated an intermediary dihydrothiazine, 

which, upon saponification and final deprotection, led to the formation of thiaplakortone 

A (447) (Scheme 28) [343]. 

 

Scheme 28. Facile total synthesis of thiaplakortone A (447) in a nine-step approach. 

Another subclass of biologically active pyrrole alkaloids is the zyzzyanones, merging 

the bis-pyrrolo functionality together with a pyrroloquinone scaffold. The known 

zyzzyanones A–D (457–460), isolated in 1996, were synthesized for the first time by Velu 

and co-workers in 2013 (Scheme 29) [344]. The authors developed a modular approach 

that provides access to all four zyzzyanones A–D (457–460). Starting with the known 

tosyl-protected indole-4,7-dione (453) [345], treatment with benzylamine resulted in 

amination. The bispyrroloquinone framework was constructed by ring-closing procedure 

with diethyl acetal 454 and Mn(OAc)3. After methylation with MeI, the expected 

monomethylated amine 455 was obtained alongside the unexpected demethylated amine 

456. Both intermediates 455 and 456 were converted in a series of deprotection and/or 

formylation reactions to generate the zyzzyanones A–D (457–460) [344]. 

 

Scheme 29. A divergent modular approach providing access to known zyzzyanones A–D (457–460). 

The discorhabdin journey started with the isolation of the first member of the class, 

discorhabdin C (its congeners A and B were reported later), in 1986 [346]. In the following 

years, a dozen more family members were isolated, biologically evaluated, and 

synthesized. In the decade 2010–2020, 12 further members were identified (Figures 62 and 
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The discorhabdin journey started with the isolation of the first member of the class,
discorhabdin C (its congeners A and B were reported later), in 1986 [346]. In the following
years, a dozen more family members were isolated, biologically evaluated, and synthe-
sized. In the decade 2010–2020, 12 further members were identified (Figures 62 and 63).
The representatives of this diverse subclass featuring promising bioactivities contain a
tetracyclic pyrroloiminoquinone core with a spirocyclic cyclohexadienone moiety. The
discorhabdins are thought to be biosynthetically derived from makaluvamines, formed
by the coupling of tyramine derivatives with the biosynthetic key precursor of simple
pyrroloiminoquinones. In addition, these intermediates also give access to many further
subclasses already mentioned [323].
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An interesting and at the same time cautionary discovery was made in 2010 when
discorhabdin A was isolated for the first time from Latrunculia oparinae. In addition to
the strong dependence of the color of the solution on the solvent when ethanol (red) and
methanol (green) were used, the optical rotation also changed its sign in this solvent
switch [347].

Similarly, the Hamann laboratory published the isolation of two new compounds,
dihydrodiscorhabdin B (461) and discorhabdin Y (462) from the Alaskan sponge Latrunculia
sp. (Figure 62) [348]. Upon structure elucidation using CD and optical rotation, pyrrole 461
showed decomposition, therefore only the absolute stereoinformation of discorhabdin Y
(462) could be assigned. The azepine derivative 463 was also identified in the same sponge
for the first time as a natural product (Figure 62) [348]. Previously, it was only known as a
semisynthetic compound, prepared by reduction of natural discorhabdin C and treatment
of the resulting dienol with sulfuric acid, initiating an alkenyl (C-20) migration to form
discorhabdin benzene derivative (463) [349].

Two new diastereomers of discorhabdin H and K, namely discorhabdin H2 (464)
and K2 (465) were isolated from different sponge populations of Latrunculia sp. in 2010
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(Figure 62) [350]. Combined structure elucidation was performed by NMR, MS, and ex-
tensive ECD-spectroscopy, allowing the assignment of the absolute configuration of the
known discorhabdins 2-hydroxy-D, D, H, N, and Q by comparing the recorded with ex-
perimental ECD spectra. Furthermore, natural (+)-(6S,8S)-discorhabdin B was used as a
starting point for semi-synthesis to establish the absolute configurations of discorhabdins
S, T, and U [350].

The synthetically known didebromodiscorhabdin C (466) [351], along with two new
discorhabdin derivatives 467 and 468 were isolated for the first time from the sponge
Sceptrella sp. (Figure 63) [352]. Following previous studies, the absolute configuration was
solved by a combination of optical rotation and ECD spectroscopy. In bioactivity studies,
average to striking effects were observed against Gram-positive and Gram-negative bacteria
(MIC values ranging between 25 µg/mL and >100 µg/mL), as well as against the K562
leukemia cell line and sortase A (IC50 values ranging between 2.1 µM and 127.4 µM),
with the hemiaminal 468 remarkably showing a more than tenfold higher inhibition than
p-(hydroxymercury)benzoic acid sodium salt as a positive control [352].

Promising anticancer activity against six cell lines was observed by bioactivity-guided
isolation (IC50 values of crude extract ranging between 4.0 and 56.2 µg/mL) of three new
discorhabdins 469–471 from Latrunculia biformis (Figure 63) [353]. Discorhabdins 470 and
471 are the first derivatives bearing an ester moiety, containing a simple acetyl group or a
C28-fatty acid. In the publication, the binding affinity of discorhabdins to anticancer targets
(topoisomerase I–II, indoleamine 2,3-dioxygenase) was also determined [353].

Aleutianamine (472), the first member of a new class of pyrroloiminoquinone alkaloids,
is characterized by a highly fused and multiply bridged heptacyclic ring system and was
isolated from the North Pacific sponge Latrunculia austini Samaai (Figure 63) [354]. The
elucidation of the structure required the combination of preparative spectroscopic methods
and advanced computational approaches. It has been supposed that this complex molecular
framework is derived from two proteinogenic amino acids, tryptophan, and tyrosine. The
authors mentioned that makaluvamine F or discorhabdin A might be the precursors of
aleutianamine (472), which exhibits promising activity against pancreatic cancer cell lines
(IC50 values between 25 nM and 1 µM) [354].

4.2. Glycosylated Pyrroles

In 2016, the known synthetic product jaspamycin (473) [355], which is used as a
tool compound for the investigation of Parkinson’s disease, was isolated from a marine
sponge Jaspis splendens and was therefore reported for the first time as a naturally occurring
metabolite (Figure 64) [356]. The full stereochemistry of the attached sugar was identical to
that of the synthetic product.
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Figure 64. Sugar-substituted marine pyrrole alkaloids 473–474.

Another marine pyrrole alkaloid, neopetroside B (474), contains a rare N-glycosylpy-
ridinium moiety and was isolated from a Neopetrosia sp. sponge in 2015 (Figure 64) [357].
The absolute configuration of compound 474 was determined by comparison with a similar
congener from the same work, the sugar unit of which was cleaved off, followed by
the synthesis of acetylated (+)-2-octyl glycosides. Comparison of these compounds with
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authentic samples according to the procedure of Leontein then revealed the D-configuration
of the sugar unit [357,358].

In 2016, two new pyrrole oligoglycosides, plancipyrrosides A (475) and B (476) were
isolated from the Vietnamese starfish Acanthaster planci (Figure 65) [359]. The absolute
configuration was determined by comparison with the previously confirmed absolute
configurations of the hydrolyzed sugar moieties. Plancipyrroside B (476) exhibits a stronger
inhibitory effect on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells
(5.94 µM ± 0.34 µM) than plancipyrroside A (16.61 µM ± 1.85 µM) [359].
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Figure 65. Oligosaccharide-substituted pyrroles 475 and 476 from a marine starfish Acanthaster planci.

The sugar-containing pyrrole alkaloids, phallusialides A–E (477–481) were discov-
ered in a marine bacterium of the genus Micromonospora in 2019 (Figure 66) [360]. The
relative and absolute configurations of compounds 477–481 were determined by ROESY
correlations and ECD spectroscopy. While phallusialide A (477) and B (478) displayed
moderate to weak antibacterial activity (MIC values between 32 µg/mL and 64 µg/mL),
phallusialides C–E (479–481) failed to show any detectable activity in the same assay (MIC
values > 256 µg/mL). The authors speculated that the lack of halogenation at the pyrrole
core of compound 479 and the additional sugar moieties in compounds 480 and 481 were
responsible for the inactivity [360].
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Figure 66. A new group of phallusialides A–D (477–481) discovered from a marine bacterium.

4.3. Peptides

Recently, two new unique bromopyrrole peptides, seribunamide A (482) and haloircini-
amide A (483), have been extracted from an Indonesian marine sponge of the genus Ircinia
(Figure 67) [361]. Their relative and absolute stereochemistries were determined by ROESY
correlations and on the basis of derivatization [362] with Marfey’s reagent, 1-fluoro-2,4-
dinitrophenyl-5-L-alanine amide. Compounds 482 and 483 did not show any cytotoxicity
against several human tumor cell lines [361].
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Figure 67. Bromopyrrole peptides 482–483 isolated from marine sponges.

In 2015, the structurally unique cyclopeptides hormaomycins B (484) and C (485) were
discovered from a mudflat-derived Streptomyces sp. [363] (Figure 68). Both compounds 484
and 485 possess very rare 3-(2-nitrocyclopropyl)alanine units and their absolute configura-
tions were determined by comparing their CD spectra with that of a related hormaomycin.
Hormaomycins B (484) and C (485) showed significant inhibitory effects against various
Gram-positive bacteria (MIC values ranging between 0.23 µM and 56 µM), whereas, for
Gram-negative bacteria, MIC values between 0.9 µM and 115 µM were determined [363].
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At this point, the cyclopeptidic and highly antitumor active pyrrole alkaloid cycloci-
namide A (486b) should also be mentioned, which was isolated from a sponge of the
genus Psammocinia by Crews and co-workers back in 1997 [364]. Roughly twenty years
later, a total synthesis of 486b by the Konopelsky group led to the revision of its absolute
stereoconfiguration from 486a to 486b (Figure 68) [365].

5. Conclusions

Pyrrole alkaloids, a very rich family of secondary metabolites widespread among
marine organisms, have fascinated the chemical community for many decades. Their
large structural variety not only endows them with unique biological activities but also
prompts questions concerning the biochemistry of marine life which still require a thorough
examination. On the other hand, the seemingly endless number of architectural complex
pyrrole alkaloids discovered so far has also led to a considerable number of structural
revisions, and the literature is riddled with unknown stereochemistries and inconsistencies
in their naming. Synthetic chemists are animated to find new solutions concerning the
total syntheses of marine pyrrole alkaloids, thereby providing a larger availability of these
compounds which is crucial for the development of derivatives with improved biological
activities. New and improved analytical techniques are needed to allow the unambiguous
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elucidation of relative and absolute configurations of the often-minute quantities of marine
natural products available from their producers.
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