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Abstract: Cancer is one of the leading causes of death globally. The development of drug resistance
is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to
reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural
products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally,
they have multiple mechanisms of action to inhibit various targets involved in the development of
drug resistance. In this review, we have summarized the basic research and clinical applications of
natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the
mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers
were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted
by a large number of natural products. On the other hand, protein kinase C and topoisomerases
were less sensitive to most of the studied natural products. The studies discussed in this review will
provide a solid ground for scientists to explore the possible use of natural products in combination
anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.

Keywords: anticancer natural products; drug efflux; drug detoxification; plants derived
natural products

1. Introduction

Cancer is the second most common cause of death after cardiovascular diseases. Statis-
tics from the USA showed that the number of people diagnosed with cancer was 1.7 million
in 2017 with 0.6 million deaths [1]. Ninety percent of deaths from cancer result from the
development of drug resistance, which leads to the ineffectiveness of chemotherapeutic
agents [2]. Drug resistance can be defined as the ability of cancer cells to reduce the po-
tency and efficacy of chemotherapeutic agents [3]. In some types of cancer such as renal
cancer and hepatocellular carcinoma, malignant cells start resistance without previous
exposure to chemotherapeutic agents (intrinsic resistance) resulting in a poor response to
initial treatment [4]. In other cases, cancer cells exhibit initial sensitivity to chemotherapy
followed by a poor response due to the development of resistance (aquired resistance) [3].
Previous studies on cell lines and animal models revealed that drug resistance in cancer
can be achieved by complex mechanisms, including drug efflux using ATP-binding cassette
(ABC) transporter [5], altering the expression of proteins targeted by anticancer drugs [6],
drug detoxification [7], augmenting repair mechanisms in DNA [8], and evasion of apop-
tosis [1]. The use of natural products in the treatment of diseases is very old. Historical
documents show that the first use of natural products in medical treatment was reported
in Mesopotamia and dates back to 2600 BC [9]. Extensive research was conducted to
explore the potential of natural products in cancer therapy. These efforts resulted in the
development of some effective drugs derived from natural phytochemicals [10]. Diverse
approaches were tested to overcome drug resistance in cancer. However, natural products
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from medicinal plants and other natural sources represent a promising and cost-effective
approach [11]. In this review, we summarize natural products that have the potential to
overcome drug resistance in cancer. The target of each natural product was identified, and
the mechanisms of action were discussed in experimental and clinical studies.

2. Drug Chemo-Resistance in Cancer: Mechanistic Bases

Nowadays, one of the most prominent challenges for cancer treatment is drug resis-
tance as malignant cells persuade different mechanisms (Figure 1) to deviate from treatment
and maintain their survival. Understanding these mechanisms may facilitate the develop-
ment of novel drugs with new targeting strategies, which may have a promising clinical
implication. In this part of the review, we will discuss several drug-resistance mechanisms
that have clinical significance.
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2.1. Drug Efflux

One of the primary mechanisms for chemotherapy resistance is drug efflux, which
is defined as drug transportation from the intracellular milieu using energy-dependent
pumps [12,13]. High rates of drug efflux in the cancer cells reduce internal drug accu-
mulation and potentiate the cell capability to escape from the treatment [14–16]. This
phenomenon could be either intrinsic or acquired; in other words, it either already exists in
the cell before or develops post-drug administration [1].

Sophisticated transmembrane transporters direct drug efflux, mainly the ATP-binding
cassette (ABC) family [17]. In humans, there are 48 ABC transporters which are stratified
into seven subdivisions (ABCA-ABCG) based on phylogenetic analysis [1,17,18]. They
are involved in the exportation of endogenous substances, e.g., metabolites, vitamins
and lipids, in addition to exogenous products such as toxins and drugs [18] Part of these
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transporters play a key role in acquiring multidrug resistance (MDR) characteristics to
cancer chemotherapies, such as ABCB1, ABCC1, and ABCG2 [17].

ABCB1, also known as MDR1 or P-glycoprotein (P-gp), is one of the well-characterized
transporters associated with drug resistance for several types of tumors such as leukemia
and colorectal, kidney, and lung multiple myeloma [3,19,20]. For drug efflux, the cell
is coupled with ATP hydrolysis and conformational changes in the transporter [21]. A
wide variety of drugs can bind/be pumped through this transporter, such as vincristine,
vinblastine, daunorubicin, doxorubicin, epirubicin, etoposide, paclitaxel, mitomycin c, and
topotecan [22–24]. Thus, overexpression of ABCB1 potentiates cell competence to hamper
the chemotherapy treatment [1].

ABCC1 overexpression, also known as a multidrug resistance-associated protein-1
(MRP1), plays a crucial role in the failure of chemotherapy in a number of malignant
tumors, including prostate, breast, and lung cancers [22–25]. ABCC1 transporter can efflux
different anticancer drugs such as anthracyclines, camptothecins, vinca alkaloids, a few
kinase inhibitors, etoposide irinotecan, and methotrexate [26]. In addition, this type of
transporter pumps organic anionic compounds, which are conjugated to either glutathione
(GSH), glucuronide, or sulfate [27,28].

ABCG2 is recognized as a primary breast cancer-efflux transporter known as breast
cancer resistance protein (BCRP) [29,30]. ABCG2 is expressed in CD133-positive cancer
stem cells (CSCs) from human colorectal tumors; accordingly, it is considered a marker
for such types of CSCs cancers [31]. Additionally, overexpression of this transporter was
notified in other kinds of cancers such as acute myeloid leukemia, endometrial carcinoma,
lung cancer, and melanoma [29,32]. ABCG2 is capable of translocating a variety of anti-
cancer drugs, including positively and negatively charged drugs, including topoisomerase
inhibitors, tyrosine kinase inhibitors, antimetabolites, flavopiridol (cyclin-dependent kinase
inhibitor), JNJ-7706621 (CDK and aurora kinases inhibitor), and bicalutamide (non-steroidal
anti-androgen) [29,30].

Furthermore, overexpression of ABCC2 and ABCC3 has a pivotal effect on the re-
sistance of multiple cytotoxic drugs such as methotrexate, cisplatin, doxorubicin, and
etoposide [33,34]. These were found to potentiate the drug resistance in breast, liver, and
lung cancers [34–36]. Accordingly, a deep understanding of ABC transporters (structure,
physiology, overexpression, and mutations) has a promising role in innovating clinically
effective anticancer drugs.

2.2. Drug Detoxification

Drug detoxification is considered one of the prominent mechanisms to confront
chemotherapy treatment. This process involves two main pathways. The first path-
way (Phase I) is mediated by cytochrome P450 enzymes (CYP450), which encompasse
hydrolysis and oxidation-reduction reactions [37,38]. The second pathway (Phase II) com-
prises primarily conjugation reactions, e.g., glutathionylation, glucuronidation, acetylation,
methylation, and sulfonation reactions [39]. This phase is complimentary for the first
pathway, as these reactions aim to enhance the hydrophilicity of the parent drug or Phase
1 metabolites in order to be excreted [15]. Moreover, ABC efflux transporters translocate
the Phase II conjugated reactions outside the cell [27,28]. For instance, irinotecan (prodrug,
topoisomerase-1 inhibitor) is metabolized in the liver by carboxylesterases to the active
7-ethyl-10-hydroxycamptothecin (SN-38). Then, SN-38 will be exposed to glucuronidation
conjugation and active effluxing through ABC transporters [40]. Therefore, the synergis-
tic activity between the detoxification mechanisms and efflux transporters significantly
suppresses the chemotherapeutic effectiveness [41].

One major drug-resistance conjugation pathway is glutathionylation, which is medi-
ated by the GSH-GST system [39]. GST, a family of enzymes that conjugate GSH to the
chemo drugs, increased its hydrophilicity and could easily be effluxed out of the cell [27,28].
It has been reported that levels of GSH and GST increase proportionally with the cancer
stage; however, there is interindividual variability between patients, which limits its clinical
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implication [42]. On the other hand, a positive correlation was observed between the level
of the type GSTπ protein and cancer drug-resistance in variable neoplastic diseases [43–46].
At the gene level, there is a relationship between the GST gene polymorphism and tumor
incidence [47] and the efficiency of chemotherapy [48,49].

Unfortunately, several chemotherapeutic drugs are substrates for detoxification pro-
cesses. Therefore, focusing on the machinery of this area may help in overcoming the
resistance problem.

2.3. Apoptosis Inhibition

Inhibition of cell death is a fundamental hallmark of cancer. Anticancer medications
mainly target this mechanism by inducing programmed cell death, also called apopto-
sis [50]. Consequently, any alternation in the apoptotic machinery may contribute to drug
resistance [15]. Apoptosis occurs through two main pathways: extrinsic and intrinsic [50].
Activation of the extrinsic pathway is mediated by the binding of the tumor necrosis factor
family to their receptors on the cell surface, followed by activation of caspase-8, which will
promote cell death initiation [51]. Stimulation of the intrinsic pathways is mitochondrially
controlled by the imbalance between the pro (e.g., BAX and BAK) and anti-apoptotic pro-
teins (e.g., BCL-2, BCL-XL, BCLw) [52,53]. Recruitment of proapoptotic signaling molecules
primes the permeabilization of the mitochondrial outer membrane then triggers the release
of cytochrome c and leads to activation of series apoptotic reactions via caspases [50].

The disparity between the pro and anti-apoptotic molecules also plays a role in
inducing resistance against anticancer therapy [54]. Hence, cancer cells overexpress the
anti-apoptotic proteins (such as Bcl-2, Akt, and NF-κB) and/or suppress or disturb the
production of proapoptotic proteins such as BAX [54–56]. The positive association between
the expression level of anti-apoptotic proteins and the ability of cancer cells to evade
the treatment has been documented in different types of cancer such as breast cancer,
acute myeloid leukemia, and non-Hodgkins lymphoma [57–59]. Presumably, elevated
levels of Bcl-2 and Akt hinder cytochrome c release from the mitochondria; thus, the
subsequent apoptotic cascade will be discouraged [56]. Activation of Akt is followed
by NFκB phosphorylation, which impedes the apoptosis processes and promotes cancer
survival. Both Akt and NFκB trigger Bcl-2 inhibitory activity and potentiate the cell
resistance power [60]. In the clinical setting, the development of targeted therapy to control
the pro or anti-apoptotic proteins may have a promising solution for cancer drug resistance
and improve the clinical outcomes.

2.4. Enhanced DNA Damage Repair

Numerous chemotherapeutic drugs target DNA damage of the cancerous cells as
the main mechanism of action, such as platinum-based drugs, alkylating agents, and
anthracyclines [61]. However, this activity may be defended by cancer cell-DNA repair
response, which reduces the drug efficacy and potentiates the resistance [62]. Multiple
DNA repair mechanisms have been documented in the literature [62,63], including direct
reversal, mismatch repair (MMR), nucleotide excision repair (NER), base excision repair
(BER), homologous recombination (HR), and nonhomologous end joining (NHEJ). Many
factors affect the pathway of the DNA restoration such as tissue location, nature of the DNA-
drug adduct, and the involved proteins [15,64,65]. For instance, DNA repair endonuclease
XPF and DNA excision repair protein ERCC1 play a vital role in the NER and inter-strand
crosslink repair pathways [66]. Studies have shown a positive correlation between the
overexpression of these proteins and the establishment of significant drug resistance, e.g.,
resistance for platinum-based drugs [67,68].

On the other hand, it has been reported that the mortality rate was significantly re-
duced in patients receiving cisplatin-based chemotherapy with negative-ERCC1 non-small
cell lung and breast tumors compared to ERCC1- positive tumors [64,69]. Another example,
resistance to the alkylating chemotherapeutic agents, was significantly linked with the
overexpression of the O6-methylguanine DNA methyltransferase (MGMT) repair enzyme,
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as glioblastoma patients with increased levels of MGMT showed poor treatment outcomes
and higher mortality rates compared with the patients with reduced expression levels [70].
Therefore, such proteins could be a prognostic marker and auspicious therapeutic target
for many anticancer drugs.

2.5. Epigenetic Alterations

Besides the previous resistance pathways, one of the prominent mechanisms is epi-
genetic alterations. These alternations mainly affect the function and expression of the
cell gene, rather than causing mutations in the DNA sequence [65,71]. Epigenetic alter-
ations could be present in different ways, including DNA methylation patterns, histone
modification, chromatin remodeling, and noncoding RNA related alterations [1,8].

DNA methylation is utilized during cell division by adding methyl-group covalently
to DNA cytosine through DNA methyltransferases [72]. It has been reported that number
of cancer genes are exposed to hypermethylation, which yields transcriptional silencing for
the tumor suppressor genes (e.g., CpG promoter islands of tumor suppressor genes) [73,74].
For example, hypermethylation of gene promoters plays a pivotal role in the resistance of
ovarian cancer cells towards cisplatin [73]. Conversely, demethylation or hypomethylation
was known to affect the chemo-response of cancer cells and upregulate the expression of
oncogenes. For instance, hypomethylation of the ABCB1 promoter leads to overexpression
of the efflux ABCB1 transporter, which potentiates drug resistance in esophageal squa-
mous cancer cells [75]. Another study has revealed that DNA demethylation and histone
modification at the promoter region enhances the overexpression of protein thymosin β4
(Tβ4), which contributes to drug resistance in hepatocellular carcinoma (HCC) cell line
to VEGFR inhibitor sorafenib [76]. A study conducted by Bhatla et al. has demonstrated
that suppression of DNA methylation and histone modification in acute lymphoblastic
leukemia cells reverse the disease relapse and restore the cell chemosensitivity [77]. There-
fore, defeating these resistance mechanisms may have a promising contribution in cancer
therapy, as found in the management of resistant–heterogenous multiple myeloma [78].

Moreover, epigenetic modifications could also be present as chromatin remodeling
and noncoding RNA-related alterations, including microRNAs (miRNAs) and long noncod-
ing RNAs (lncRNAs) [79,80]. MiRNAs modulate the post-transcriptional gene expression
and protein synthesis [81]. LncRNAs regulate gene expression through chromatin mod-
ification and hinder transcription activation [79,80]. Both noncoding RNAs affect the
contribution to chemoresistance through modulation of protein production. Various stud-
ies have demonstrated overexpression and oncogenic activity of miRNA and lncRNA in
different types of cancer such as lymphoma, lung, breast, stomach, colon, and pancreatic
cancer [81–83]. Then again, these epigenetic alternations could be considered a futuristic
target and have a role in cancer hallmarks.

2.6. ATP-Mediated Drug Resistance

Resistance to chemotherapy is also induced by ATP-mediated pathways, either in-
tracellularly or extracellularly. Studies have shown that the intracellular level of ATP
in malignant cells is usually more than healthy cells of the same source. In fact, that
elevation in intracellular-ATP is mainly caused by increased glycolytic metabolism in a
pathway called the Warburg effect [84]. This effect is considered a hallmark in approxi-
mately all cancer types [85,86]. Additionally, it was reported that drug-resistant cancer
cells exhibit higher levels of intracellular ATP than the other tumor cells from the same
tissue, which are required for cell survival under cytotoxic conditions [87,88]. For example,
a study conducted by Zhou et al. has demonstrated that chemo-resistant colon cancer cell
lines express higher levels (i.e., double) of intracellular ATP than non-resistant cells [87].
Contrarywise, sensitivity to chemotherapy was enhanced by diminishing intracellular
ATP levels and suppressing the glycolysis process in the resistant cells (i.e., glycolysis,
3-bromopyruvate) [87].
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Moreover, cancer cells are capable of extensively uptaking the extracellular ATP, sub-
sequently increasing the intracellular ATP, and potentiating the cells’ tendency for drug
resistance and cancer cell survival [89]. In many cancer types, the extracellular ATP was
103 to 104 times more than the normal cells from the exact origin [89,90]. Studies have
shown that the uptake of extracellular ATP can be utilized mainly through micropinocyto-
sis [90,91]. Internalization of ATP to the cancer cell augments the activity of the drug efflux
pathway (i.e., through ABC transporters), which diminishes the intracellular drug concen-
tration and promotes and cancer persistence [89]. In addition, high levels of accumulated
intracellular ATP compete with tyrosine kinase inhibitors (TKI) on its receptor (RTK) bind-
ing site, which activate phosphorylation and the cascade of cell signaling [92]. Increased
ATP internalization promotes TKI translocation (in addition to chemo-drugs) through
efflux transporter, which reduces the TKI accumulation inside the cell and increases RTK
activity, cell machinery, and resistance [89]. Wang et al. also revealed that drug resistance
in the cancer cells mediated by the ability of extracellular ATP molecules to enhance the
activity and overexpression of efflux ABC transporters [89]. Shedding light on the block-
ing/inhibiting mechanisms of extracellular ATP internalization and expression/activity of
ABC transporters might substantially affect the chemosensitivity of tumor cells.

3. Targets of Natural Products in Cancer Chemo-Resistance

When a specific cancer type exhibits drug resistance to many drugs, this is referred to
as the development of multidrug resistance (MDR) [93]. A potential approach to overcome
drug resistance is to target the mechanisms of resistance. The general mechanisms of
resistance are currently well recognized; they include increased drug efflux and decreased
drug influx, drug inactivation, processing of drug-induced damage, alterations in drug
target, and evasion of apoptosis. Certain examples of specific mechanism are the expression
of resistant transporters or genes that can enhance drug efflux [94]. Drug efflux, facilitated
by membrane transport proteins, is associated with the development of MDR in tumor
cells [95]. Overexpression of ATP-binding cassette (ABC) membrane transport proteins has
been considered the leading contributor to resistance and chemotherapy failure in several
types of cancer [96–98].

An elevated efflux of chemotherapeutic drugs from cancer cells leads to decreased
intracellular drug concentrations by pumping drugs out of cells. Drug efflux transporters
are mainly responsible for the development of MDR in cancer cells [7,99]. Membrane
transport proteins can eliminate drugs from cells and promote drug redistribution. Drug
redistribution reduces drug concentrations in the organelles below lethal concentrations,
which further reinforces the drug resistance. Some known proteins related to MDR include
P-glycoprotein (P-gp), multidrug resistance protein (MRP), breast cancer resistance protein
(BCRP), and lung resistance-related protein (LRP) [7].

3.1. P-Glycoprotein

P-glycoprotein (P-gp) is also known as multidrug resistance protein-1 (MDR-1), an
ABC sub-family-B member-1 encoded in the human body by the ABCB1 gene [99,100].
ATP binding causes activation of the ATP-binding domains and the hydrolysis of ATP,
which will cause change in the transporter shape, essential for the functioning of the
transporter and thus results in drug efflux [99]. P-gp has 12 transmembrane domains
and two ATP binding sites on its transporter structure that can be inserted into the cell
membrane and bind to a variety of chemotherapeutic drugs. P-gp can detect and bind
drugs entering the plasma membrane [101–103]. Its normal function is to protect cells
against xenobiotics and cellular toxicants and thus plays an important role in maintaining
physiological homeostasis [104,105]. P-gp expression varies in various types of cancers.
Colon, pancreas, liver, adrenal gland, and kidney cancers demonstrate highest levels of
P-gp expression, while intermediate P-gp expression is seen in soft tissue carcinomas,
neuroblastoma, and hematological malignancies. Breast, ovary, lung, and esophageal
cancers initially display low P-gp levels, but the levels of P-gp efflux transporters in-
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crease after the cancer shows resistance to the chemotherapeutic treatment [99,101]. P-gp
causes decreased intracellular drug concentration, and overexpression of P-gp is always
related to MDR [7,101]. Several P-gp inhibitors generations were developed in hope of
circumventing MDR, to block P-gp, and to improve the efficacy of chemotherapy in MDR
tumors [102,106–108]. MDR chemosensitizers are P-gp modulators that administered in
combination with cytotoxic agents, which are substrates of the efflux pump could restore
their efficacy in resistant cancer cells [109].

First-generation drugs appear less potent, non-selective, and have a low P-gp binding
affinity. High doses of these inhibitors are required to reverse MDR which can lead to
toxic side effects. Second-generation P-gp inhibitors hinder metabolism and excretion of
chemotherapeutic drugs by blocking the effects of P-gp. Some shortcomings of second-
generation P-gp inhibitors, such as interaction with cytochrome P450, were overcome
in third-generation P-gp inhibitors [99]. Unfortunately, the first three generations have
several safety problems, such as unexpected systemic toxicities, non-targeted inhibition,
and unpredictable pharmacokinetic interactions between chemotherapeutic agents and
candidate P-gp inhibitors. For these reasons alternative strategies are being pursued by
scientists to develop a fourth generation of P-gp inhibitors with safety advantages from
natural products [107,108,110,111].

Stemofoline, an alkaloid extracted from Stemona bukilli, was reported to increase the
sensitivity of the chemotherapeutic of MDR leukemic cells and raise the accumulation
of P-gp substrates (calcein-AM and rhodamine 123). However, it shows no effect in the
P-gp expression according to the Western blot analysis [106]. Moreover, Chang et al.
have investigated sesquiterpene pyridine alkaloids (wilforine) and their effect on P-gp
expression and function. The study shows that wilforine was able to suppress the efflux
activity of P-gp in a concentration-related mode along with re-sensitizing MDR cancer cells
to chemotherapy agents [112]. Another study has suggested that tenulin and isotenulin, a
natural sesquiterpene lactone, have the potential to be improved for synergistic treatment
of MDR cancers. It shows significant prevention of the P-gp activity through triggering P-
gp ATPase transporter [104]. Moreover, combination of polyphenols such as EGCG, tannic
acid, and curcumin exhibited a high synergistic effect with doxorubicin via attenuating
the P-gp function in human colon cancer and leukemia cell lines [102]. Moreover, the
Western blot analysis shows a reduction in P-gp levels after applying curcumin treatment
in K562/DOX cells as well as enhances the sensitivity of the cells to the chemotherapy [113].
Moreover, the expression of P-gp was decreased in A2780/Taxol cells when curcumin and
piperine was combined in solid lipid nanoparticle form [114]. Teng et al. suggested that
caffeic acid can reduces cancer MDR in human cervical cells (KB/VIN). It inhibited P-gp
efflux via attaching to P-gp through GLU74 and TRY117 residues [103]. Recently, quercetin
was also reported to have modulation effect on P-gp expression in HeLa and SiHa cells.
According to the Western blot analysis, the co-treatment group (quercetin and cisplatin)
showed lower levels of P-gp compared to the single-drug groups [107]. Moreover, other
studies have shown a quercetin downregulation effect on P-gp efflux function [108,115,116].
Kaempferol is a natural flavonoid that was able to reverse the multidrug resistance in
HepG2and N1S1 liver cancer cells via reducing P-gp overexpression [117]. Emodin is
another natural compound that revealed anticancer activity and improved chemotherapy
sensitivity in lung cancer (A549 and H460) via reducing P-gp expression [110]. It also
reversed drug resistance and enhanced the sensitivity of cisplatin in A549/DDP cells [111].
Ecteinascidin 74, a marine natural product from Caribbean Sea squirts Ecteinascidia turbinate,
can downregulate P-gp expression at a concentration of 0.1 nM. In addition, it increased
the cellular accumulation of DOX/VCR in P-gp-overexpressed cervix cells [118]. Moreover,
using a combination treatment of Sophocarpidine from Sophora flavescens with vincristine
and Adriamycin lowered the expression of P-gp in KBV200 cells [7]. Piperine is an alkaloid
found in black pepper (Piper nigrum). It has shown downregulation of P-gp, BCRP, MRPs,
and ABC transporter genes (ABCB1, ABCG2, and ABCC1), which may reverse MDR in
tumor cells [119–122]. β-Carotene was also reported to modulate P-gp in resistant cancer
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cell lines (KB-vin and NCI-H460/MX20) and stimulate the basal ATPase activity in a
concentration-dependent manner [101,119]. Schisandrin A (Deoxyschizandrin), isolated
from Fructus Schizandrae, reversed P-gp-mediated DOX resistance in MCF-7/DOX cells
by blocking P-gp, NF-κB, and Stat3 signaling [123]. Moreover, tanshinone microemulsion
can significantly reverse drug resistance of K562/ADM cells by inhibiting the P-gp efflux
pump effect and increasing the intracellular concentration of chemotherapeutic drugs [124].
Honokiol and magnolol are the main active ingredients in Magnolia officinali. They were able
to suppress P-gp in NCI/ADR-RES cells and increase the accumulation of P-gp substrate
(calcein) in cells. It was found that magnolol can reverse MDR in U937/ADR cells by
inhibiting the activity of NF-KB p65 and by downregulating the expression of MDR1 and
P-gp [7,125]. Cepharanthine, coumarins, cycloartanes, didehydrostemofolines, eudesmin,
and euphocharacins A-L function as P-gp inhibitors in different cancer cell lines [119].
Other phytochemicals that exhibited an inhibition of P-gp are reported in Table 1.

3.2. Multidrug Resistance Protein

Multidrug resistance protein (MRP) belongs to the subfamily C in the ABC transporter
superfamily of cell membrane transporters known to cause MDR. Multidrug resistance
associated protein-1 (MRP-1), encoded in the human body by the ABCC2 gene, has been
widely studied for its role in developing drug resistance in various cancers. A distinct
feature of MRP1 is that it is a basolateral transporter. This implies that MRP1 activity
results in the movement of compounds into cells that lie below the basement membrane.
The transporter prevents drug absorption from the basolateral side and clears the drugs
out of cells [99]. MRP demonstrated a substrate preference for negatively charged drugs
and natural products, such as glutathione, glutathione conjugated leukotrienes, glucosyla-
tion, conjugation, sulfation, and glucuronylation [102,103,116,125]. This implies that the
mechanism of transport of MRP1 is different from that of P-gp transport [99].

MRP1 is expressed ubiquitously in most of the body, including lung, testis, skeletal,
and cardiac muscles. Thus, it is present in most of the tumors, including breast cancer, and
plays an important role in MDR. Resistance due to MRP/ABCC members (MRPs 1–3) is
often caused by an increased efflux and leads to decreased intracellular accumulation of
anticancer drugs. Drug targeting of MRP transporters can help to overcome resistance
associated with breast cancer cells [99,100]. The importance of MRPs in cancer therapy is
also implied by their clinical insights. Modulating the function of MRPs to re-sensitize
chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus,
multiple MRP inhibitors have been developed recently [126]. Inhibitors of MRP1 are useful
to reverse or prevent acquired drug resistance and to sensitize drug-naïve untreated tu-
mors to anticancer drugs [100]. Various natural products exhibit inhibition activity toward
MRPs efflux function. Resveratrol, a polyphenol compound, has downregulated p-gp and
MRP1 expression in multidrug-resistant human colon cancer (Caco-2) and CE/ADR5000
cells. Moreover, it enhanced doxorubicin cytotoxic activity and increased cell sensitivity
to chemotherapy [127]. Moreover, three doxorubicin-resistant cell lines of acute myeloid
leukemia were treated with resveratrol, and the results exhibited inhibition of cell growth,
a significant reduction in MRP1 expression, and an increased uptake of the MRP1 substrate
into the cells [128]. Emodin is a natural compound that belongs to the anthraquinone
family [129]. It shows anticancer activity and modulation of chemo-resistance of human
bladder cancer cells to cisplatin repressing MRP1 [130]. Recently, Guo et al. demonstrated
the effect of emodin on gemcitabine resistance in pancreatic cancer cells. The drug resis-
tance associated proteins have been evaluated in PANC-1 cell xenograft in mice. It was
revealed that emodin was able to suppress P-gp, MRP1, and MRP5 expression compared to
the control group [131]. On the other hand, treating breast cancer cells resistant to tamox-
ifen with curcumin caused an enhancement in the sensitivity of cells to the chemotherapy
mediated by inhibition of the MDR proteins, particularly MRP2 [132]. Moreover, curcumin
was also able to reverse cisplatin chemo-resistance in cervical cancer cells via downreg-
ulation of MRP1 and P-gp1expression [133]. Quercetin is a natural polyphenol that has
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variety of pharmacological activities including the modulation of efflux transporters. It
prevented the accumulation of P-gp, BCRP, and MRP2 in triple negative breast cancer cell
lines (MDA-MB-231) [134]. Moreover, epigallocatechin-3 gallate (EGCG), a polyphenolic
catechin, showed an impact on chemotherapy resistance mediated by the suppression of
MDR-related proteins [135,136]. 7,3′,4′-trihydroxyisoflavone (THIF) is the major metabolite
of daidzein. It downregulates the MDR1 promoter region and negatively modulates the
MDR1 by controlling transcription factors and then generating new MDR. When THIF is
combined with adriamycin, the mRNA expression of MRP, MDR1, and MRP2 was lower
than that of adriamycin alone [7]. Moreover, strychnine was found to decrease the gene
and protein expression of MRP, but not affect the expression of MDR1 [7]. Some other
natural products are mentioned in Table 1.

3.3. Breast Cancer Resistance Protein

Breast cancer resistance protein (BCRP), encoded in the human body by the ABCG2
gene, was first identified in a drug-resistant human breast cancer cell line. BCRP belongs
to the ABCG subfamily of ABC transporters. BCRP is a half-transporter and dimerization
is essential to be functional [99,101]. BCRP has one adenosine 5’-triphosphate ABC and six
transmembrane domains and is, therefore, a so-called half-ABC transporter; BCRP is likely
to form a homodimer or homooligomer in order to obtain functional activity [137,138].
BCRP is mainly expressed in the cell membranes of multiple organs, including the gas-
trointestinal tract, liver, kidney, brain, endothelium, mammary tissue, testis, and pla-
centa [125,139]. BCRP plays an important role in intercellular drug absorption, metabolism,
and excretion, as well as toxicity [99]. BCRP has been extensively studied for its role as
an efflux transporter of drugs, leading to drug resistance in target cells and decreased
pharmacological effects of substrate drugs. Overexpression of BCRP has been regarded
as one of the causes of MDR in different diseases [139]. It causes MDR in most of the
types of cancers. In addition to cell membranes, BCRP is also expressed in intracellular
vesicles. These vesicles generally retain drugs, but BCRP pumps the drugs out quickly [99].
BCRP actively extrudes a board range of endogenous and exogenous substrates across
biological membranes, which include sulfate conjugates, taxanes, carcinogens, glutamated
folates, and porphyrins [125]. This is another reason for increased drug resistance due
to BCRP efflux transporter. BCRP is highly expressed in side-population cells in breast
cancer [99]. A strong correlation between high ABCG2 expression and poor prognosis of
leukemia patients has been described [140]. These cells possess stem cell-like properties
and are mostly resistant to chemotherapy. BCRP/ABCG2 inhibitors can have additional
benefits besides counteracting MDR [99]. Estrogens and antiestrogens have been shown
to reverse cancer drug resistance mediated by BCRP [141]. Among many inhibitors, the
most promising ones are bivalent flavonoids, which have shown broad-spectrum inhibitory
activity as compared to other classes of compounds [99]. Unfortunately, few clinically
useful inhibitors of BCRP have been developed. Therefore, a new, specific BCRP inhibitor
is still needed to improve outcomes of drug treatment [138,139]. Harmine is a harmala
alkaloid that has been used in folk medicine for anticancer therapy [142]. It reversed the re-
sistance of methotrexate and cisplatin drugs in a cancer cell line with BCRP-mediated efflux
with no effect on p-gp [132,133,138]. Acacetin, a flavonoid compound, was also reported
to have strong reversing activity of BCRP-mediated drug resistance [119,125]. Moreover,
apigenin increased the accumulation and inhibition of BCRP in combination with other
flavonoids (biochanin A and chrysin) [138,143–145]. Biochanin A is an isoflavone found in
red clover with antimutagenesis activity. It inhibited MDR-associated proteins including
p-gp, MRP1, and BCRP [132,133,138,143]. Other flavonoids such as diosmetin, genistein,
kaempferol, luteolin, naringenin-7-glucoside, and quercetin were also reported to have
an inhibition effect on BCRP [125]. Recent studies suggested that tangeretin, a natural
polymehoxyflavone, showed a potent inhibitory effect on BCRP along with significant
suppression of other MDR markers [132,138,143,146]. Terpenoids, hesperetin, rotenoids,
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stilbenoids, daizein, and other phytochemicals that showed an impact on BCRP arelisted
in Table 1.

3.4. Lung Resistance Protein

Lung resistance protein (LRP) is another transmembrane protein, which is encoded
by the LRP gene [99]. It is also known as major vault protein (MVP or VAULT1); vaults
are localized in nuclear pore complexes and are involved in nucleocytoplasmic transport
and participate in compound transportation in the nucleoplasm [147,148]. It was first
discovered in non-small cell lung cancer cell line SW-1573. The protein is found in the
cytoplasm and in the nuclear membrane of tumor cells. It is not a member of the ABC
superfamily of transporter proteins [99]. These vaults may play a role in MDR by regulating
the nucleo-cytoplasmic movement of drugs. LRP protein is overexpressed in most cancers,
which results in lower accumulation of anticancer drugs in the nucleus. LRP also causes
resistance to compounds including alkaloids, anthracyclines, and epipodophyllotoxin. In
addition to this, LRP also causes resistance to many drugs, which include doxorubicin
(Dox), vincristine, cisplatin, and carboplatin [102,113,149]. In contrast to MRP and P-gp,
the transmembrane transport region of LRP lacks the ATP-binding site specific to ABC
transporters. This region is not associated with the cell membrane but with transport
between the nucleus and cytoplasm [124]. Although the function of LRP is still not fully
understood, its role in the formation of barrel-shaped vault organelles is recognized. Vaults
transport different molecules between nucleus and cytoplasm. LRP is normally expressed
in bone marrow. Positive or higher expression has been associated with adverse outcomes
in leukemia as well as multiple solid tumors [148]. Many natural products have overcome
chemotherapeutic resistance by downregulation of the lung resistance protein. Ginsenoside
Rg3 is one of the main ginsenosides derived from ginseng. It effectively prevents tumor cell
growth in animal models and cell lines as well as targets the MDR factors in resistant cells
such as MDR1, MRP, and LRP [144,150,151]. Moreover, peimine, an alkaloid derived from
Fritillaria, was able to reverse the MDR of A549/DDP cell line via suppression of ERCC1
mRNA and LRP expression [152]. Paeonol is another natural compound that mediates the
inhibition of LRP, P-gp, MDR1, and MRP in multidrug resistance cells [7]. In gastric cancer
patients, the expression level of LRP and MDR1 has been blocked following treatment with
Chinese herbal medicine (Shen-qi-jian-wei Tang) [94].

3.5. Protein Kinase C

Protein kinase C (PKC) is a phospholipid-dependent, cytoplasmic, serine/threonine
kinase with a family composed of at least 12 isozymes [153,154]. These isozymes are classi-
fied into three main groups: classical or conventional PKCs (cPKCs; PKCα, PKCβI, PKXβII
and PKCγ), novel PKCs (nPKCs; PKCσ,PKCδ, PKCε, PKCη, and PKCθ), and atypical PKCs
(aPKCs; PKCζ, and PKCλ) [155,156]. Moreover, PKC isozymes have various biological
activities including receptor desensitization, transcription modulation, immune signaling
regulation, cell growth control, as well as learning memory [155]. In terms of cancer biology,
PKC isozymes mediate different signal transduction of cell proliferation, differentiation,
angiogenesis, and programmed cell death [157–159]. Tumorigenesis and drug resistance
are associated with the interruption of protein kinase C regulation [153]. Several preclinical
studies have shown the effect of blocking PKC on drug resistance and the enhancement
of the conventional chemotherapy cytotoxic activity [158–160]. Moreover, upregulation of
PKC expression in the cytosolic and nuclear compartments was reported in particular MDR
tumor cell lines compared to the parent cells [161–164]. Many phosphorylation reactions
and binding of cofactors are controlling the activity of PKC [143]. PKC isozymes may be ac-
tivated by Ca+2, diacylglycerol (DAG), and phospholipids [165]. Moreover, phorbol ester, a
tumor promoter, is also able to activate PKCs as it mimics the action of DAG [144]. In MDR
cancer cell lines, a study found a correlation between high PKC transduction signaling,
particularly cPKC and nPKC, and the upregulation of P-glycoprotein phosphorylation as
well as induction of intracellular MDR phenotypes [158,166,167]. Plant-derived products
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showed great potential to reverse MDR in cancer cells through different mechanisms as
inhibiting PKCs is one of these pathways [7]. Curcumin, a polyphenolic compound, was
able to suppress the expression of PKC-α and –ζ in breast cancer cell lines (MCF-7 and
MDA-MB-231), resulting in sensitizing tumor cells to the chemotherapeutic drugs [145].
Flavonoids such as quercetin also showed an inhibition effect on PKC transduction in
hepatocellular carcinoma [146]. Due to the PKC isozyme’s complex role in the cellular
functions, inhibition or stimulation of these isoforms might lead to reducing multidrug
resistance in cancer cells [168]. Russo et al. found that quercetin mediated CD95-resistant
cell line apoptosis via activation of PKCα [169]. The effect of phorbol esters and other
diterpenoids on PKCs has been reviewed extensively by Remy and Litaudon (1), demon-
strating phorbols interaction with PKCs based on substitution pattern high potency. This
interaction involves hydrogen bonding and hydrophobic links, which end up with complex
formation with PKCs and reduce their activity [149–151]. On the other hand, tigliane diter-
penoids are essential derivatives of the Euphorbiaceae family [170], particularly prostratin
(a 12-deoxyphorbol ester), which has been reported to be a potent stimulator of PKCs
without pro-tumoral activity [157]. Prostratin has potent antiviral and anticancer activities,
especially against liver, breast, and gastric tumors [158].

3.6. Glutathione Transferase

Glutathione transferases (GSTs) are multifunctional enzymes known as phase II
metabolic enzymes that function as cellular detoxifying agents. They can break down the
glutathione part of non-polar xenobiotics and endogenous molecules converting them
to more water-soluble compounds to ease their removal [159,171,172]. The GST family
consists of different isozymes classes including α, Σ, Z, Ω µ, π, and θ, which are responsible
for catalyzing a wide range of substances [160,173]. Moreover, it was found that a high level
of GSTs are associated with developing MDR in cancer cells [61,174,175]. The antioxidant
activity of GSTs mediates the chemo-resistance in tumor cells via detoxifying the anticancer
drugs and, as a result, reducing cells’ sensitivity to the treatment [173,176]. Several studies
have shown the correlation between GST overexpression and chemo-resistance in various
types of cancer, such as lung cancer [177–179], breast cancer [166,167,180], brain [181,182],
and gastric cancer [183,184]. Thus, many synthesized and natural GST inhibitors have
been investigated to control the multidrug resistance in cancer cells [159]. Curcumin has
known for its antioxidant, anti-inflammatory, and chemopreventive activity [173,185]. It
shows an impact on MDR markers by inhibiting GSTπ in the non-small cell lung carcinoma
cell line (NCI-H460/R) [186]. Moreover, it reduced drug resistance in melanoma cells by
downregulation of GST and MRP1 [187]. Emodin is a type of natural anthraquinone pre-
sented in much herbal medicine [188]. It exhibited a reversal effect on multidrug-resistant
promyelocytic leukemia (HL-60/ADR cells) and human oral squamous carcinoma (KBV200
cells) via many pathways’ one of them was the reduction of GSTπ [189,190]. Majidinia et al.
have also reported the suppression effect of emodin and quercetin on GSTπ to overcome
MDR in cancer cells [191]. Moreover, fisetin, a plant flavonol, was significantly able to
downregulate GST expression in colorectal adenocarcinoma cells (Caco-2), which made
fisetin a promising GST-targeted chemosensitizer for modulating MDR [192]. Yu Ping
Feng San (YPFS) is a popular Chinese herbal combination formula composed of Astragali
Radix, Atractylodis Macrocephalea Rhizoma, and Saposhnikoviae Radix. Du et al. have
tested the activity of (YPFS) on cisplatin-resistant lung cancer (A549/DDP cells). It reduced
MDR-associated proteins and enzymes such as ATP-binding cassette transporters and GSTs
isozymes [178]. Another mixture of Chinese supplement energy and nourish lung (SENL)
herbs consisting of ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rg3, astragaloside IV,
ophiopogonin D, and tetrandrine has been investigated in A549/DDP cells. It reduced the
GSTπ expression and reversed the cisplatin resistance in lung cancer xenografts [193]. Fur-
thermore, ginger phytochemicals (6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol,
and 6-dehydrogingerdione) inhibited GSTπ and MRP1 in docetaxel-resistant prostate can-
cer (PC3R) [194]. Another study suggested that oridonin, a tetracyclic diterpenoid extracted
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from Rabdosia labtea, stimulated the apoptosis-associated markers in gemcitabine-resistant
PANC-1 pancreatic cancer cells. It suppressed the expression of GSTπ and lipoprotein
receptor protein 1 (LRP1) [195]. Natural phenols such as resveratrol have shown modu-
lation of multidrug resistance in tumor cells. Treating doxorubicin-resistant Caco-2 cells
with resveratrol revealed a significant reduction in GST mRNA levels along with various
MDR markers [127]. Moreover, dietary carotenoids particularly fucoxanthin (FUC), a non-
pro-vitamin A carotenoid found in brown seaweeds, have displayed antioxidant potential
and improved many cancer cells’ sensitivity toward chemotherapies [196,197]. Eid et al.
demonstrated the effect of FUC on enhancing doxorubicin activity and mediated apoptosis
via increasing caspases and p53 as well as downregulation of GST, CYP3A4, and PXR in
resistant cancer cells [166].

3.7. Topoisomerases

DNA topoisomerases (topo) are enzymes found in the nucleus of cells. They regu-
late DNA replication, repair, and chromosomal segregation by converting DNA topol-
ogy [198]. There are two kinds of topoisomerases: topo I and II, with different classes
implementing various functions. Topo I catalyzes the breaking of single strands of DNA,
while topo II cutting the double strands of DNA to relieve the supercoiling [199,200].
Cell-cycle arrest and cell death by apoptosis are the results of blocking one type of topoiso-
merase, while blocking the two types can highly improve the cytotoxicity toward cancer
cells [201,202]. Many cancer cells have shown a high level of topo II expression, which
makes it a target for new chemotherapy [203]. Topo II has two main isoforms: topo IIα and
topo IIβ [204,205]. Since topo IIα has an important role in cell growth, it is highly expressed
in fast-growing cancer cells. On the other hand, topo IIβ is present in dormant cells in all
kinds of tissues during the whole cell cycle [205,206]. Many powerful chemotherapy drugs
such as doxorubicin, teniposide, and etoposide are topoisomerase II inhibitors [205]. How-
ever, serious side effects could result from using these drugs due to the lack of selectivity
as well as the risk of drug resistance due to the enzymes’ gene mutation or dysregulation
of their expression in tumor cells [194,207–209]. Thus, looking for new phytochemicals that
targeting topoisomerases enzyme is a promising branch in chemotherapy development.
Many secondary metabolites have an impact on topoisomerase enzymes such as alkaloids,
flavonoids, and triterpenes [201,210–213]. Emodin is an example of a natural product that
reversed the multidrug resistance in promyelocytic leukemia (HL-60/ADR cells). It re-
duced the expression of MDR proteins including topo IIβ and MRP1 along with increasing
the intracellular accumulation of adriamycin (ADR) and daunorubicin (DNR) [189]. This
effect was also reported in resistant human oral squamous carcinoma cells [190]. Moreover,
curcumin was able to downregulate the topo IIα in human non-small cell lung carcinoma
cells (NCI-H460/R cells) [186]. Riccardin D is a macrocyclic bisbibenzyl extracted from
the Chinese liverwort plant. It promoted apoptosis and reduce MDR in leukemia cells via
inhibition of topoisomerase II and decreasing p-gp expression [214].

3.8. Hypoxia-Inducible Factor

Hypoxia usually developed in rapidly growing cancer cells. It is a major problem
in achieving effective cancer chemotherapy [215,216]. Tumor hypoxia has been known to
stimulate the expression of several genes correlated with drug resistance [217]. Hypoxia-
inducible factor-1 is an oxygen-sensitive heterodimeric transcription factor composed of
two subunits: α and β [217–219]. It was reported that chemoresistance is associated with a
high level of HIF-1α expression in many cancer types including ovarian cancer, hepato-
cellular carcinoma, glioblastoma, and colorectal cancer [220–223]. Moreover, HIF-1α can
trigger more than 60 genes involved in tumor growth, metastasis, cellular metabolism, the
reduction of apoptosis, and poor prognosis [224,225]. HIF-1α follows different pathways to
promote tumor drug resistance, and one of them is by regulating MDR-associated proteins
such as p-gp and MRP1 [226,227]. Natural products and their derivatives are an abundant
source of safe and effective resistance reversal agents [228]. Epigallocatechin-3-gallate
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(EGCG) is a polyphenol extracted from green tea and one of the MDR reversal modula-
tors [228,229]. Wen et al. suggested that an EGCG derivative reduced drug resistance in
doxorubicin-resistant human hepatocellular carcinoma cells (BEL-7404/DOX) via down-
regulation of HIF-1α and p-gp [228]. Moreover, apigenin, a type of flavonoid, reversed
paclitaxel resistance in hypoxic-liver tumor cells by inhibiting HIF-1α [230]. Treating drug-
resistant prostate carcinoma cells (DU-145 cell line) with emodin improved the efficacy
of cisplatin and attenuated MDR markers expression and suppressed HIF-1α [207,231].
Interestingly, quercetin was able to inhibit HIF-1α and MDR1 as a result of the enhanced
cytotoxic activity of doxorubicin and gemcitabine in pancreatic and liver cancer cells [232].
On the other hand, resveratrol repressed the hypoxia-induced resistance to doxorubicin
in MCF-7 cells via downregulation of HIF-1α protein expression [208]. Nuciferine is an
aromatic alkaloid extracted from lotus leaves that exhibited anti-inflammatory, antioxi-
dant, and anticancer properties [209,233,234]. Recently, nuciferine has been applied in
drug-resistant tumor cells, and it was able to regulate MDR proteins as well as reduce
the activation of Nrf2 and HIF-1α [235]. Modulation of HIF-1α by curcumin was also
reported [236,237]. Figure 2 displays the main natural products and their targets in cancer
multidrug resistance.
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Table 1. Natural products with their mechanisms of inhibition.

Substance Mechanism of Inhibition References

Dauriporphine ↓ P-g expression [125]

Glaucine
↓ P-g expression
↓MDR1
↓MRP1

[125]

Hernandezine ↓ P-g expression [125]

Antofine ↓ P-g expression
↓MDR1 mRNA [125]

Harmine ↓ BCRP [132,133,138]

Tryptanthrin ↓ P-g expression
↓MRP2 [125]

Lobeline
(from Lobelia inflate) ↓ P-g expression [120,125]

Tetramethylpyrazine
↓ P-g expression
↓MDR1 mRNA

↓MRP1, MRP2, MRP3
[105,138,144,238]

Danshensu and
tetramethylpyrazine (from the

Chinese herbs)
↓ P-g expression [239]

Acrimarine E ↓ P-g expression [125]

Gravacridonetriol ↓MDR1 mRNA [125]

2-Methoxycitpressine I ↓ P-g expression [125]

Capsaicin
(extracted from Capsicum

annuum)
↓ P-g expression [100,125]

Acacetin ↓ BCRP
↓MRP1 [119,125]

Amorphigenin ↓ P-g expression [125]

Apigenin

↓ BCRP
↓MRP1

↓ P-g expression
↓ HIF-1α

[7,138,143,144,240]

Ampelopsin ↓ P-g expression [125]

Biochanin A
↓ BCRP
↓MRP1

↓ P-g expression
[132,133,138,143]

Catechin ↓ ATPase activity
↓ P-g expression [125]

Chalcone ↓MRP1
↓ P-g expression

[125]
[141]

Chrysin ↓ BCRP
↓ P-g expression

[125]
[119,141]

Diosmetin ↓ BCRP [125]

Green tea catechins (EGCG,
ECG, CG)

↓ P-g expression
↓MDR1

↓ ATPase activity

[100,141]

Epicatechin gallate ↓ P-g expression [118,125]
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Table 1. Cont.

Substance Mechanism of Inhibition References

Epigallocatechin gallate

↓ P-g expression
↓MDR1
↓ ABCG2
↓ HIF-1α

[113,114,132,138,143,144,241]

Formononetin ↓ P-g expression [125]

Genistein ↓ BCRP
↓MRP1 [132,133,138,143]

Glabridin ↓ P-g expression [7,114,138]

3,3’,4’,5,6,7,8-
Heptamethoxyflavone ↓ P-g expression [125]

Kaempferol
↓ BCRP
↓MRP1

↓ P-g expression
[7,134,138,143]

Luteolin ↓ BCRP
↓MRP1 [125,141]

Morin ↓ P-g expression
↓MRP1 [132,133,138,143]

Myricetin ↓MRP1 and MRP2 activity
↓ Calcein efflux [7,105,133,138,143]

Naringenin ↓ P-g expression [134,138,143]

Naringenin-7-glucosid ↓ BCRP [125]

Nobiletin (found in citrus
fruit)

↓ P-g expression
↓MRP1 [114,138,143,146]

Phloretin ↓ P-g expression
↓MRP1 [132,133,138,143]

Procyanidine ↓ P-g expression [125]

Quercetin

↓MRP1-mediated drug
transport
↓ BCRP

↓MRP1, 4 and 5.
↓ P-g expression

↓ PKC
↓ HIF-1α
↓MDR1

[7,118–120,124,125,141,146,
169,232,242–247]

Robinetin ↓MRP1 and MRP2 activity
(inhibited calcein efflux) [125]

Rotenone ↓ P-g expression [125]

Silymarin

↓ P-gp ATPase activity
↓ P-gp-mediated cellular

efflux
↓ [3 H]azidopine photoaffinity
labeling of P-gp suggesting a

direct interaction with the
P-gp substrate binding
↓MRP1-mediated drug

transport
↓ BCRP

[7,132,133,138,143]

Tangeretin ↓ P-g expression
↓ BCRP [132,138,143,146]
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Table 1. Cont.

Substance Mechanism of Inhibition References

Curcumin

↓ P-g expression
↓ BCRP
↓MRP1

↓MDR1 mRNA
↓ ABCG2 and ABCC1
↓ PKC-α and –ζ
↓ GSTπ
↓ Topo IIα
↓ HIF-1α

[7,94,100,118–120,124,125,145,
186,236,237,242,246,248–251]

Matairesinol
(found in soybean (Glycine

max))

↓ P-g expression
↓MRP1 [100,125]

Sesamin ↓ P-g expression [100,125]

Gomisin A ↓ P-g expression [125]

Schisandrol A ↓ P-g expression [125]
[119]

Chlorogenic acid ↓ P-gp ATPase activity [125]

Ginkgolic acid ↑ DNR accumulation
↓ P-g expression [125]

Agnuside ↓ P-gp ATPase activity [125]

Picroside-II ↓ P-gp ATPase activity [125]

Santonin ↓ P-gp ATPase activity [125]

beta-Amyrin ↓ P-g expression [125]

Glycyrrhetinic acid
(Enoxolone)

(Licorice)

↓ P-g expression
↓MRP1 [100,125]

Obacunone ↓ P-g expression [125]

Oleanolic acid ↓ P-g expression [125,247]

Uvaol ↓ P-g expression [125,247]

Alisol B 23-acetate ↓ P-g expression [113,133,138]

Ginsenoside Rg3

↓ Binding of [3 H] azidopine
to P-gp

↓ P-g expression
[119,125]

Protopanaxatriol ginsenosides
20S-ginsenoside
Ginsenoside Rb1
Ginsenoside Rg3

↓ P-g expression
↓ BCRP
↓MRP1
↓MDR1
↓ LRP

[113,133,138,144,146]

Tenacigenin B: P8, P26 and
P27

↓ P-g expression
↓MRP1

↓ ABCG2-mediated efflux
[125]

Tenacigenin B: P2, P3 and P6 ↓ P-g expression
↓MRP1 [125]

Tenacigenin B: P1, P4, P5, P9
and P28 ↓ P-g expression [125]

Aurochrome ↓ P-g expression [125]

Diepoxycarotene ↓ P-g expression [125]

Mutatochrome ↓ P-g expression [125]

Clausarin ↓ P-gp-mediated drug efflux [125]
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Table 1. Cont.

Substance Mechanism of Inhibition References

Phyllodulcin
↑ DNR accumulation

(inhibition of P-gp-mediated
efflux of DNR)

[125]

Acteoside (Verbascosine) ↓ P-gp ATPase activity [125]

Berbamine ↓MDR1 gene expression [125,242]

Glaucine
↓ P-g expression
↓MRP1

↓MDR1 and MRP1 genes
[125]

Fangchinoline ↓ P-g expression [125]

O-(4-ethoxyl-butyl)-
berbamine ↓MDR1 gene expression [125]

Tetrandrine
(dried root of Stephania

tetrandra)

↓ P-g expression
↓ LRP [103,113,135,138,144]

Matrine ↓ P-g expression [125]

Antofine ↓MDR1 mRNA
↓ P-g expression [125]

Ephedrine ↓MDR1 mRNA
↓ P-g expression [125,242]

Indole-3-carbinol ↓ P-g expression [125]

Staurosporine ↓ P-g expression
↓MDR1 gene expression [125]

Vauqueline ↓MDR1 mRNA
↓ P-g expression [125]

Gravacridonetriol ↓MDR1 mRNA [125]

Clitocine ↓MDR1 mRNA
↓ P-g expression) [125]

Sulfinosine ↓MDR1 mRNA
↓ P-g expression [125]

Bisdemethoxycurcumin ↓ P-gp expression
↓MDR1 [118,125]

Honokiol and magnolol
(isolated from Magnolia

officinali)

↓MDR1
↓ P-gp expression [7,125]

Schisandrin A
(Deoxyschizandrin)

↓ P-gp expression
↓MDR1
↓ PKC

[104,113,125,133,137,146]

Schisandrin B (Sch B)
↓ P-gp expression and P-gp

mediated efflux of Dox.
↓MRP1

[93]

Triptolide ↓MDR1
↓MRP1 protein expression [125]

Pyranocoumarins ↓ P-gp expression
↓MDR1 mRNA expression [119,125]
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Ginger phytochemicals
(6-Gingerol,10- Gingerol)

↓ P-gp expression
↓MRP1 [100,125]

Ginger phytochemicals
(6-gingerol, 10-gingerol,

4-shogaol, 6-shogaol,
10-shogaol, and

6-dehydrogingerdione)

↓ GSTπ
↓MRP1 [194]

Alisma orientalis ↓ P-gp expression [250]

Piper methysticum ↓ P-gp expression [250]

Guggulsterone ↓ P-gp expression
↓MRPs [113,114,134,252]

Phenolic diterpenes ↓ P-gp expression [250]

Vincristine ↓ P-gp expression [250]

5-Bromotetrandrine ↓ P-gp expression [119]

Abietane diterpene ↓ P-gp expression [119]

Amooranin ↓ P-gp expression [119]

Baicalein and derivatives ↓ P-gp expression
↓MRPs [118–120,124,141,247]

Bitter melon extract ↓ P-gp expression [119]

Bufalin ↓ P-gp expression [119]

Cannabinoids
↓ P-gp expression

↓ BCRP
↓MRPs

[119]

β-Carotene ↓ P-gp expression [101,119]

Fucoxanthin ↓ GST [166]

Catechins ↓ P-gp expression [111,133,143]

Cepharanthine ↓ P-gp expression
↓MRP1 [119]

Coumarins ↓ P-gp expression [119]

Cycloartanes ↓ P-gp expression [119]

Didehydrostemofolines ↓ P-gp expression [119]

Eudesmin ↓ P-gp expression [119]

Euphocharacins A-L ↓ P-gp expression [119]

Ginkgo biloba extract ↓ P-gp expression
↓MRP1 [119]

Grapefruit juice extracts ↓ P-gp expression [119]

Hapalosin ↓ P-gp expression [119]

Hypericin and hyperforin ↓ P-gp expression
↓ BCRP [119,246]

Isoquinoline alkaloid,
isotetrandrine ↓ P-gp expression [119]

Isostemofoline ↓ P-gp expression [119]

Jatrophanes ↓ P-gp expression [119]

Kaempferia parviflora extracts ↓ P-gp expression
↓MRP1 [119]
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Kavalactones ↓ P-gp expression [119]

Ningalin B and derivatives ↓ P-gp expression [119]

Opiates ↓ P-gp expression [119]

Piperine

↓ P-gp expression
↓ BCRP
↓MRPs

↓ ABC transporter genes
(ABCB1, ABCG2, and ABCC1)

[119–122]

Polyoxypregnanes ↓ P-gp expression [119]

Sesquiterpenes ↓ P-gp expression [119,247]

Tenulin ↓ P-gp expression [104]

Sinensetin ↓ P-gp expression [119,247]

Taxane derivatives ↓ P-gp expression [119]

Terpenoids ↓ P-gp expression
↓ BCRP

[119]
[246]

Tetrandine ↓ P-gp expression [119]

Vitamin E TPGS ↓ P-gp expression [119]

3′-4′-7-Trimethoxyflavone ↓ BCRP [119,141]

6-Prenylchrysin ↓ BCRP [119,141]

Eupatin ↓ BCRP [119]

Daizein ↓ BCRP [119]

Hesperetin ↓ BCRP [119,141,244]

Plumbagin ↓ BCRP [119]

Resveratrol

↓ BCRP
↓ P-gp expression
↓ HIF-1α

↓ GST mRNA expression

[114,133,140,253]

Rotenoids ↓ BCRP [119]

Stilbenoids ↓ BCRP [119]

Tectochrysin ↓ BCRP [119,141]

Tetrahydrocurcumin ↓ BCRP [119]

Ligustrazine ↓ Expression of P-gp [7]

Sophocarpidine ↓ Expression of P-gp [7]

Strychnine ↓ Gene and protein expression
of MRP [7]

Three hydroxyl soy isoflavone ↓MRP, MDR1, MRP2 [7]

Ecteinascidin ↓ P-gp expression [7]

Ecteinascidin 743

↓ P-gp expression
↑ Cellular accumulation of

DOX/VCR in
P-gp-overexpressed cervix

cells

[118]

7,3′,4′-trihydroxyisoflavone ↓mRNA expression of MRP,
MDR1, and MRP2 [7]
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Paeonol
(extracted from the dry

velamen of peony or any part
of Cynanchum paniculatum)

↓ P-g expression
↓MDR1
↓MRP
↓ LRP

[7]

Oroxylin A-7-glucuronide ↓MDR1
↓ P-g expression [7]

3′,4′,5′,5,7-
pentamethoxyflavone (PMF)
and derivatives of epimedium

↓MDR1
↓ P-g expression [7]

Osthole
(isolated from Fructus Cnidii) ↓ P-g expression [7]

Praeruptorin A
(extracted from Radix

Peucedani)
↓MDR1 and P-gp mRNA [7,247]

Diphyllin ↓ P-gp expression [7]

Emodin

↓ P-gp expression
↓MRP1
↓ GSTπ
↓ Topo IIβ
↓ HIF-1α

[113,144,215,216,254–256]

Psoralen ↓ P-g expression [7,242]

Gypenoside
↓ BCRP

↓ P-gp expression
↓MRP1

[7]

Allicin ↓MDR1
↓ P-g expression [7]

Taccalonolide A and B
(extracted from Tacca

chantrieri)

↓ P-g expression [7]

Oridonin
↓ P-gp expression

↓ GSTπ
↓ LRP1

[113,144,222]

Ursolic acid
(found in Rosmarinus

officinalis)
↓ P-gp expression [7,100]

Sipholenol A
(found in sponge Callyspongia

siphonella)
↓ P-g expression [113,132,146]

Cantharidin
(extracted from Mylabris

phalerata Pallas or Mylabris
cichorii L.)

↓ P-g expression [7]

Beta-Elemene
(isolated from Aeruginous

Turmeric rhizome)

↓ P-g expression
↓MRP

[7]
[242]

As2O3, or white arsenic
Arsenic Trioxide

↓ P-gp expression
↓MRP [7,242]

Artemisinin ↓ P-gp expression [242]

Artesunate ↓ P-gp expression [242]

Baicalin ↓ P-gp expression
↓MRP1 [242]
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Berberine
(isolated from ancient Chinese
herb Coptis chinensis French)

↓ P-gp expression
↓ABCG2

[242]
[246]

Carnosic acid
(Rosemary) ↓ P-gp expression [114,134,144]

Chelerythrine ↓ P-gp expression [242]

Gambogic acid ↓ P-gp expression [242]

Neferine ↓ P-gp expression [242]

Oxymatrine ↓ P-gp expression [242]

Peimine ↓ LRP [242]

Sodium norcantharidate ↓ P-gp expression
↓MRP [242]

Brucea Javanica ↓ P-gp expression
↓MRP [242]

Cinobufacini ↓ P-gp expression
↓MRP1 [242]

Grape seed polyphenols ↓ P-gp expression [124,242]

Hyaluronate Oligomers ↓ P-gp expression
↓MRP [242]

Jew ear ↓ P-gp expression
↓MRP [242]

Radix notoginseng ↓ P-gp expression [242]

Rhizoma pinelliae ↓ P-gp expression [242]

Realgar ↓ P-gp expression [242]

Thallus laminariae ↓ P-gp expression [242]

Algerian propolis ↓ transport function of
P-gp-pump [257]

Dihydroptychantol A
(isolated from A. angusta)

↓ P-g expression [250]
[258]

Riccardin F
(isolated from P. intermedium)

↓ P-gp expression [258]

Riccardin D ↓ Topo II
↓ P-gp expression [214]

Andrographolid ↓ P-gp expression [94]

Parthenolide ↓ Pgp expression [94]

Rhei Rhizoma, Scutellariae
Radix, Poria, Zizyphi Fructus,
Zingiberis Rhizoma, Asiasari

Radix, Sophorae Radix
(herbal extract)

↓ P-gp expression [94]

Tripterygium wilfordii ↓ P-gp expression
↓ EGFR [94]

Shenghe Powder
(consisting of Radix

codonopsis pilosulae, Radix
pseudostellariae, Radix
scrophulariae, Rhizoma

atractylodis macrocephalae,
and 6 additional herbs)

↓ P-gp expression [94]
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Shen-qi-jian-wei Tang ↓MDR1
↓ LRP [94]

Yu Ping Feng San (YPFS)
(Astragali Radix, Atractylodis
Macrocephalea Rhizoma, and

Saposhnikoviae Radix)

↓ ATP-binding cassette
transporters
↓ GST

[178]

Chinese supplement energy
and nourish lung (SENL)

herbs
(ginsenoside Rg1, ginsenoside

Rb1, ginsenoside Rg3,
astragaloside IV,

ophiopogonin D, and
tetrandrine)

↓ GSTπ [193]

Icaritin ↓ P-gp expression [118,120]

Icariin ↓ P-gp expression [118]

Sesquiterpene ester 1 ↓ P-gp expression [118]

Celafolin A-1 ↓ P-gp expression [118]

Celorbicol ester ↓ P-gp expression [118]

Demethoxycurcumin ↓ P-gp expression [118]

Euphomelliferine ↓ P-gp expression [118]

Euphodendroidin D ↓ P-gp expression [118,247]

Pepluanin A ↓ P-gp expression [118,247]

Sipholenone E ↓ P-gp expression [118,247]

Siphonellinol D ↓ P-gp expression [118]

GUT-70
(From C. Brasiliense) ↓ P-gp expression [118]

Lamellarin I ↓ P-gp expression [118]

Wogonin ↓ P-gp expression
↓MRP1 [118]

Aposterol A ↓ P-gp expression
↓MRP1 [118]

Fumitremorgin C
↓ BCRP

↓ P-gp expression
↓MRP1

[109,132,162]

Tryprostatin A ↓ BCRP [118]

Terrein ↓ BCRP [118]

Lamellarin O ↓ BCRP
↓ P-gp expression [118]

Secalonic acid D
↓ BCRP

↓ P-gp expression
↓MRP1

[118]

Quinine and its isomer
quinidine

↓ P-gp expression [120]

Reserpine and yohimbine
(isolated from Rauwolfia

serpentine)

↓ BCRP
↓ P-gp expression [120]

Bromocriptine
ergot alkaloid

↓ P-gp expression [120]
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β-Sitosterol-O-glucoside ↓ P-gp expression [120]

cardiotonic steroid 3 ↓ P-gp expression [120]

Menthol ↓ P-gp expression [120]

Aromadendrene ↓ P-gp expression [120]

Citronellal ↓ P-gp expression [120]

Citronellol ↓ P-gp expression [120]

Carnosol ↓ P-gp expression [100,120]

Limonin ↓ P-gp expression [120]

Kaempferide ↓ BCRP
↓ P-gp expression [141,244]

Diosmin ↓ P-gp expression [244]

Daidzein ↓ BCRP [141,244]

Tanshinone microemulsion ↓ P-gp expression [124]

Tea polyphenol ↓ P-gp expression [124]

Stemocurtisine ↓ P-gp expression [120]

Stemofoline ↓ P-gp expression [120]

Oxystemokerrine ↓ P-gp expression [120]

Amurensin G (from Vitis
amurensis) ↓ P-gp expression [241]

Sakuranetin ↓ P-gp expression [141]

Floretin ↓ P-gp expression [141]

Fisetin ↓ P-gp expression
↓ GST [141,192]

Xanthohumol
(derived from Humulus

lupulus)

↓mRNA expression of P-gp,
MRP1, MRP2 and MRP3 [141]

Silybin
(isolated from Silybum

marianum)

↓MRP1
↓ P-gp expression [141]

Sophoraisoflavone A ↓MRP1 [141]

LANGDU
(a traditional herbal medicine) ↓ P-g expression [246]

Tanshinone IIA (isolated from
Salvia miltiorrhiza)

↓MRP1
↓ BCRP

↓ P-g expression
[246]

Auraptene (grapefruit) ↓ P-g expression [100]

Nimbolide ↓ P-gp gene [140]

Marsdenia tenacissima
↓ P-g expression
↓ ABCG2
↓MRP1

[97]

Taxifolin ↓ ABCB1
↓ P-gp expression [243]

Heterotheca inuloides Cass.
↓MDR1
↓MRP1
↓ BCRP

[98]

Saikosaponin D ↓MDR1 gene
↓ P-gp expression [259]
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Kanglaite
(isolated from Coix

lacryma-jobi)

↓MDR1
↓MRP2
↓ BCRP

[240]

Astragalus membranaceus
polysaccharides

Astragaloside II, another
component from A.

membranaceus

↓ P-gp expression
↓MDR1 [254]

Wilforine ↓ P-gp expression [112]

Boswellia serrata extracts
3-

O-acetyl-11-keto-β-boswellic
acid (AKBA), the major active

ingredient of the gum resin
from Boswellia serrata and

Boswellia carteri Birdw

↓ P-gp expression [255]

Pervilleine F ↓ P-gp expression [247]

Ellipticine ↓ P-gp expression [247]

Cnidiadin ↓ P-gp expression [247]

Conferone ↓ P-gp expression [247]

Rivulobirin A ↓ P-gp expression [247]

Dicamphanoyl khellactone
(DCK) ↓ P-gp expression [247]

Cannabidiol ↓ P-gp expression [247]

Taccalonolides A ↓ P-gp expression [247]

Jolkinol B ↓ P-gp expression [247]

Portlanquinol ↓ P-gp expression [247]

Dihydro-β-agarofuran ↓ P-gp expression [247]

Pentadeca-(8,13)-dien-11-yn-
2-one ↓ P-gp expression [247]

Silibinin ↓ P-gp expression [247]

Nirtetralin ↓ P-gp expression [247]

Cordycepin ↓ P-gp expression [104]

Nuciferine ↓ HIF-1α [235]

Dauriporphine ↓ P-g expression [138]

Glaucine
↓ P-g expression
↓MDR1
↓MRP1

[138]

Hernandezine ↓ P-g expression [138]

Antofine ↓ P-g expression
↓MDR1 mRNA [138]

Harmine ↓ BCRP [132,133,138]

Tryptanthrin ↓ P-g expression
↓MRP2 [138]

Lobeline
(from Lobelia inflate) ↓ P-g expression [134,138]
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Tetramethylpyrazine
↓ P-g expression
↓MDR1 mRNA

↓MRP1, MRP2, MRP3
[105,138,144,238]

Danshensu and
tetramethylpyrazine (from the

Chinese herbs)
↓ P-g expression [238]

Acrimarine E ↓ P-g expression [138]

Gravacridonetriol ↓MDR1 mRNA [138]

2-Methoxycitpressine I ↓ P-g expression [138]

Capsaicin
(extracted from Capsicum

annuum)
↓ P-g expression [114,138]

Acacetin ↓ BCRP
↓MRP1 [133,138]

Amorphigenin ↓ P-g expression [138]

Apigenin

↓ BCRP
↓MRP1

↓ P-g expression
↓ HIF-1α

[138,143–145,240]

Ampelopsin ↓ P-g expression [138]

Biochanin A
↓ BCRP
↓MRP1

↓ P-g expression
[132,133,138,143]

Catechin ↓ ATPase activity
↓ P-g expression [138]

Chalcone ↓MRP1
↓ P-g expression

[138]
[143]

Chrysin ↓ BCRP
↓ P-g expression

[138]
[133,143]

Diosmetin ↓ BCRP [138]

Green tea catechins (EGCG,
ECG, CG)

↓ P-g expression
↓MDR1

↓ ATPase activity

[114,143]

Epicatechin gallate ↓ P-g expression [132,138]

Epigallocatechin gallate

↓ P-g expression
↓MDR1
↓ ABCG2
↓ HIF-1α

[113,114,132,138,143,144,241]

Formononetin ↓ P-g expression [138]

Genistein ↓ BCRP
↓MRP1 [132,133,138,143]

Glabridin ↓ P-g expression [114,138,145]

3,3′,4′,5,6,7,8-
Heptamethoxyflavone ↓ P-g expression [138]

Kaempferol
↓ BCRP
↓MRP1

↓ P-g expression
[134,138,143,145]

Luteolin ↓ BCRP
↓MRP1 [138,143]



Biomedicines 2021, 9, 1353 26 of 90

Table 1. Cont.

Substance Mechanism of Inhibition References

Morin ↓ P-g expression
↓MRP1 [132,133,138,143]

Myricetin ↓MRP1 and MRP2 activity
↓ Calcein efflux [105,133,138,143,145]

Naringenin ↓ P-g expression [134,138,143]

Naringenin-7-glucosid ↓ BCRP [138]

Nobiletin (found in citrus
fruit)

↓ P-g expression
↓MRP1 [114,138,143,146]

Phloretin ↓ P-g expression
↓MRP1 [132,133,138,143]

Procyanidine ↓ P-g expression [138]

Quercetin

↓MRP1-mediated drug
transport
↓ BCRP

↓MRP1, 4 and 5.
↓ P-g expression

↓ PKC
↓ HIF-1α
↓MDR1

[103,111,113,132–134,138,143–
146,181,182,260–262]

Robinetin ↓MRP1 and MRP2 activity
(inhibited calcein efflux) [138]

Rotenone ↓ P-g expression [138]

Silymarin

↓ P-gp ATPase activity
↓ P-gp-mediated cellular

efflux
↓ [3 H]azidopine photoaffinity
labeling of P-gp suggesting a

direct interaction with the
P-gp substrate binding
↓MRP1-mediated drug

transport
↓ BCRP

[132,133,138,143,145]

Tangeretin ↓ P-g expression
↓ BCRP [132,138,143,146]

Curcumin

↓ P-g expression
↓ BCRP
↓MRP1

↓MDR1 mRNA
↓ ABCG2 and ABCC1
↓ PKC-α and –ζ
↓ GSTπ
↓ Topo IIα
↓ HIF-1α

[103,105,113,114,132–
134,138,144,180,212,252,262–

267]

Matairesinol
(found in soybean (Glycine

max))

↓ P-g expression
↓MRP1 [114,138]

Sesamin ↓ P-g expression [114,138]

Gomisin A ↓ P-g expression [138]

Schisandrol A ↓ P-g expression [138]
[133]

Chlorogenic acid ↓ P-gp ATPase activity [138]
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Ginkgolic acid ↑ DNR accumulation
↓ P-g expression [138]

Agnuside ↓ P-gp ATPase activity [138]

Picroside-II ↓ P-gp ATPase activity [138]

Santonin ↓ P-gp ATPase activity [138]

beta-Amyrin ↓ P-g expression [138]

Glycyrrhetinic acid
(Enoxolone)

(Licorice)

↓ P-g expression
↓MRP1 [114,138]

Obacunone ↓ P-g expression [138]

Oleanolic acid ↓ P-g expression [138,146]

Uvaol ↓ P-g expression [138,146]

Alisol B 23-acetate ↓ P-g expression [113,133,138]

Ginsenoside Rg3

↓ Binding of [3 H] azidopine
to P-gp

↓ P-g expression
[133,138]

Protopanaxatriol ginsenosides
20S-ginsenoside
Ginsenoside Rb1
Ginsenoside Rg3

↓ P-g expression
↓ BCRP
↓MRP1
↓MDR1
↓ LRP

[113,133,138,144,146]

Tenacigenin B: P8, P26 and
P27

↓ P-g expression
↓MRP1

↓ ABCG2-mediated efflux
[138]

Tenacigenin B: P2, P3 and P6 ↓ P-g expression
↓MRP1 [138]

Tenacigenin B: P1, P4, P5, P9
and P28 ↓ P-g expression [138]

Aurochrome ↓ P-g expression [138]

Diepoxycarotene ↓ P-g expression [138]

Mutatochrome ↓ P-g expression [138]

Clausarin ↓ P-gp-mediated drug efflux [138]

Phyllodulcin
↑ DNR accumulation

(inhibition of P-gp-mediated
efflux of DNR)

[138]

Acteoside (Verbascosine) ↓ P-gp ATPase activity [138]

Berbamine ↓MDR1 gene expression [138,144]

Glaucine
↓ P-g expression
↓MRP1

↓MDR1 and MRP1 genes
[138]

Fangchinoline ↓ P-g expression [138]

O-(4-ethoxyl-butyl)-
berbamine ↓MDR1 gene expression [138]

Tetrandrine
(dried root of Stephania

tetrandra)

↓ P-g expression
↓ LRP [103,113,135,138,144]

Matrine ↓ P-g expression [138]
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Antofine ↓MDR1 mRNA
↓ P-g expression [138]

Ephedrine ↓MDR1 mRNA
↓ P-g expression [138,144]

Indole-3-carbinol ↓ P-g expression [138]

Staurosporine ↓ P-g expression
↓MDR1 gene expression [138]

Vauqueline ↓MDR1 mRNA
↓ P-g expression [138]

Gravacridonetriol ↓MDR1 mRNA [138]

Clitocine ↓MDR1 mRNA
↓ P-g expression) [138]

Sulfinosine ↓MDR1 mRNA
↓ P-g expression [138]

Bisdemethoxycurcumin ↓ P-gp expression
↓MDR1 [132,138]

Honokiol and magnolol
(isolated from Magnolia

officinali)

↓MDR1
↓ P-gp expression [113,138]

Schisandrin A
(Deoxyschizandrin)

↓ P-gp expression
↓MDR1
↓ PKC

[104,105,113,133,137,138,146]

Schisandrin B (Sch B)
↓ P-gp expression and P-gp

mediated efflux of Dox.
↓MRP1

[104]

Triptolide ↓MDR1
↓MRP1 protein expression [138]

Pyranocoumarins ↓ P-gp expression
↓MDR1 mRNA expression [133,138]

Ginger phytochemicals
(6-Gingerol,10- Gingerol)

↓ P-gp expression
↓MRP1 [114,138]

Ginger phytochemicals
(6-gingerol, 10-gingerol,

4-shogaol, 6-shogaol,
10-shogaol, and

6-dehydrogingerdione)

↓ GSTπ
↓MRP1 [221]

Alisma orientalis ↓ P-gp expression [252]

Piper methysticum ↓ P-gp expression [252]

Guggulsterone ↓ P-gp expression
↓MRPs [113,114,134,252]

Phenolic diterpenes ↓ P-gp expression [252]

Vincristine ↓ P-gp expression [252]

5-Bromotetrandrine ↓ P-gp expression [133]

Abietane diterpene ↓ P-gp expression [133]

Amooranin ↓ P-gp expression [133]

Baicalein and derivatives ↓ P-gp expression
↓MRPs [103,132–134,143,146]

Bitter melon extract ↓ P-gp expression [133]
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Bufalin ↓ P-gp expression [133]

Cannabinoids
↓ P-gp expression

↓ BCRP
↓MRPs

[133]

β-Carotene ↓ P-gp expression [116,133]

Fucoxanthin ↓ GST [201]

Catechins ↓ P-gp expression [111,133,143]

Cepharanthine ↓ P-gp expression
↓MRP1 [133]

Coumarins ↓ P-gp expression [133]

Cycloartanes ↓ P-gp expression [133]

Didehydrostemofolines ↓ P-gp expression [133]

Eudesmin ↓ P-gp expression [133]

Euphocharacins A-L ↓ P-gp expression [133]

Ginkgo biloba extract ↓ P-gp expression
↓MRP1 [133]

Grapefruit juice extracts ↓ P-gp expression [133]

Hapalosin ↓ P-gp expression [133]

Hypericin and hyperforin ↓ P-gp expression
↓ BCRP [133,262]

Isoquinoline alkaloid,
isotetrandrine ↓ P-gp expression [133]

Isostemofoline ↓ P-gp expression [133]

Jatrophanes ↓ P-gp expression [133]

Kaempferia parviflora extracts ↓ P-gp expression
↓MRP1 [133]

Kavalactones ↓ P-gp expression [133]

Ningalin B and derivatives ↓ P-gp expression [133]

Opiates ↓ P-gp expression [133]

Piperine

↓ P-gp expression
↓ BCRP
↓MRPs

↓ ABC transporter genes
(ABCB1, ABCG2, and ABCC1)

[133–136]

Polyoxypregnanes ↓ P-gp expression [133]

Sesquiterpenes ↓ P-gp expression [133,146]

Tenulin ↓ P-gp expression [107]

Sinensetin ↓ P-gp expression [133,146]

Taxane derivatives ↓ P-gp expression [133]

Terpenoids ↓ P-gp expression
↓ BCRP

[133]
[262]

Tetrandine ↓ P-gp expression [133]

Vitamin E TPGS ↓ P-gp expression [133]

3′-4′-7-Trimethoxyflavone ↓ BCRP [133,143]

6-Prenylchrysin ↓ BCRP [133,143]
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Substance Mechanism of Inhibition References

Eupatin ↓ BCRP [133]

Daizein ↓ BCRP [133]

Hesperetin ↓ BCRP [133,143,145]

Plumbagin ↓ BCRP [133]

Resveratrol

↓ BCRP
↓ P-gp expression
↓ HIF-1α

↓ GST mRNA expression

[114,133,140,253]

Rotenoids ↓ BCRP [133]

Stilbenoids ↓ BCRP [133]

Tectochrysin ↓ BCRP [133,143]

Tetrahydrocurcumin ↓ BCRP [133]

Ligustrazine ↓ Expression of P-gp [113]

Sophocarpidine ↓ Expression of P-gp [113]

Strychnine ↓ Gene and protein expression
of MRP [113]

Three hydroxyl soy isoflavone ↓MRP, MDR1, MRP2 [113]

Ecteinascidin ↓ P-gp expression [113]

Ecteinascidin 743

↓ P-gp expression
↑ Cellular accumulation of

DOX/VCR in
P-gp-overexpressed cervix

cells

[132]

7,3′,4′-trihydroxyisoflavone ↓mRNA expression of MRP,
MDR1, and MRP2 [113]

Paeonol
(extracted from the dry

velamen of peony or any part
of Cynanchum paniculatum)

↓ P-g expression
↓MDR1
↓MRP
↓ LRP

[113]

Oroxylin A-7-glucuronide ↓MDR1
↓ P-g expression [113]

3′,4′,5′,5,7-
pentamethoxyflavone (PMF)
and derivatives of epimedium

↓MDR1
↓ P-g expression [113]

Osthole
(isolated from Fructus Cnidii) ↓ P-g expression [113]

Praeruptorin A
(extracted from Radix

Peucedani)
↓MDR1 and P-gp mRNA [113,146]

Diphyllin ↓ P-gp expression [113]

Emodin

↓ P-gp expression
↓MRP1
↓ GSTπ
↓ Topo IIβ
↓ HIF-1α

[113,144,215,216,254–256]

Psoralen ↓ P-g expression [113,144]

Gypenoside
↓ BCRP

↓ P-gp expression
↓MRP1

[113]
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Substance Mechanism of Inhibition References

Allicin ↓MDR1
↓ P-g expression [113]

Taccalonolide A and B
(extracted from Tacca

chantrieri)

↓ P-g expression [113]

Oridonin
↓ P-gp expression

↓ GSTπ
↓ LRP1

[113,144,222]

Ursolic acid
(found in Rosmarinus

officinalis)
↓ P-gp expression [113,114]

Sipholenol A
(found in sponge Callyspongia

siphonella)
↓ P-g expression [113,132,146]

Cantharidin
(extracted from Mylabris

phalerata Pallas or Mylabris
cichorii L.)

↓ P-g expression [113]

Beta-Elemene
(isolated from Aeruginous

Turmeric rhizome)

↓ P-g expression
↓MRP

[113]
[144]

As2O3, or white arsenic
Arsenic Trioxide

↓ P-gp expression
↓MRP [113,144]

Artemisinin ↓ P-gp expression [144]

Artesunate ↓ P-gp expression [144]

Baicalin ↓ P-gp expression
↓MRP1 [144]

Berberine
(isolated from ancient Chinese
herb Coptis chinensis French)

↓ P-gp expression
↓ABCG2

[144]
[262]

Carnosic acid
(Rosemary) ↓ P-gp expression [114,134,144]

Chelerythrine ↓ P-gp expression [144]

Gambogic acid ↓ P-gp expression [144]

Neferine ↓ P-gp expression [144]

Oxymatrine ↓ P-gp expression [144]

Peimine ↓ LRP [144]

Sodium norcantharidate ↓ P-gp expression
↓MRP [144]

Brucea Javanica ↓ P-gp expression
↓MRP [144]

Cinobufacini ↓ P-gp expression
↓MRP1 [144]

Grape seed polyphenols ↓ P-gp expression [103,144]

Hyaluronate Oligomers ↓ P-gp expression
↓MRP [144]

Jew ear ↓ P-gp expression
↓MRP [144]

Radix notoginseng ↓ P-gp expression [144]
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Substance Mechanism of Inhibition References

Rhizoma pinelliae ↓ P-gp expression [144]

Realgar ↓ P-gp expression [144]

Thallus laminariae ↓ P-gp expression [144]

Algerian propolis ↓ transport function of
P-gp-pump [268]

Dihydroptychantol A
(isolated from A. angusta)

↓ P-g expression [252]
[269]

Riccardin F
(isolated from P. intermedium)

↓ P-gp expression [269]

Riccardin D ↓ Topo II
↓ P-gp expression [237]

Andrographolid ↓ P-gp expression [105]

Parthenolide ↓ Pgp expression [105]

Rhei Rhizoma, Scutellariae
Radix, Poria, Zizyphi Fructus,
Zingiberis Rhizoma, Asiasari

Radix, Sophorae Radix
(herbal extract)

↓ P-gp expression [105]

Tripterygium wilfordii ↓ P-gp expression
↓ EGFR [105]

Shenghe Powder
(consisting of Radix

codonopsis pilosulae, Radix
pseudostellariae, Radix
scrophulariae, Rhizoma

atractylodis macrocephalae,
and 6 additional herbs)

↓ P-gp expression [105]

Shen-qi-jian-wei Tang ↓MDR1
↓ LRP [105]

Yu Ping Feng San (YPFS)
(Astragali Radix, Atractylodis
Macrocephalea Rhizoma, and

Saposhnikoviae Radix)

↓ ATP-binding cassette
transporters
↓ GST

[219]

Chinese supplement energy
and nourish lung (SENL)

herbs
(ginsenoside Rg1, ginsenoside

Rb1, ginsenoside Rg3,
astragaloside IV,

ophiopogonin D, and
tetrandrine)

↓ GSTπ [220]

Icaritin ↓ P-gp expression [132,134]

Icariin ↓ P-gp expression [132]

Sesquiterpene ester 1 ↓ P-gp expression [132]

Celafolin A-1 ↓ P-gp expression [132]

Celorbicol ester ↓ P-gp expression [132]

Demethoxycurcumin ↓ P-gp expression [132]

Euphomelliferine ↓ P-gp expression [132]

Euphodendroidin D ↓ P-gp expression [132,146]

Pepluanin A ↓ P-gp expression [132,146]
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Sipholenone E ↓ P-gp expression [132,146]

Siphonellinol D ↓ P-gp expression [132]

GUT-70
(From C. Brasiliense) ↓ P-gp expression [132]

Lamellarin I ↓ P-gp expression [132]

Wogonin ↓ P-gp expression
↓MRP1 [132]

Aposterol A ↓ P-gp expression
↓MRP1 [132]

Fumitremorgin C
↓ BCRP

↓ P-gp expression
↓MRP1

[109,132,162]

Tryprostatin A ↓ BCRP [132]

Terrein ↓ BCRP [132]

Lamellarin O ↓ BCRP
↓ P-gp expression [132]

Secalonic acid D
↓ BCRP

↓ P-gp expression
↓MRP1

[132]

Quinine and its isomer
quinidine

↓ P-gp expression [134]

Reserpine and yohimbine
(isolated from Rauwolfia

serpentine)

↓ BCRP
↓ P-gp expression [134]

Bromocriptine
ergot alkaloid

↓ P-gp expression [134]

β-Sitosterol-O-glucoside ↓ P-gp expression [134]

cardiotonic steroid 3 ↓ P-gp expression [134]

Menthol ↓ P-gp expression [134]

Aromadendrene ↓ P-gp expression [134]

Citronellal ↓ P-gp expression [134]

Citronellol ↓ P-gp expression [134]

Carnosol ↓ P-gp expression [114,134]

Limonin ↓ P-gp expression [134]

Kaempferide ↓ BCRP
↓ P-gp expression [143,145]

Diosmin ↓ P-gp expression [145]

Daidzein ↓ BCRP [143,145]

Tanshinone microemulsion ↓ P-gp expression [103]

Tea polyphenol ↓ P-gp expression [103]

Stemocurtisine ↓ P-gp expression [134]

Stemofoline ↓ P-gp expression [134]

Oxystemokerrine ↓ P-gp expression [134]

Amurensin G (from Vitis
amurensis) ↓ P-gp expression [270]

Sakuranetin ↓ P-gp expression [143]
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Floretin ↓ P-gp expression [143]

Fisetin ↓ P-gp expression
↓ GST [143,218]

Xanthohumol
(derived from Humulus

lupulus)

↓mRNA expression of P-gp,
MRP1, MRP2 and MRP3 [143]

Silybin
(isolated from Silybum

marianum)

↓MRP1
↓ P-gp expression [143]

Sophoraisoflavone A ↓MRP1 [143]

LANGDU
(a traditional herbal medicine) ↓ P-g expression [262]

Tanshinone IIA (isolated from
Salvia miltiorrhiza)

↓MRP1
↓ BCRP

↓ P-g expression
[262]

Auraptene (grapefruit) ↓ P-g expression [114]

Nimbolide ↓ P-gp gene [164]

Marsdenia tenacissima
↓ P-g expression
↓ ABCG2
↓MRP1

[106]

Taxifolin ↓ ABCB1
↓ P-gp expression [111]

Heterotheca inuloides Cass.
↓MDR1
↓MRP1
↓ BCRP

[112]

Saikosaponin D ↓MDR1 gene
↓ P-gp expression [271]

Kanglaite
(isolated from Coix

lacryma-jobi)

↓MDR1
↓MRP2
↓ BCRP

[272]

Astragalus membranaceus
polysaccharides

Astragaloside II, another
component from A.

membranaceus

↓ P-gp expression
↓MDR1 [273]

Wilforine ↓ P-gp expression [110]

Boswellia serrata extracts
3-

O-acetyl-11-keto-β-boswellic
acid (AKBA), the major active

ingredient of the gum resin
from Boswellia serrata and

Boswellia carteri Birdw

↓ P-gp expression [274]

Pervilleine F ↓ P-gp expression [146]

Ellipticine ↓ P-gp expression [146]

Cnidiadin ↓ P-gp expression [146]

Conferone ↓ P-gp expression [146]

Rivulobirin A ↓ P-gp expression [146]

Dicamphanoyl khellactone
(DCK) ↓ P-gp expression [146]
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Cannabidiol ↓ P-gp expression [146]

Taccalonolides A ↓ P-gp expression [146]

Jolkinol B ↓ P-gp expression [146]

Portlanquinol ↓ P-gp expression [146]

Dihydro-β-agarofuran ↓ P-gp expression [146]

Pentadeca-(8,13)-dien-11-yn-
2-one ↓ P-gp expression [146]

Silibinin ↓ P-gp expression [146]

Nirtetralin ↓ P-gp expression [146]

Cordycepin ↓ P-gp expression [107]

Nuciferine ↓ HIF-1α [275]

4. Synthetic Compounds in Reversing Chemo-Resistance

Natural products are the main source of developing new drugs, and highly active phy-
tochemicals are suitable for further modifications to formulate more effective analogs and
prodrugs [260]. As mentioned, curcumin is one of the herbal remedies that has been proved
to have a broad spectrum of therapeutically significant properties [253]. Interestingly,
four pyrimidine-substituted curcumin analogs were tested as promising P-gp inhibitors.
One of these synthetic compounds exhibited high potency and low toxicity in reversing
the P-glycoprotein- mediated MDR in paclitaxel-resistant human breast cancer cells [276].
As a solution for the poor water solubility of curcumin, novel pyrazolo derivatives have
been designed. They remarkably increased the sensitization of multidrug-resistant cells to
doxorubicin and revealed a chance of developing potent P-gp antagonists [251]. Moreover,
shikonin derivatives (acetyleshikonin and acetoxisovaleryshikonin) have been reported to
trigger uptake and reduce efflux of anticancer agents in malignant carcinoma cells [277].
Additionally, novel isomers of methylated epigallocatechin and catechin have shown
specific inhibition for P-gp and reversed the MDR in cancer cells [278]. Parthenolide
and 5-fluorouracil conjugates have been synthesized and tested on drug-resistant hepa-
tocellular carcinoma cells. The most active compound exhibited a high ability to inhibit
MDR1, ABCC1, and ABCG2; as a result, it increased drug accumulation and induced
apoptosis [275].

5. Targeting Non-Apoptotic Cell Death Using Natural Products
5.1. Targeting Necroptosis

The dynamic balance among cell proliferation, differentiation and death is of great
significance in maintaining tissue homeostasis [263,264]. For a long time, apoptosis has
been considered to be the single pathway in programmed cell death (PCD) [238,261]. In
contrast, necrosis refers to the process that cells swell, rupture, and then release cellular
contents and proinflammatory molecules in response to the overwhelming stress [262,265].
Necrosis is regarded as an uncontrollable process, and therefore it is highly challenging to
identify small molecules that can interfere with this process [262,265]. In the late 1980s, cells
under the treatment of tumor necrosis factor (TNF) were found to be characterized with
either apoptotic or necrotic features in a cell type-dependent manner [266]. In 2004, Thomp-
son et al. [252] discovered that alkylating agent N-methyl-N0-nitro-N-nitrosoguanidine
initiated cell necrosis depending on the expression of poly ADP-ribose polymerase (PARP),
suggesting that necrosis could be regulated by small molecules. After one year, the concept
“necroptosis”, a combination of “necrosis” and “apoptosis”, was proposed [267]. Since
apoptosis-resistant cases were reported in clinical cancer therapy [256], it was important
and urgent to search for a new pathway to induce the death of cancer cells, while necrop-
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tosis is a promising alternative [268,269]. Therefore, intensive efforts and attention have
been paid to investigate the mechanism of necroptosis and clarify its relationship to can-
cer therapy [270–272]. Recent studies indicated that necroptosis could be initiated by
activation of specific receptors on cell membrane and regulated by cytokines and small
molecules [273,274,279–282]. While the relationship between necroptosis and cancer has
not been clarified explicitly, both efforts are being focused on the factors relevant to the
induction and inhibition of necroptosis [283–285]. Thus, a better understanding of the
mechanism of necroptosis and its modulators is important to develop novel strategies for
cancer therapy.

Cell exposure to stress elicits the inherent response of cell death, which involves cell
removal from the microenvironment. Necroptosis is among the several different molecular
pathways and mechanisms that usually control cell death.

Recently, a necrotic process has been discovered, which is characterized by changes in
the plasma membrane leading to inflammatory cell function, and it has recently been dis-
covered that it is controlled by genes. Cytokines, pathogens, ischemia, heat, and radiation
trigger various pathways (such as death receptors, kinase cascades, and mitochondria) that
can induce necroptosis [286–288].

Over the last 20 years, it was found that nonapoptotic cell death can occur in a
regulated fashion [289]. Chemical biology approaches were central to establishing this
new paradigm, as exemplified by the study of necroptosis [290]. Necroptosis is classi-
fied as a programmed cell death in the absence of morphological traits of apoptosis or
autophagy [286–288,291–294]. Emerging evidence shows that necroptosis can be disturbed
in many human cancers [295–310].

Necroptosis describes regulated cell death, typically caused as a result of inflam-
matory pathway activation. It is a programmed means of cellular demise; the etiology
is a physical insult that stimulates a signalling pathway autonomous of caspase [311].
Tumor necrosis factor a, receptor interacting protein kinase 3, and caspase-8 have been
the subjects of considerable research in order to identify the mechanisms underlying
necroptosis at a molecular level. The process may be instigated by the TNF super-
class, Toll-like and interferon receptors, respectively. Necroptosis involving the former is
well-delineated [287,295,312–315].

Previous studies confirmed that necroptosis was an invitation to inflammation [316].
Damage-associated molecule patterns (DAMP) are capable of recruiting primary immune
cells to the necroptotic cells, followed by phagocytosis and termination of cell death
signaling [317]. Furthermore, inflammation is inclined to tumorgenesis [318] and promotes
cancer progression, metastasis, and increasing drug resistance [319].

Necrotic cells are eliminated from the immune system through pinocytosis or cell
drinking, which is mediated by macrophages, a subcellular component of macrophages [320].
The propagation process of necroptosis is irreversible; therefore, more attention should be
paid to the discovery of inhibitors to block the occurrence and execution of necrosis.

Metastasis is the primary cause of morbidity and mortality in cancer patients [321].
It was reported that shikonin dramatically reduced the metastasis of osteosarcoma C6
and U87 glioma cells due to its induction of necroptosis [310,322]. Moreover, ROS play a
significant role in the migration and invasion of cells through regulation of cytoskeleton
dynamics and adhesion molecules [310,323]. The generation of ROS promotes the execution
of necroptosis. In other studies, RIPK3 was supposed to modulate the ROS levels in the
case of necroptosis [323]. Thus, necroptosis has a close relationship with the metastasis of
cancer cells.

Necroptosis serves as a back-up for apoptosis. Before the concept of necroptosis was
suggested, a prevailing trend in cancer chemotherapy was to discover molecules that can
induce apoptosis [324]. However, apoptosis inducers cannot work in some circumstances,
such as drug resistance due to the activation of alternative compensatory pathways, upreg-
ulation of drug transporters, and multidrug resistance [324]. For example, proapoptotic
agents can induce necroptosis in cancer cells when apoptosis is blocked [325]. When a
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diphtheria-based fusion toxin applied with demethylating agents, it can synergistically
trigger cancer cell death and overcome apoptosis resistance by inducing necroptosis [324].
Therefore, necroptosis can serve as an alternative method in cancer therapy in place of
various pathways of apoptosis.

Necroptosis may contribute to cancer progression. Necroptotic cells are characterized
by cell membrane leakage and the release of molecular patterns related to intracellular dam-
age, which result in inflammatory responses and related side effects [317]. Subsequently,
they may promote tumor progression, promote tumor cell proliferation and survival, as
well as tumor angiogenesis, invasion, and metastasis, and adversely affect tissues, which
is not conducive to treatment [326]. Conversely, damaged and aging tissues may also
promote the metastasis of cancer cells [326].

Necroptosis is not universally sensitive in tumor cell lines. Due to different environ-
ments (such as the availability of oxygen or nutrients), different cancer cell lines have
different sensitivities to necroptosis [327]. Therefore, chemotherapy based on necroptosis
is only effective for a limited number of tumor cell lines [327,328].

In summary, necroptosis of cancer cells could be initiated by various stimuli and
through different pathways. Necroptosis is associated with tumor metastasis, which
is the major cause of morbidity and mortality in cancer patients in clinic. Therefore,
induction of necroptosis is an effective strategy in clinical cancer therapy. Necroptotic
cells could potentially induce intrinsic and adaptive immune response and thus mediate
efficient antitumor immunity. In addition, necroptosis can serve as a back-up for apoptosis-
resistant circumstances, which is capable of overcoming the obstacle of drug resistance
that is common but intricate in clinical cancer therapy. For those apoptosis-resistant cases,
necroptosis inducers could sensitize tumor cells to death, which provides another way
to overcome drug resistance when common therapy fails. Thus, drug development of
necroptosis inducers deserves more attention. However, the release of cytokines also
induces inflammation which would be harmful to the tissue and in turn tissue damage
could facilitate the metastasis of tumor cells. However, necroptosis is accompanied by the
release of cytokines and induces inflammation, which is harmful to the tissue and in turn
tissue damage can facilitate the metastasis of tumor cells. Additionally, it should be noted
that necroptosis is not widely sensitive in cancer cells in that apoptosis is the main cause of
cancer death. Therefore, necroptosis inducers are mostly favorable in apoptosis-resistant
cases in clinical cancer therapy. Currently, several antitumor agents have been verified to
act as necroptosis inducers, while more medicinal chemistry efforts are required to discover
new inducers with drug-like properties.

Thus far, a series of necroptosis inducers have been identified, paving the way for
studying new patterns of cancer death and providing new treatment tools. However, most
studies are conducted in vitro, and the in vivo efficacy of necroptosis inducers and their
tumor-killing selectivity still need to be further explored. In addition, there is still a lack of
necroptotic markers in the body. Therefore, there is a great need to discover new necroptotic
markers and study their effects on cancer cell selectivity. With a better understanding of
the mechanism of cancer cell necroptosis, targeting necroptosis will become an effective
strategy for cancer treatment.

As a genetically regulated mode of cellular demise, necroptosis is an essential mecha-
nism contributing to human pathologies. A vital method of eradicating cells, the process
is linked with malignancy advancement and dissemination, and immunosurveillance.
Targeting the processes underlying necroptosis with small molecular modulators appears
to be an encouraging strategy in oncology therapeutics; benefits include the circumvention
of apoptosis resistance and ongoing anticancer immunity integrity. Thus, in order to design
de novo approaches for tumor treatment, an improved comprehension of necroptosis and
its governing molecules is required.

While numerous reviews focused on the apoptotic pathways, extrinsic and intrinsic
alike, few articles concentrated on necroptosis induced by natural compounds in tumor
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cells [329–334]. Table 2 shows a list of natural compounds with an effect on non-apoptosis
cell death in tumor cells.

Natural compounds originating from plants, microorganisms, and marine life forms
were widely shown to display anti-carcinogenic, anti-proliferative, and anti-survival effects
inducing tumor cell death via various pathways, including necroptosis, leading to cell
death [329–343].

An alkaloid extracted from traditional Chinese herb Sophora flavescens, called matrine,
was reported to induce necroptosis in cholangiocarcinoma cells, which was different
from its classic apoptosis-inducing effects in other cancer cell lines [344]. Mz-ChA-1
and QBC939 cells (cholangiocarcinoma cells) treated with matrine were characterized
by extensive organelles, plasma membrane rupture, and integral nuclei which coincided
with the morphology of necroptotic cells [344]. Additionally, cells that died due to the
treatment of matrine could not be rescued by the addition of pan-caspase inhibitor 17,
but they could be rescued by necroptosis inhibitor 2 [344]. Further studies confirmed that
matrine induces necroptosis through the formation of RIPK1/RIPK3/MLKL complex [344].
Osmotic pressure and release of ROS also facilitated the necroptotic process [344]. More
interestingly, matrine was able to upregulate the expression of RIPK3 in Mz-ChA-1 cells,
making it possible to treat cholangiocarcinoma with a low expression of RIPK3 [344].
This work potentially provided a new strategy to deal with the apoptosis resistance in
cholangiocarcinoma therapy [344].

Neoalbaconol, extracted from Albatrellus confluens, was reported to trigger several
kinds of cell death [345]. NA downregulates the E3 ubiquitin ligase, resulting in a decrease
in RIPK1 ubiquitination. Therefore, an increase in the expression level of RIPK1 was
observed, which also activated the transcription of TNF-a [345]. In addition, NA causes
RIPK3-mediated ROS generation, which contributes to cell death [345]. Therefore, it can
be concluded that NA can induce necroptosis by activating TNF-α and RIPK3-dependent
ROS production [345].

Shikonin, extracted from the traditional Chinese herb “Zicao”, was originally used to
treat wound healing because of its anti-inflammatory and antimicrobial properties [346].
It was reported to kill tumor cells by inducing apoptosis [346]. Huang et al. [322] found
that losses in plasma membrane integrity and intact nuclear membranes in glioma cells
were observed in cells treated with shikonin directly by electronic transmission microscopy.
Shikonin-induced C6 and u87 glioma cells can be rescued by necroptosis inhibitor 2, but
are unaffected by treatment with the caspase inhibitor 17. Additionally, an increased
expression of RIPK1 was observed after treatment with shikonin [322]. All these facts
indicate that shikonin induces necroptosis through RIPK1 activation.

Emodin, an anthraquinone derivative extracted from traditional Chinese medicine
Rheum palmatum, has been used to treat various diseases due to its antitumor, anti-
inflammation, anti-metastasis, and immunosuppressive effects, but its mechanism of action
remains unclear [347]. Zhou et al. [348] found that cells treated with emodin showed
increased levels of RIPK1, RIPK3, and TNF- a. In addition, the combined use of emodin
and necroptosis inhibitor 2 or 15 reduced the release of lactate dehydrogenase (LDH) [348].
Hematoxylin-eosin (H&E) staining of tumor tissue isolated from mice treated with emodin
showed an obvious necrotic effect [348]. Further studies indicated that TNF-a, RIPK1,
RIPK3, and MLKL in tumor tissues were upregulated when treated with emodin, indicating
that it could inhibit glioma growth in vivo through necroptosis [348].

Ungeremine is an alkaloid extracted from Ungernia minor, which shows effective
cytotoxicity in drug-resistant cancer cell lines and upregulates RIPK3 levels [349]. Co-
treatment with Necroptosis Inhibitor 2 reduced the cytotoxicity of ungeremine, and flow
cytometry analysis showed that 13.1% of the cells were necrotic [349].

Several natural compounds were shown to induce necroptosis in human tumor cells.
For example, shikonin, a naphthoquinone derived from Lithospermum erythrorhizon
Siebold & Zucc. (Zicao), was found to be the first natural product capable to induce both
apoptosis and necroptosis in human several cancer cell lines [310,322,350–361]. Shikonin-
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treated cells showed morphological alterations distinct from those occurring in apoptosis
or autophagic cell death [310,322,350–361]. The loss of plasma membrane integrity was one
of the morphologic characteristics of necrotic cell death [310,322,350–361]. Shikonin exerts
a dramatic anticancer effect on both primary and metastatic osteosarcoma by inducing
RIPK-1 and 3- dependent necroptosis [310,351]. The size of primary osteosarcoma tumors
and lung metastases was significantly reduced by shikonin treatment accompanied the
elevated levels for RIPK-1 and RIPK-3 proteins [310,351]. Shikonin was observed to induce
necroptotic cell death in tumor cells involving drug- and apoptosis-resistant cancer cells
that overexpress multidrug resistance protein-1, P-glycoprotein, and other proteins [310].

Shikonin exerts effective cytotoxicity on human multiple myeloma borate-resistant
KMS11/BTZ cells [353]. Shikonin can circumvent the drug resistance displayed by
tumor cells and mediated by P-glycoprotein, BCL-2, and BCL-xL by inducing necropto-
sis [355–359]. Naturally occurring shikonin analogues (deoxyshikonin, acetylshikonin,
isobutyrylshikonin, β, β-dimethylacryloylshikonin, isovalerylshikonin, α-methyl-n-
butylshikonin) induce necroptosis in resistant tumor cells overexpressing MDR1 and
BCRP1 [322,352–358].

Staurosporine, a protein kinases inhibitor, induces necroptosis in leukemia cells when
caspase activation is inhibited [362]. It was recently determined that the TNF-related
apoptosis-inducing ligand (TRAIL) induces necroptosis via RIPK-1-/RIPK-3-dependent
PARP1 activation, consequently turning PARP1 activation into an effector mechanism
downstream of RIPK-1 [363,364]. Obatoclax (GX15-070), a small-molecule inhibitor of
antiapoptotic BCL-2 proteins, was shown to induce autophagy-dependent necroptosis in
glucocorticoid-resistant acute lymphoblastic leukemia in childhood [365–367]. It was fur-
ther observed to induce an assembly of necrosomes on autophagosomal membranes [365].
It increased the physical association of ATG5 with RIPK-1 and 3 [365]. Furthermore,
photodynamic therapy by incorporating 5-aminolevulinic acid was noted to trigger RIPK-
3-mediated necrosis in glioblastoma cells [368].

Piperlongumine (a natural constituent of the fruit of Piper longum), and taurolidine (a
derivative of taurine) were observed to inhibit in vitro and in vivo cancer cell growth [369].
Piperlongumine can selectively kill specific types of cancer cells over normal cells [369]. It
inhibits the growth of xenografted human malignant breast tumors in vivo [369]. Tauroli-
dine induces cytotoxicity in different cancer cells in vivo and in vitro [369]. The effect of
piperlongumine and taurolidine is dependent on the stimulation of programmed cell death
by autophagy via a redox-directed mechanism, in addition to apoptosis and necropto-
sis [369]. A decrease in the ROS levels markedly reduces the AA005-mediated cell death in
SW620 cells [370]. Additionally, the RIPK-1 repression by NEC-1 prevents the translocation
of the apoptosis-inducing factor and partially destroys AA005-induced cell death in SW620
cells, suggesting a role for the necroptotic pathway [370].

Eupomatenoid-5 (Eup-5) was found to induce cell death in renal cancer 786-0 cells
in addition to human breast tumor MCF-7 cells [371]. In MCF-7 cells, Eup-5 caused
phosphatidylserine externalization and caspase activation, while 786-0 cells treated with
Eup-5 showed characteristics of the programmed necroptosis process [371]. Green tea
polyphenols were shown to induce BAX and BAK activation, cytochrome c release, caspase
activation, and necroptosis of human hepatocellular carcinoma Hep3B cells [370]. Interest-
ingly, in Hep3B cells lacking BAX (BAX−/−) or BAK (BAK−/−) expression, cytochrome
c release and necroptosis were reduced [372].

Concurrent necrosis and apoptosis have been demonstrated following parthenolide in
human acute promyelocytic HL-60 and Jurkat T lymphoma cells, respectively [373]. Mem-
brane breach and swift necrotic cell demise resulted from the engagement of parthenolide
with the cell membrane [374]. In human MDA-MB231 breast cancer cell lines, necrosis
induced by parthenolide was diminished by NAC and NEC-1, thus inferring that ROS and
RIP-1 stimulation may be relevant [375].
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5.2. Targeting Autophagy

Autophagy, formerly termed macroautophagy, is a further essential mode of malignant
cell demise following chemotherapy. It is characterized by self-destructing intracellular
proteins and organelles within the lysosome. The process is flexible and necessary for cellu-
lar equilibrium, stimulating cellular demise without the presence of apoptotic moderators
but when vital autophagy-governed genes, e.g., ATG5 [376] and BECN1 [377], are evident.

Autophagy is the process by which cells forms double-membrane autophagic vesicles
(AV), which isolate organelles and proteins and target them for degradation in the lysosome.
Although it was originally viewed as a “bulk degradation” process activated by cellular
starvation, new findings demonstrate that autophagy can also be a highly selective quality-
control mechanism that regulates levels of specific organelles and proteins [378–381].

Exhaustion of nutrients is maintained by the highly conserved adaptive process called
autophagy. This process is exploited by solid tumor cells to achieve homeostasis through
cytoplasmic waste metabolism to satisfy growing demand for nutrients. This promotes
development of cellular stressors such as inflammation, hypoxia, and tumor progression.
Different solid tumors have been found to have poor prognosis depending on the extent of
autophagy [382–385].

Autophagy can be categorized as microautophagy, macroautophagy, and chaperone-
mediated autophagy; all classes frequently enhance the proteolytic eradication of cytosolic
constituents within the lysosome [386–388]. Contemporary work has concentrated particu-
larly on macroautophagy, including delineation of its properties at cellular and molecular
levels, and its potential use in antitumor treatment [389,390].

In cancer, autophagy may play a role in limiting the earliest stages of tumorigenesis;
however, there is growing evidence that, in established cancers, autophagy can help cope
with intracellular and environmental stresses, such as hypoxia, nutrient shortage, or cancer
therapy, thereby favoring tumor progression as a survival mechanism. In this context, it is
becoming increasingly clear that autophagy inhibition could improve therapeutic outcomes
for patients with advanced cancer.

In contrast to normal cells, tumor cells frequently exhibit impaired autophagic pro-
cesses, although the relevance of autophagy in malignancy is contradictory to that in the
normal cellular state. Current evidence implies that autophagy may both advance and
hinder tumor development by enhancement of neoplastic cell longevity and a cancer-
suppressive action in non-malignant cells, respectively [391]. Elimination of structurally
compromised proteins and organelles may inhibit oncogenesis and enable existing cancers
to survive nutrient or oxygen lack during their growth [392].

Our current understanding is that the autophagy pathway consists of at least seven
steps [393–401]. The conserved autophagy genes (ATG genes) regulate steps 1 to 5:

Step 1: “The Unc-51-like kinase protein kinase complex”: regulates initiation of AV forma-
tion.
Step 2: “The VPS34 lipid kinase complex”: prepares the membrane for curvature.
Step 3: “LC3 family conjugation cascade”.
Step 4: “Cargo loading through autophagy cargo adaptors”.
Step 5: “AV maturation”.

The genes that are common to other endosomal/lysosomal pathways promote steps 6
and 7.

Step 6: “AV–lysosome fusion”.
Step 7: “Lysosomal degradation and recycling of AV cargo”.

Although these seven steps of autophagy are well documented, it is expected that
additional regulators will be discovered. New, novel regulators of autophagy were rec-
ognized using an siRNA screen in a pancreatic cancer cell line. Two of the promising
candidates, MAGUK p55 subfamily member 7 (MPP7) and cytosolic malate dehydrogenase
1 (MDH1), were observed to have roles in forming the autophagosome [402]. Many of
these steps in the autophagy pathway represent potentially druggable targets providing
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ways to both positively and negatively influence autophagy. As autophagy is a complex
multistep mechanism, understanding the details of autophagy is critical to developing
effective compounds and therapies to modulate autophagy potently and specifically.

Our current understanding is that the autophagy pathway consists of at least seven
steps [403–411]. The conserved autophagy genes (ATG genes) regulate steps 1 to 5: Step
1: The Unc-51-like kinase protein kinase complex regulates the initiation of AV formation.
Step 2: The VPS34 lipid kinase complex prepares the membrane for curvature. Steps
1 and 2 arrange intracellular membranes to form AVs via enriching the membrane for
phosphatidylinositol 3 phosphate (PI3P). Step 3: LC3 family conjugation cascade. Step 4:
Cargo loading through autophagy cargo adaptors. Step 5: AV maturation. The genes shared
by other endosomal/lysosomal pathways facilitate steps 6 and 7: Step 6: AV–lysosome
fusion. Step 7: Lysosomal degradation and recycling of AV cargo. Although these seven
steps of autophagy are well documented, it is expected that additional regulators will be
discovered. New, novel regulators of autophagy were recognized using an siRNA screen
in a pancreatic cancer cell line. Two promising candidates, members of the MAGUK p55
subfamily 7 (MPP7) and cytosolic malate dehydrogenase 1 (MDH1), were observed to have
roles in forming the autophagosome. MPP7 activates YAP1, induces autophagy, and MDH1
regulates ULK1 levels [412]. Many of these steps in the autophagy pathway represent
potentially druggable targets providing ways to both positively and negatively influence
autophagy. As autophagy is a complex multistep mechanism, understanding the details
of autophagy is critical to developing effective compounds and therapies to modulate
autophagy potently and specifically.

The value of autophagy in health and disease was recently emphasized when Yoshi-
nori Ohsumi received the Nobel Prize in Medicine in 2016 for his work on advancing
understanding of the genetic foundation of autophagy in yeast [413]. Multiple groups were
involved in endeavors to demonstrate that [403].

A number of human pathologies are associated with autophagic anomalies, e.g., de-
mentia, cardiovascular conditions, leishmaniasis, influenza, liver disorders and malignancy,
e.g., hepatocellular carcinoma (HCC).

The fifth leading form of fatal hepatic malignancy worldwide, HCC, has a hetero-
geneous geographical prevalence, affecting males three-fold more than females. Current
therapeutic interventions have a range of clinical outcomes; short survival times result
from pharmaceutical resistance and adverse events.

Autophagy is one of the underlying disease processes that is targeted during the
design of antitumor agents. Overall, overstimulated autophagy may precipitate a non-
apoptotic type of programmed cell death (PCD), autophagic or type II PCD. Recent studies
have inferred that malignant cell type II PCD can be initiated through autophagic interfer-
ence, thus inhibiting cancer progression. Influencing associated signalling is therefore an
encouraging route for the generation of de novo agents to combat drug-resistant tumor
cells.

Natural polyphenolic substances, e.g., flavonoids and non-flavonoids, exert an anti-
tumor action through the upregulation of cancer suppressors and autophagy mediated
via signalling pathways that are both canonical (Beclin 1-dependent) and non-canonical
(autonomous of Beclin-1). Angiogenesis and tumor dissemination in HCC have been
shown to be targets of plant polyphenols; these influence numerous intracellular mediators
and diminish HCC risk [404].

Some research, particularly from Kroemer’s group, has postulated that autophagy
suppression would be detrimental to tumor therapy as it would diminish the responses
of antitumor T cells [405–407]. In expiring malignant cells, autophagy is believed to be
necessary for immunogenic cellular demise, giving rise to cellular identification by the
immune system and stimulation of an efficacious immune reaction [408,409]. However,
this research was conducted in extremely immunogenic experimental models [410], which
may have influenced the data. In contrast, research employing murine tumor models
of lower immunogenicity demonstrated comparable T cell responses between animals
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with and without effective autophagy; in the latter, genetic deletion of relevant genes or
pharmacological autophagy inhibition with CQ was applied [411].

Progressing the concept of the necessity of autophagy for immunogenic cell eradi-
cation, Kroemer et al. surmised that autophagy, upregulated utilizing caloric restriction
mimetics, could uplift anti-neoplastic immune responses [412], implying that autophagy
should not be suppressed and that anticancer therapies should be potentially targeted
towards its enhancement.

Thus, although here only contemplating anticancer immune reactions, inhibition of
autophagy remains the subject of debate [414–416] and could have the opposite effect to
that desired from first line treatment [417–419].

A further issue relating to targeting autophagy is that in patients, autophagy suppres-
sion would not be restricted to cancerous cells, thus causing toxicity from more widespread
effects. For instance, research has demonstrated that in adult mice, global tissue knock-
out of Atg7, a critical autophagy gene, caused their ultimate demise as a consequence of
grave neuronal dysfunction, loss of glucose metabolism, and enhanced vulnerability to
infection [420].

Nevertheless, although extracting a vital constituent of the canonical pathway of
autophagy from each cell may mimic the impact of a ‘flawless’ autophagy suppressor, this
approach is at variance with clinical applications where a pharmaceutical agent would be
less potent than total knockout of a key autophagy moderator.

Reinforcing this concept, long-term HCQ utilisation in rheumatological conditions and
CQ therapy in certain malignancies as autophagy suppressors has not been associated with
intolerable toxicity [421], showing that ongoing lysosomal autophagy inhibition is possible.
Essentially, if malignant tissues have a higher reliance on autophagy than normal cells, an
agent that gives rise to toxicity in the latter may have a clinically appropriate treatment
period for efficacious tumor therapy. In fact, in the Ag7 knockout model, KRAS-driven lung
cancers were notably suppressed by gene deletion prior to evidence of neurotoxicity [420],
confirming the potential presence of a therapeutic window for autophagy suppression in
certain malignancies.

The precise function of autophagy in controlling malignant immune responses remains
obscure and the controversy regarding autophagy suppression continues. Additional stud-
ies are merited to characterize its associated hazards and application whilst simultaneously
heightening immune responses to obtain positive clinical endpoints. Markers denoting
autophagy dependence may be useful for the recognition of individuals who would gain
most benefit from treatment by autophagy inhibition.

Autophagy can help cancer cells to survive and withstand the action of therapeutic
agents in the context of chemotherapy-activated cellular stress. A correlation between
extensive autophagy and systemic therapy resistance, including androgen inhibition ther-
apy in prostate cancer, has been highlighted by a number of clinical and preclinical
models [422–430].

A very large body of literature supports the induction of autophagy during cancer
therapy as a key resistance mechanism in multiple cancer types. Many of the stress-
sensing pathways that induce autophagy are engaged by cancer therapies used in the
clinic. Although complete and prolonged autophagy can produce cell death in vitro and
in vivo, the major role of autophagy induction is to enable survival of the cancer cell during
therapy. For example, cisplatin-induced autophagy was shown to play a role in tumor cell
resistance to platinum-based therapy [431]. Cytotoxic chemotherapy, targeted therapy, and
radiotherapy can all activate cytoprotective autophagy [432].

Emerging evidence suggests that autophagy is upregulated in tumor cells in response
to various stresses, leading to tumor cells becoming resistant to chemotherapy. Therefore,
targeting the autophagy signaling pathway may be an innovative strategy for human
cancer prevention and combination therapy and for combating tumor-derived chemoresis-
tance [433,434].
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Increasing evidence suggests the possibility that autophagy may be a key actor in the
evolution of drug resistance in tumor cells. Enhanced autophagy was demonstrated in
individuals with melanoma in who neoplastic cells developed resistance to vemurafenib, a
BRAF inhibitor, through an ER stress reaction [435]. Additionally, vemurafenib resistance
induced by sustained melanoma cell line culture with the agent could be abolished via
autophagy suppression [435]. Clinically, a patient with BRAF-mutant cerebral malignancy,
in whom vemurafenib was at first successful but then hindered by drug resistance, had
a positive outcome when prescribed CQ as an adjunctive therapy [421]. This case report
demonstrated resensitisation of a malignancy by autophagy inhibition. Of note, was that
the admixture of kinase and autophagy inhibitors, and not the latter alone, was beneficial
for the ongoing suppression of cancer progression, suggesting that the clinical advantage
pertains to surmounting drug resistance as opposed to engineering de novo responsiveness
to sole treatment with an autophagy suppressor [421].

Additionally, the contribution of autophagy to multi-drug resistance, frequently to
routinely used agents employed for challenging malignancies, has been inferred. In
ovarian cancer, provocation of autophagy has underpinned resistance to paclitaxel, a cy-
totoxic agent [436]. Similarly, this process has been demonstrated to underlie cisplatin
resistance in ovarian and oesophageal cancers, and occur as a result of low oxygen lev-
els in lung tumors [437]. In primary chronic lymphocytic leukemia cells in patients,
precipitation of autophagy owing to an ER stress reaction, as in melanoma, leads to re-
sistance to cyclin-dependent kinase (CDK) inhibitors [438] and to resistance to HDAC
inhibitors, e.g., tubastatin A, in cell lines derived from glioblastomas [439]. The connection
between autophagy and chemotherapy resistance continues to grow and so autophagy,
as a potential target for antitumor agents, will inevitably remain the subject of ongoing
research [440–444].

Autophagy has additionally been associated with promotion of dormant cancer cell
survival and may form a key enabler of cell growth recommencement [445]. Contemporary
work on a malignant drosophila model demonstrated that quiescent neoplastic tissue
from autophagy-deficient flies was initiated into growth when relocated into autophagy-
competent organisms. These results implied that non-malignant cell independent au-
tophagy in the environs’ adjacent cells is essential for growth reestablishment in quiescent
neoplasia [446]. If comparable events take place in mammals, this study would indicate
that endeavors to promote autophagy following a presumed positive outcome from tumor
therapy may have the undesired consequence of precipitating recurrence by stimulating
remaining dormant malignant tissue.

Autophagy may be an efficacious tumor escape mechanism; it is thought to contribute
to resistance evolution in numerous malignancies, e.g., those originating in the central
nervous system, melanoma, non-small cell lung cancer (NSCLC), and neoplasia of the
bladder and thyroid. Concomitant autophagy inhibition therapy in these instances may
diminish or rectify treatment resistance.

In the oncology sector, autophagy has conflicting and setting-reliant influences and
so a ‘one size fits all’ strategy with therapies engineered to suppress or to promote this
process in tumor treatment will not have a positive outcome. In view of this realization,
the optimal approach could be to circumvent interference with autophagy altogether
in this context. Nevertheless, changes to autophagy are inevitable, as it is impacted by
numerous contemporary therapies. Furthermore, physiological triggers, particularly those
that frequently exert diverse influences on malignant and normal cells, respectively, e.g.,
lack of nutrients or oxygen, will additionally impact the autophagic process in neoplastic
tissue. Thus, it is important to delineate the consequences of these alterations and to
attempt to customize treatments to suit specific contexts. To begin with, such therapies will
potentially center on autophagy suppression; a major requirement is then to determine
which patients would benefit from this strategy.

It has been discovered that a variety of compounds can induce tumor cell death
by deregulating the signaling pathways that lead to autophagy [329,333,334,447–453]
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(Table 2). Melatonin promoted vincristine-resistant oral cancer cell autophagy and apopto-
sis and reduced the drug resistance of vincristine-resistant oral cancer cells by increasing
the expression of microRNA [454].

An autophagy-mediated mode of cell death is generated by the application of a
number of polyphenolic substances in a range of malignant cells [455]. A category of
natural organic chemicals, polyphenols typically comprise numerous phenol structural
moieties and are present in the diet. Several, e.g., rottlerin [456], curcumin [457], resvera-
trol [458], genistein [459,460], and quercetin [461] exhibit antitumor properties, influencing
signalling pathways and promoting cell death through both apoptotic and autophagic
processes [462,463]. These substances can stimulate type II PCD through a spectrum
of mechanisms via canonical (Beclin-1-dependent) and non-canconical (autonomous of
Beclin-1) autophagic avenues (212), and have the potential to be utilized as adjuncts to
routine antitumor treatments.

Polyphenols additionally moderate autophagy in order to surmount or to reverse cel-
lular multi-drug resistance. Apigenin notably enhances the responsiveness of doxorubicin-
resistant BEL-7402/ADM cells, triggers miR-520b expression, and inhibits Atg7 [464].
Interference with autophagy gives rise to PARP-1 upregulation in ovarian tumor cells un-
dergoing therapy with cisplatin; this is essential for cellular longevity. PARP-1 suppression,
at mRNA and protein junctures, together with autophagy inhibition, can be achieved using
luteolin, thus returning sensitivity to cisplatin [465]. An active flavone, scutellarin has been
demonstrated to diminish cell cycle-associated Cdc2 and cyclin B1 protein expression, to
activate apoptosis in PC3 cells, and to preserve resistance to cisplatin [465].

Naturally occurring polyphenols, flavonolignans, comprise flavonoid and lignin por-
tions. Originating from silymarin extract, the flavonolignan, silibinin, displayed antigeno-
toxic, membrane-stabilizing, and anti-oxidant properties and triggered liver cell regrowth,
inhibited fibrogenesis, and reduced the intrahepatic inflammatory response. The com-
pound has been suggested to activate autophagy in HeLa cervical malignancy [466] and
in MCF-7 breast tumor cell lines via the generation of LC3-II, Atg12-Atg5 and Beclin-1
upregulation [467]. Autophagy was promoted by silibinin in human fibrosarcoma HT1080
cells via ROS/p38/JNK pathway-induced p53 stimulation [468], in A375-S2 cell lines from
melanoma [469], and in SW480 and SW620 cells from colonic tumors [470]. Since silibinin
is a potent autophagic stimulator within a range of cell types, its potential to have an
anti-HCC impact through this action merits further investigation.

One of the most significant oncological issues requiring resolution is the rise in cancer
resistance to chemotherapeutic agents, radiotherapy, or targeted interventions. Polypheno-
lic substances are able to stimulate apoptosis and autophagy, thus promoting malignant cell
death. As dietary components, their intrinsically diminished toxicity, facilitation of lower
dosages, and adverse events compared with man-made agents denotes them as low risk.
Admixing them with treatments sanctioned by the Food and Drug Administration (FDA)
may offer de novo approaches for malignancy therapy and a counter strategy against the
significant issue of drug resistance.

Numerous papers have examined the natural phytopolyphenol, curcumin, in terms of
its antitumorigenesis and therapeutic properties [471]. Administration of curcumin to Huh7
cells precipitated early autophagy, as evidenced by autophagic vacuolar evolution [472]. In
male Sprague–Dawley rodents, survival statistics for thioacetamide-induced HCC were
improved following curcumin by autophagy signalling pathway stimulation via protein
expression and apoptosis suppression [473]. Adriamycin (doxorubicin) and curcumin
together induce autophagy associated with a raised prevalence of autophagosomes in
treated juxtanuclear cells. Research evaluating the autophagy suppressor, 3-MA, has also
demonstrated the value of combination therapy [474].

Rottlerin, or mallotoxin, is derived from the monkey-faced tree, Mallotus phillippinen-
sis [475]. Numerous signalling pathways and cellular mechanisms contribute to autophagy
and the consequent cellular demise stimulated by this compound. Nevertheless, cellular
setting, heightened threshold or resistance to apoptosis and stimulated or suppressed sig-



Biomedicines 2021, 9, 1353 45 of 90

nalling pathways are probably the key elements dictating cellular destinies. Rottlerin and
associated analogues may be utilized in the configuration of new therapies for autophagy
induction in prostate [476] and pancreatic [477] tumors.

Present in soy items, genistein is a naturally arising isoflavonoid noted to exhibit
antitumor activities, including the ability to promote cellular demise via apoptosis [478]
and autophagy [479]. The latter arises owing to alterations in apoptotic signalling and
is advantageous against malignancy cell resistance to chemical agents [480]. During
stress, conditions of poor nutrients or a lack of growth factor, genistein can safeguard the
cytokeratin matrix. Several researchers have demonstrated its value in surmounting the
deleterious consequences of the potent autophagic inhibitor, okadaic acid, on cytoskeletal
and cytokeratin configurations in rodent liver cells, which is of note as the latter contributes
to autophagic evolution. Despite its autophagic and apoptotic properties in tumor cells,
genistein has been shown to have inherently poor oral bioavailability owing to metabolic
enzymes and efflux transporters. This issue merits additional study in order to enhance its
effectiveness for the therapy of apoptotic-resistant neoplasia [481].

Quercetin is a natural flavonoid molecule found in fruits, vegetables, leaves, and
grains. It has antitumor effects related to its ability to target key molecules, organelles, and
tumorigenic pathways [482]. Quercetin mediates extensive autophagy and subsequent
death in cancer cells by inhibiting proteasome activity [480]. Many studies have shown
that quercetin has an effect on autophagy [483,484].

Resveratrol, a natural polyphenol, did not show autophagic response at low concentra-
tions (10 pg/mL); however, at a higher concentrations (20 pg/mL), it activated autophagic
cell death in Huh 7 cells [485]. Resveratrol may be effective therapy in apoptosis-resistant
ovarian cancer as its acute exposure induces cell death through autophagy in five ovarian
cancer cell lines. [403,482,486]. Resveratrol exhibited an effect against human hepatocellular
carcinoma (HCC) by inducing autophagy [487]. Resveratrol enhanced the expression of
several tubulin subunits that is important for autophagosomes movement inside the cell.
Furthermore, there is evidence that resveratrol triggers autophagic death in the cells of
chronic myeloid leukemia [488,489]. Trincheri et al. [490] reported that autophagy can be
induced with acute exposure to resveratrol.

Autophagy induced in human glioma cells by resveratrol has the ability to inhibit
resveratrol-induced apoptosis [491]. Autophagy inhibitors may have the potential to
enhance resveratrol antitumor efficacy [491] because autophagy delayed apoptosis and
protected the cells from death.

Persistent human papillomavirus infection may stabilize an anti-autophagy factor
called ATAD3A, inhibit cell apoptosis in addition to autophagy, and increase drug resistance
in uterine cervical cancer. Resveratrol’s antitumor activity was confirmed by its ability to
reduce ATAD3A expression and to increase the numbers of autophagosomes [492].

Resveratrol activates autophagic cell death in human prostate cancer PC3 and DU145
cells by downregulating matrix-interacting molecules 1 (STIM1) expression leads to the in-
duction of endoplasmic reticulum stress, which activates AMPK and inhibits the AKT/mTOR
pathway [493]. Resveratrol increases the autophagy and autophagy-mediated degradation
of p62 in non-small lung adenocarcinoma A549 cells [494].

Various techniques have shown that resveratrol can induce autophagy in breast cancer
stem cell-like cells [495]. Resveratrol inhibits tumor cell proliferation and induces apoptosis
and autophagy in T acute lymphoblastic leukemia [496]. Silencing of SIRT1 expression
inhibits autophagy by inhibiting the phosphorylation of p70RS6K and 4E-BP1, while
molecular events are reversed in the presence of resveratrol [497].

A recent review provides more details about resveratrol activity in cancer [498]. Fur-
ther clinical studies are important to fully evaluate the activity of resveratrol in the killing
of tumor cells via autophagy.

Several studies have shown that non-flavonoid and flavonoids polyphenols including
quercetin, apigenin, and epigallocatechin gallate (EGCG) can induce autophagy, both
in vitro and in vivo.
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Members of the phytochemical flavonoid class of compounds, anthocyanins include
cyanidin, delphinidin, pelargonidin, and petunidin. Naturally arising pigments, the
various subgroups are defined by the flavylium B-ring. Delphinidin leads to notable LCE
II lipidation, a cue necessary for autophagosome development [499].

A naturally occurring substance, hydroxycinnamates or E-[6’-(5’-hydroxypentyl)
tricosyl]-4-hydroxy-3-methoxycinnamate (EHHM), is acquired from Livistona chinensis.
It has been reported that autophagy enhances cell longevity in HCC cells administered
EHHM; EHHM could therefore be a potentially efficacious strategy for treatment of this
tumor [500].

When berberine is used in combination with lung cancer radiotherapy, in addition
to inducing autophagy cell death in vitro and in vivo, it has also been shown to induce
autophagy and apoptotic cell death in different hepatocellular carcinoma cells [501]. As
evidenced by increased autophagosome formation, LC3B modification, and mitochondrial
destruction, berberine enhances non-small cell lung cancer A549 cells’ radiosensitivity
undergo autophagy [502]. Berberine derivatives have been shown to induce autophagy, in
addition to inhibiting the proliferation of different human colon cancer cells [486,503–506].

One of the major bioactive components in green tea is Epigallocatechin-3-gallate
(EGCG) [507–509]. EGCG enhanced the effect of cisplatin and oxaliplatin-induced au-
tophagy in human colorectal cancer cells [510]. EGCG increases the formation of au-
tophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in
hepatic cells in vitro and in vivo [511]. Treatment of human hepatocellular carcinoma
Hep3B cells with doxorubicin significantly increased a number of autophagic vesicles
and levels of autophagic protein markers in tumor cells [512]. This effect resulted in 45%
decrease in doxorubicin-induced cell death supporting pro-survival role for autophagy in
these experimental conditions [512]. However, EGCG was found to inhibit autophagic sig-
naling, and promoted cellular growth inhibition [512]. The doxorubicin-induced autophagy
was blocked by the combination therapy with EGCG [512]. Rapamycin, an autophagic
agonist, markedly inhibited the anticancer effect of doxorubicin or its combination with
EGCG treatment [512]. Interestingly, EGCG was observed to increase non-apoptotic cell
death in human hepatocellular carcinoma cells, cervical cancer cells, and mesothelioma
cells [513,514].

Curcumin is the major bioactive component extracted from Curcuma longa L., Curcuma
zedoaria (Christm) Rose., Curcuma amada Roxb., and Curcuma petiolate [353,358,477]. Cur-
cumin has been found to inhibit cell proliferation in several cancer types through inducing
autophagy [515–521]. For example, in malignant glioma cells curcumin induced G2/M
arrest and autophagy [480].

Antioxidant N-acetyl-L-cysteine (NAC) blocked the curcumin-induced molecular
effects, suggesting that curcumin-induced ROS implicated in autophagosome develop-
ment [521]. NAC also abolished curcumin-induced activation of ERK1/2 and
p38MAPK [521].

The curcumin-induced autophagy was shown to be ROS-dependent [522]. Curcumin
induced differentiation of glioma-initiating cells that are responsible for the initiation
and recurrence of glioblastoma [523]. Curcumin was found to induce autophagy in these
cells in vitro and in vivo [523]. Moreover, curcumin also suppressed tumor formation on
intracranial implantation of glioma-initiating cells into mice [523]. Tetrahydrocurcumin, a
major metabolite of curcumin, exhibited the antiproliferative effects on human promyelo-
cytic leukemia HL-60 cells by increasing acidic vascular organelle formation specific for
autophagy [524].

The survival rate against thioacetamide-induced HCC was observed to be increased
by curcumin [473]. The combination of doxorubicin with curcumin caused autophagy
stimulation. In the cells treated with this synergistic combination, high levels of the
autophagosomes were detected [474].

Curcumin is the most extensively studied natural compound for the prevention and
treatment of cancer [471]. However, curcumin has limited therapeutic effect due to its
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poor bioavailability and effectiveness. Therefore, many curcumin derivatives have been
manufactured to evaluate its antitumor potency and those analogs might have an improved
autophagy activity compared to curcumin and could provide a better activity toward the
HCC cells [471].

Some of the Chinese medicinal herbs induce autophagy [353,366,473]. Fangchinoline
triggered autophagy in some of human hepatocellular carcinoma cells. This herb is iso-
lated from Fangji, Stephenia tetrandra S. Moore [525]. Blocking fangchinoline-induced
autophagy process markedly modulated the apoptotic pathway [525]. Ginsenosides, major
pharmacological active ingredients in Ginseng, induced cell death of tumor cells, thereby
improving sensitivity of tumor cells to chemotherapy [329,526–530]. Ginsenosides Rg3 and
Rh2 can inhibit cancer cell growth, while Rg3 is instrumental in combating tumor cell resis-
tance to cancer chemotherapy [329,531]. A combination of Rg3 with docetaxel, paclitaxel,
cisplatin, or doxorubicin enhanced the sensitivity of prostate cancer and human colon
cells to chemotherapy [531]. The anticancer function of ginsenosides is associated with its
ability to regulate autophagy in various human cancer cells [329,532–534]. Ginsenoside K
activated an autophagy pathway mediate by increased autophagic flux [534].

Terpenoids are the largest class of natural compounds exhibiting multiple antitu-
mor properties, especially due to their selectivity toward tumor and cancer stem cells
(CSC) [358,535,536]. Sesquiterpene lactones are 15- C terpenoids, such as parthenolide,
artemisinin, and thapsigargin, were shown to be beneficial in cancer clinical trials [537–540].
Parthenolide was found to induce autophagy in the triple-negative breast cancer MDA-
MB231 cells [541]. Parthenolide treatment of human hepatocellular carcinoma HepG2 cells
resulted in autophagic cell death [542].

Triptolide is a diterpenoid from the roots of Tripterygium wilfordii and was found
to inhibit the proliferation of 60 US National Cancer Institute cancer cell lines [543,544].
Furthermore, its anticancer activities were confirmed in various animal models grafted
with human tumors resulting in the development of several more water-soluble and
less toxic derivatives that entered clinical trials [544]. Triptolide was shown to prevent
human pancreatic tumor cell growth both in vitro and in vivo [545,546]. Betulinic acid
is a triterpenoid isolated from the bark of the white birch tree that exhibited ant-tumor
characteristcs against several cancer cells in vitro and in vivo [547,548]. Betulinic acid and
its derivatives were found to decrease the phosphorylation of AKT and induce autophagic
cell death in human glioblastoma cells [549]. However, in human multiple myeloma
KM3 cells, betulinic acid treatment inhibited autophagy and induced apoptosis [550].
Betulinic acid was recently found to induce death in human cervical cancer HeLa cells,
while caspase inhibitors and necrostatin-1 (NEC-1) blocked apoptosis and necroptosis, but
not cell death in HeLa cells, implicating caspase-independent mechanisms of cell death in
these cells [551].

Oridonin, a diterpenoid extracted from Rabdosia rubescent, promoted autophagy in
L929 cells through p38 MAPK and nuclear factor kappa B (NF-kB) pathways [552–554].
Terpinen-4-ol was shown to induce autophagic and apoptotic cell death in human promye-
locytic leukemic HL-60 cells through inducing the accumulation of LC3B-I/-II, ATG5, and
BECN1 proteins cytochrome C released from mitochondria, and decreasing BCL-xL expres-
sion [555]. Celastrol, an active compound extracted from the root bark of Tripterygium
wilfordii Hook F., exhibited 20S proteasome inhibitor activity, while inducing apoptosis and
autophagy in cancer cells [556–561]. Both apoptotic and autophagic pathways were found
intertwined upon celastrol treatment, since inhibition of apoptosis enhanced autophagy,
while suppression of autophagy diminished apoptosis in human osteosarcoma cells [557].
Celastrol could induce hypoxia-inducible factor (HIF)-1a protein accumulation leading to
transcriptional activation of HIF-1 target genes [558,559].

Celastrol induced autophagy in human gastric cancer AGS and YCC-2 cells [561].
Moreover, gastric tumor burdens were reduced by celastrol administration in a mouse
model with a grafted human gastric tumor [561].
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Sulforaphane is found in cruciferous vegetables, such as broccoli, cabbage, cauliflower,
and hoary weed [535]. Sulforaphane exhibited antiproliferative properties toward various
human tumor cells via various molecular mechanisms [536,562–566]. Sulforaphane was
shown to induce the formation of autophagosome-like structures as well as acidic vesicular
organelles in human prostate cancer PC-3 cells [536]. Upon sulforaphane exposure, tumor
cells showed LC3B-II puncta associated with autophagosomes [536]. Sulforaphane was
also shown to disrupt the BCL-2/BECN1 interaction leading to the autophagic pathway
initiated by liberated BECN1 [536]. Sulforaphane decreased the phosphorylated AKT-
Ser473 level, and simultaneous treatment of sulforaphane with autophagy inhibitors, 3-MA,
or chloroquine enhanced drug cytotoxicity and inhibited tumor cell proliferation [536,566].

Recently, a novel alkaloid called Monanchocidin A (MonA) was isolated from the
marine sponge Monanchora pulchra [567]. MonA exhibited cytotoxic activity towards
human genitourinary cancer cells, including hormone-sensitive and castration-resistant
prostate carcinoma cell lines, cisplatin-sensitive and -resistant germ cell tumor cell lines,
and different bladder carcinoma cell lines. Whereas, nonmalignant cells were notably
less susceptible [567]. MonA was found to induce autophagy and lysosomal membrane
permeabilization in cancer cells [567]. Cryptotanshinone and dihydrotanshinone, two
lipophilic tanshinones from a traditional Chinese medicine Salvia miltiorrhiza, were shown
to induce autophagic flux and LC3B-II accumulation in multidrug-resistant colon cancer
cells SW620 and Ad300 cells [568]. Cardamonin is derived from Alpinia katsumadai Hayata
(Zingiberaceae) [568]. Cardamonin inhibited cell proliferation and enhanced autophagy in
human colon colorectal carcinoma HCT-116 cells [569].

Cannabinoids promote autophagy-dependent apoptosis in melanoma cells [570].
Treatment with A (9)- Tetrahydrocannabinol (THC) activated autophagy, loss of cell viabil-
ity, and apoptosis, whereas co-treatment with chloroquine prevented THC-induced cell
death and autophagy in vitro [570].

Seriniquinone, isolated from a marine bacterium of the genus Serinicoccus, demon-
strated potent anti-proliferative activity toward melanoma cell lines by activation of au-
tophagocytosis, while targeting small protein, dermcidin [571]. Oblongifolin C (OC) is a
natural small compound extracted from Garcinia yunnanensis Hu. OC is a potent inhibitor
of autophagic flux [572–574].

Plant lectins have been considered as possible antitumor drugs because of their ability
to induce autophagic cell death [575–580]. Polygonatum odoratum lectin (POL), from
traditional Chinese medicine herb, is a mannose-binding GNA-related lectin and was
shown to exhibit apoptosis-inducing and anti-proliferative activities toward a variety of
tumor cells [575]. POL could induce both autophagy and apoptosis in NSCLC A549 cells
and human breast cancer MCF-7 cells [575,576].

Thymoquinone exposure resulted in caspase-independent, autophagic cell death
in human LoVo colon cancer cells [581]. Honokiol (HNK), purified from the Magnolia
officinalis bark, is a promising anticancer agent against prostate cancer cells in vitro and
(PC-3 xenografts) in vivo [582]. Mollugin, a bioactive phytochemical isolated from Rubia
cordifolia L., exhibited anticancer activity against various cancer cells [583].

Jujuboside B is a saponin from the Zizyphus jujuba var. spinosa seeds. Jujuboside B
induced autophagy and apoptosis in human AGS and HCT-116 gastric adenocarcinoma
cells in vitro and efficiently inhibited cancer growth in a nude mouse xenograft model
bearing HCT-116 cells in vivo [584]. Moreover, jujuboside B induced autophagy indicated
by the formation of cytoplasmic vacuoles and LC3B-I/II conversion [584]. Bafilomycin A1,
which is an autophagy inhibitor, reduced the viability of jujuboside B-induced cells [584].
Feroniellin A (FERO), a novel furanocoumarin, was shown to induce autophagy as well as
showing association with LC3B-I to LC3B-II conversion, induction of GFP-LC3B puncta,
enhanced expression of BECN1, and ATG5, and inactivation of mTOR in etoposide-resistant
human lung carcinoma A549RT-eto cells [585].

A polymethoxy flavonoid, nobiletin has been shown to inhibit cellular replication in
human SKOV3/TAX cells through apoptosis and autophagic flux suppression. Compara-
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tively, via Akt signalling, the disturbed autophagic process activated nobiletin-induced
apoptosis in this cell line. These data provided evidence to suggest that in human ovarian
tumor cells, nobiletin can surmount multi-drug resistance by inhibiting autophagic dis-
ruption via Akt modulation [586]. EGFR and TKIs were the most significant for late-stage
NSCLC.

Nevertheless, T790M mutation, which increases TKIs resistance generated by EGFR,
has transpired to be a key difficulty in tumor therapy. An admixture of wogonin and
icotinib was noted to surmount icotinib resistance arising via T709M [587]. An elevated
population of intracellular autophagosomes, conversion of LC3B-I to LC3B-II, and Beclin-1
and phosphorylated mTOR expression amplification were identified following the com-
bined administration of wogonin and icotinib. This implies that the two compounds have
mutually potentiating influences on cell replication and could play a role in apoptosis and
autophagy in EGFR T790M-mutated lung malignancy [587].

Derived from Sophoraflavescens Aiton, matrine is a major quinolizindine alkaloid [588].
The serial signal transduction giving rise to apoptosis from autophagy by triggering p53
has been the subject of discourse [589]. Metabolomic analysis of HepG2 cells administered
matrine has revealed lipid droplet metabolites which form macroautophagy substrates
partially responsible for immune response activation and apoptosis [590]. Matrine has also
been shown to diminish glutathione (GSH) titres; a raised GSH concentration is implicated
in tumor resistance to chemotherapy [591].

Mixing autophagy interventions with molecular targeted treatment is thought to
offer a positive therapeutic approach to HCC [592]. Data amassed from the last twenty
years have emphasized the significance of autophagy in a spectrum of human pathologies.
Influencing this process by targeting certain modulators in the core autophagy pathways
could therefore impact various pathophysiologies. Malignancies exhibit heightened and
diminished autophagic cues, consistent with their cancer-suppressing and promoting
characteristics during tumorigenesis. In order to design de novo drugs, recognition of key
targets of the autophagic process is essential.

Polyphenols have a distinct capacity to inhibit cell replication and to initiate apoptosis
or autophagy in HCC; this ability has drawn attention to their possible use for targeted
treatments. In brief, polyphenols, e.g., apigenin, oroxylin A, and resveratrol, may act as
inhibitors for the PI3K/Akt/mTOR signalling mechanism. LC3 II evolution, and thus
autophagy inducement, is contributed to by luteolin, isoorientin, quercetin, kaempfer-
ols, curcumin, adriamycin (doxorubicin) with curcumin, EGCG, EHHM, delphinidin,
EF25-(GSH)2, oroxylin A, resveratrol, and kaempferols. mTOR signalling pathway phos-
phorylation may be suppressed by myricetin. Autophagy could be instigated by galangin
via the TGF-p receptor/Smad. Safeguarding autophagy linked with the negative modu-
lation of CD147 and ER stress could be provoked by baicalein. Wogonin, in combination
with sorafenib, WZ35, and tangeretin has anti-HCC effects mediated through autophagy
inhibition.

Multiple biological properties of the naturally occurring polyphenols in the diet
encompass antitumor and autophagy-enhancing influences. Research has demonstrated
that polyphenolics enact their anti-HCC activities through interference with the autophagic
process, e.g., activation of Beclin-1, Atg5, Atg7, Atg9, Atg12, LC3-II, and SQSTM1, together
with the modulation of PI3K/Akt/mTOR, PTEN, P38/PPAR-a, JNK/Bcl-2, ER stress, p62,
p53-dependent, TGF-p receptor/Smad signaling, and YAP. These data suggest that they
are possible agents with multiple modes of action against HCC, which is a catastrophic
pathology.

Key factors to take into account with pharmaceutical agents sanctioned by the FDA,
e.g., sorafenib, are their adverse event and strength profiles, as these indicate potentially
serious unwanted side effects, such as liver toxicity, inflammation, bleeding, fistulas, rashes,
high blood pressure, ischemia, and wound reparation issues. Similarly, outcome data on
HCC therapies in individuals with advanced cirrhosis are not accessible. Thus, a preferable
option would be to couple autophagy-modulating hepatoprotective polyphenolic com-
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pounds, with favorable safety statistics, with anti-HCC agents sanctioned by the FDA in
order to offer new treatment approaches encompassing autophagy modulation. Further-
more, the development of de novo therapies for HCC should include such polyphenols in
their research.

The development of resistance to pharmaceutical agents decreases their therapeutic
impact. As autophagy contributes to cancer advancement, influencing this process using
naturally arising substances is a potentially encouraging approach to combat multidrug
resistance in malignant cells. However, the lack of testing in in vivo models, therapeutic
protocols, and evaluations of phytochemical toxicity weakens the published data from
single studies and makes it challenging to predict the effectiveness of substances derived
from plants in the therapy of specific forms of neoplasia.

5.3. Targeting Oncosis

Oncosis is described by cell lysis and rapid cell and organelle swelling, in addition to
membrane permeability. Oncosis is associated with intercellular events involving swelling
of the mitochondria, depletion of adenosine triphosphate (ATP), failure of calcium ion
homeostasis, activation of certain proteases (such as cathepsins and calpains), disruption
of lysosome, and finally rupture of the plasma membrane [265,593].

In addition to chemotherapy, radiation, genetic, or immune therapeutic strategies
as well as combinatorial approaches, natural antitumor products with promising safety
and efficacy are setting an important stage for the new anticancer treatments [288,329–
334,450,451,594,595] (Table 2).

Artemisinin, which was extracted and separated from Artemisia annua L. (sweet
wormwood), has been used as one of the well-known traditional Chinese medicines for
many years in the treatment of fevers and chills [596]. In pancreatic cancer and renal cell
carcinoma, it has been shown that artemisinin induced oncosis-like cell death [597]. The
former cell death occurred with the morphotype characteristics of oncosis, while the latter
was via the generation of reactive oxygen species (ROS) and the depletion of ATP [597–599].
In gastric cancer, artemisinin stimulated cell oncosis by reducing the expression of Vascular
endothelial growth factor (VEGF) and increasing the amount of calcium and the expression
of calpain-2 [599,600].

The exact mechanism of action of artemisinin is still controversial, and the target of
action has not been completely revealed. Current research shows that artemisinin uses
multi-approaches and multi-links to influence the tumor progression. Both apoptotic and
non-apoptotic cell death are involved in the anticancer activity of artemisinin. Furthermore,
artemisinin affects cancer metabolism and immunosuppression. However, the related
literature is still limited, and more in-depth research into these aspects is required.

5.4. Targeting Methuosis

One of the most recent forms of non-apoptotic cell death is methuosis. The name of
methuosis, which is derived from the Greek ‘methuo’ and means ‘to drink to intoxication‘,
was chosen because the most prominent characteristic in cells undergoing this phenotype
of death is the accumulation of large fluid-filled cytoplasmic vacuoles that originate from
macropinosomes [601–603].

Macropinocytosis is defined as a non-selective liquid-phase endocytic pathway for the
extracellular substances’ uptake [604]. Macropinocytosis was first recognized in 1931, and
the used term was pinocytosis, or cell-drinking [605]. Then, in 1986–1992, the stimulation
of membrane ruffling and fluid-phase pinocytosis were described [606,607] and a review
about macropinocytosis was published in 1995 [608]. Later, it was found that abnormal
expression of the RAS genes in glioma cells and gastric cancer would cause cellular degen-
eration in addition to vacuolization [609], which belongs to micropinocytosis. Eventually,
this led to a new distinct phenotype of cell death. It was discovered that abnormal genetic
manipulations as well as trace amounts of certain drugs can stimulate methuosis in cancer
cells [610–612].
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Recently, the relationship between tumors and macropinocytosis has attracted more
attention as it might has a great research value for tumor survival and treatment [604].
Accordingly, several researchers are interested in macropinocytosis as a new target for
cancer treatment in addition to its potential for antitumor drugs delivery and the design of
antitumor drugs that can induce methuosis or abrogate the process of macropinocytosis
have been reported. However, some challenges and queries exist about the research in this
field.

Firstly, it is not clearly confirmed whether methuosis represents a recent unique pheno-
type of controlling cell death or whether it is just a subtype of oncosis or
necrosis [601,613]. Additionally, the molecular mechanisms related to methuosis remain
unclear despite the known importance of RAS genes and more detailed and specific ev-
idence linking macropinocytosis directly to cell death is lacking. Indeed, there are more
stimulants of methuosis waiting to be discovered for clinical use.

Additionally, macropinocytosis can both enhance cancer survival and has detrimental
effects on cancers [614–625]. This makes methuosis different from classical apoptosis
and other non-apoptosis death forms. Perhaps this means that macropinocytosis has a
“threshold” between enhancing cancer cells survival and death. However, more studies are
needed to know what exactly this “threshold”.

The understanding of molecular pathways involved in non-apoptotic cell death
induced by natural anticancer drugs would assist in exploiting novel molecular targets
of plant-derived compounds necessary to advance safer and effective anticancer thera-
peutics allowing to circumvent cancer drug resistance [293,334,341,449,480,503,507,524,
610,626–632]. The success with the natural product shikonin, which was able to induce
multiple cell death mechanisms, supports the notion that natural compounds could
bypass specific drug resistance developed by tumor cells using simultaneous activation
of multiple death pathways [293,334,341,449,480,503,507,524,610,626–632]. Therefore, a
reasonable combination of several cell death inducers that complement each other will
maximize their efficacy while minimizing their side effects [293,334,341,449,480,503,507,
524,610,626–632]. Although in vitro studies have shown that natural compounds have
a strong ability to induce non-apoptotic death of tumor cells, more in vivo studies are
needed to strengthen this concept before entering clinical applications [610,629–633].
Figure 3 summarizes the main natural products and their mechanism of action in trig-
gering non-apoptotic cell death.
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Table 2. A list of natural compounds with an effect on non-apoptosis cell death in tumor cells.

Compound Name Target Reference

Matrine Necroptosis [344]

Neoalbaconol Necroptosis [345]

Shikonin Necroptosis
Autophagy

[293,322,334,341,346,449,480,
503,507,524,610,626–632]

Emodin Necroptosis [348]

Ungeremine Necroptosis [349]

Staurosporine Necroptosis [362–364]

Obatoclax Necroptosis [365–367]

Piperlongumine Necroptosis [369,370]

Eupomatenoid-5 Necroptosis [371]

Rottlerin Autophagy [456,634]

Genistein Autophagy [635,636]
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Table 2. Cont.

Compound Name Target Reference

Quercetin Autophagy [483,611]

Resveratrol Autophagy [458,480,492,494,612,637–647]
[458,480,494,612,637–641]

Anthocyanins Autophagy [499]

Hydroxycinnamates Autophagy [500]

Berberine Autophagy [486,501,503–
505,594,595,648,649]

Epigallocatechin-3-gallate Autophagy [534,538,539,650]

Curcumin Autophagy [515,517–520,522,523,651–654]

Fangchinoline Autophagy [525]

Ginsenosides Autophagy [329,526–533]

Terpenoids Autophagy [358,535,536]

Triptolide Autophagy [568,570,655]

Betulinic acid Autophagy [547,548]

Oridonin Autophagy [558,559]

Celastrol Autophagy [561,656]

Sulforaphane Autophagy [581,585,587,592]

Monanchocidin A Autophagy [567]

Cryptotanshinone Autophagy [568,569]

dihydrotanshinone Autophagy [568,569]

Cannabinoids Autophagy [570]

Seriniquinone, Autophagy [571]

Oblongifolin C Autophagy [572–574]

Polygonatum odoratum lectin Autophagy [575,576]

Honokiol Autophagy [582,583]

Jujuboside B Autophagy [607,609,613]

Nobiletin Autophagy [587]

Matrine Autophagy [589–591]

Parthenolide Autophagy [565,657,658]

Allicin Autophagy [659,660]

Citreoviridin Autophagy [659–662]

7-hydroxydehydronuciferine Autophagy [663]

Glycyrrhetinic acid Autophagy [664]

Honokiol Autophagy [579]

Artemisinin Oncosis [597,600]

Matrine Necroptosis [368]

Neoalbaconol Necroptosis [369]

Shikonin Necroptosis
Autophagy

[317,346,358,365,370,473,527,
532,551,652–654,656,659–663]

Emodin Necroptosis [372]

Ungeremine Necroptosis [373]

Staurosporine Necroptosis [386–388]
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Table 2. Cont.

Compound Name Target Reference

Obatoclax Necroptosis [389–391]

Piperlongumine Necroptosis [393,394]

Eupomatenoid-5 Necroptosis [395]

Rottlerin Autophagy [480,665]

Genistein Autophagy [666,667]

Quercetin Autophagy [507,668]

Resveratrol Autophagy [482,516,518,653,669–680]
[482,518,653,669–674]

Anthocyanins Autophagy [523]

Hydroxycinnamates Autophagy [524]

Berberine Autophagy [525,527–530,623,624,681,682]

Epigallocatechin-3-gallate Autophagy [534,538,539,650]

Curcumin Autophagy [542,544–547,549,550,683–686]

Fangchinoline Autophagy [552]

Ginsenosides Autophagy [353,553–560]

Terpenoids Autophagy [358,535,536]

Triptolide Autophagy [568,570,655]

Betulinic acid Autophagy [571,572]

Oridonin Autophagy [582,583]

Celastrol Autophagy [585,687]

Sulforaphane Autophagy [581,585,587,592]

Monanchocidin A Autophagy [593]

Cryptotanshinone Autophagy [265,594]

dihydrotanshinone Autophagy [265,594]

Cannabinoids Autophagy [595]

Seriniquinone, Autophagy [596]

Oblongifolin C Autophagy [597–599]

Polygonatum odoratum lectin Autophagy [600,601]

Honokiol Autophagy [607,608]

Jujuboside B Autophagy [607,609,613]

Nobiletin Autophagy [615]

Matrine Autophagy [617–619]

Parthenolide Autophagy [565,657,658]

Allicin Autophagy [688,689]

Citreoviridin Autophagy [688–691]

7-hydroxydehydronuciferine Autophagy [692]

Glycyrrhetinic acid Autophagy [693]

Honokiol Autophagy [604]

Artemisinin Oncosis [626,628]
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6. Clinical Studies

Although most antitumors reduce the size of tumors significantly [665], they fail
to remove them completely. As a result, the tumor resists treatment and relapses. The
main reason for cancer treatment failure by chemotherapy is the emergence of tumor cell
death resistance to drugs during cancer progression, thus representing a central issue in
chemotherapeutic approaches to this tumor. Multidrug resistance (MDR) is one of the
major clinical challenges in malignancy treatment and compromises the effectiveness of
conventional antitumor drugs.

The ability of natural products and their derivatives to prevent, inhibit, and reverse the
progression of cancer has been clinically studied. Surveys indicate that approximately 80%
of cancer patients use natural products in combination with classic anticancer drugs [666].
This shows that many cancer patients are very interested in using natural products as
nutritional supplements or complementary or alternative medicines. They hope that these
natural products can significantly reduce the side effects caused by anticancer drugs,
enhance the immune response, and enhance the effectiveness of anticancer drugs. Some
people believe that they will actually prevent or reverse the progression of cancer.

More and more evidence has shown that natural compounds are highly specific to
tumor cells and have minimal adverse effects on normal neighboring cells; therefore, they
bring great hopes for future anticancer therapies [334,633]. It is reported that more than
3000 plant species can treat cancer. Thus far, about 30 plant-derived compounds have been
isolated and tested in cancer clinical trials [334] and are used currently in clinical practice
exhibiting advantageous results, with some exhibiting serious toxic side effects.

The principal objectives for combination therapies encompassing prolongation of
survival rates and enhancing life quality include mitigating the cytotoxic adverse event
profiles of pharmaceutical agents and simultaneously diminishing tumor resistance and
unwanted drug effects.

Natural compounds such as flavonoids, sesquiterpenes, alkaloids, diterpenoids, and
saponins, in addition to polyphenolic compounds, to overcome drug resistance [667,668]
are substituted or applied in combination with existing drugs. The principal objectives
for combination therapies encompassing prolongation of survival rates and enhancing life
quality include mitigating the cytotoxic adverse event profiles of pharmaceutical agents and
simultaneously diminishing tumor resistance and unwanted drug effects. These natural
compounds are known to have anticancer effects and can both kill cancer cells and restore
drug sensitivity.

Although sufficient data were available from clinical trials conducted on animals
to prove the efficacy of resveratrol with respect to tumor therapy, few in vitro clinical
studies have been conducted in human cells. Thus, there is a dearth of results relating to
human trials that assess the effectiveness of resveratrol in cancer resistance treatment. The
data exhibited unpredictable outcomes with respect to the use of resveratrol because the
majority of these clinical trials used different doses and routes of administration with a
small sample size of patients [498].

Resveratrol can efficiently exhibit its antitumor effects in combination with other
chemotherapeutic agents in addition of having an excellent safety profile. A number of
important challenges need to be considered before bringing resveratrol to the bedside
owing to its rapid metabolism giving rise to limited bioavailability in humans [498].

The role of melatonin in cancer treatment and prevention has been widely studied,
and numerous experimental studies proved the antitumor effect of melatonin against
many types of cancers. The combination of conventional anticancer therapies with mela-
tonin showed promising results through reinforcing the therapeutic effects of these thera-
pies [669]. Overall, the high safety profile, diverse mechanisms of action, and high efficiency
of melatonin support its use in cancer prevention and treatment [669].

It has been proposed that melatonin’s benefit in mitigating the toxic effects of
chemotherapy and its association with aberrant mitochondrial function should be ex-
plored using double-blind, placebo-controlled trials. It can be expected that a plethora of
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information will emerge over the next ten years relating to the way in which melatonin
exerts a positive effect in conjunction with chemotherapeutic agents [670]. The develop-
ment of resistance to therapy, together with the occurrence of tumor spread, means that the
investigation of de novo modes of treatment for malignancies is essential.

It is well established that therapy for individuals presenting with glioblastomas is
complex; curative surgery is nearly impossible, and the majority of tumors exhibit a high
recurrence rate despite treatment with radiation and chemotherapy [671]. Thus, several
workers have concentrated on the development of de novo adjuvant treatment approaches,
favoring natural products in order to offer anticancer agents that are suitable for the
clinical practice. A number of studies have documented the characteristics of melatonin
with respect to glioblastomas. Melatonin has well-known anti-oxidant actions, and its
antitumor effects are becoming acknowledged. It therefore has potential to thwart the
resistance to numerous anticancer agents that plagues treatment of glioblastomas [671–673].
Melatonin was reported as a candidate to overcome the multi-drug resistance glioblastoma
treatment [672,694,695]. Additional work is required to design novel molecular products,
combination treatments, and optimal dosing regimens. Although a few studies have
reported anticancer actions of melatonin in relation to glioblastoma in vitro, as yet, few
animal models have been published, and there is scant literature available on this subject
in humans.

Lissoni et al. published a study investigating treatment with an admixture of mela-
tonin and aloe vera [674]. The purpose of this trial was to determine whether these two
products could act in synergy to enhance the anticancer characteristics of melatonin. Fifty
patients with malignancy, including patients who had developed resistance to chemother-
apy, radiation, and hormone treatments, or who were unable to tolerate chemical anticancer
agents, were recruited for the study. Eight weeks after therapy commencement, no effect
on lesion regression was seen in the cohort only receiving melatonin. In the group taking
aloe vera and melatonin, 2/24 patients (8%) exhibited a partial response. The safety profile
for melatonin was benign [674].

The data relating to the utilization of melatonin as an adjunct to chemotherapy are
encouraging, both in terms of augmenting the effectiveness of therapy and mitigating
adverse event profiles [672,675]. However, clinical studies that have investigated the
clinical efficacy of melatonin in conjunction with other forms of treatment in patients with
neoplasia, excluding glioblastoma, have usually been performed outside evidence-based
recommendations following lack of success with conventional therapy and a guarded life
expectancy.

Traditional Chinese Medicine (TCM) uses a combinatorial method of two or more
agents to achieve a synergistic effect [676]. TCM has been utilized worldwide as a
complementary or an alternative medicine and has long been used to treat cancer in
China [677–682]. Examples of TCM’s main components include alkaloids, flavonoids,
and saponins. Numerous natural products originating from TCM can reverse multidrug
resistance [650]. Research has shown that flavonoids reverse multi-drug resistance [683].

Curcumin is a common term used for a mixture of curcuminoids that are purified from
the Indian spice turmeric powder, mainly comprised of curcumin (curcumin I), demethoxy-
curcumin (curcumin II), and bisdemothoxycurcumin (curcumin III) [684]. Curcumin is a
traditional medicine and the main curcuminoid of Curcuma longa [685,686].

Curcuminoids are known to have many biological activities, including
anti-inflammatory [655,687], anticancer [657], and antiviral properties [658,688]. Moreover,
both curcumin and its major metabolite tertrahydrocurcumin were found to restore drug
sensitivity in tumor cells overexpressing the MOR-linked ABC transporters Pgp [684,689],
MRP1 [689,690], and ABCG2 [689,691] by directly inhibiting their functions. More recently,
curcumin was found to be active against MDR tumors in mice as well [692]. Considering
its inhibitory effect on multiple ABC drug transporters and its many beneficiary biological
properties, it is not surprising that curcumin has become one of the most exciting natural
product modulators in recent years.
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Clinically, poor bioavailability is the one major problem with using curcumin. The
levels of curcumin in plasma and tissues remain low after oral consumption, reported to
be in the range of nanomolars and picomolars, respectively [693]. Curcumin is lipophilic
and very insoluble in nature, and is also rapidly metabolized in the intestine and excreted
in the urine, which means that high doses of curcumin must be consumed for it to be
biologically relevant and effective [696]. For instance, in one study, the level of curcumin
was only barely detectable in human plasma even after a dose of curcumin as high as
12.0 g [697]. Therefore, several approaches have been investigated to improve the delivery
of curcumin in the human system [698], including the use of liposomal curcumin [699],
curcumin nanoparticles [700,701], curcumin phospholipid complex or structural analogues
of curcumin [702], or the use of a combination of curcumin and piperine. Piperine has
been shown to block the metabolism of curcumin by P450 A3 and by other hepatic and
intestinal pathways involved in glucuronidation of this compound [703]. In addition, it
was observed that piperine increased the bioavailability of orally given curcumin in both
rats and humans with no adverse effect [703]. Thus, it should be useful to test whether
the combination of curcumin and piperine improves the bioavailability of co-administered
antitumor drugs in cancer patients.

Clinical trials offer the opportunity to verify and to identify the impact, side effects,
and pharmacokinetics of therapeutic agents. Since curcumin’s bioavailability is low, many
curcumin formulations have been manufactured and have undergone testing in clinical tri-
als [694,695,704]. A phase I clinical study was performed in order to establish the safety and
pharmacokinetic profiles of theracurmin in individuals with malignancy of the pancreas
and biliary tract in whom conventional chemotherapeutic agents had been unsuccess-
ful [695]. Daily theracurmin, in combination with chemotherapy founded on gemcitabine,
was administered. No additional side effects or rise in their incidence were reported. A
phase II pilot study showed promising data for the admixture of docetaxel/prednisone
and curcumin in individuals with prostate tumors resistant to orchidectomy. In 59% and
40%, respectively, either complete or some degree of prostate-specific antigen response was
noted. This work offered further data indicating a high rate of response and acceptability
for curcumin administration during treatment for malignancy [705]. Despite the optimistic
published articles and clinical trials regarding curcumin’s potential effectiveness against
cancer, there is evidence to show that curcumin has no therapeutic benefits [706]. How-
ever, researchers still think that because of suggestive trends in trial results and because
curcumin can interact with many proteins, there is still justification for further study [707].
The antitumor activity of curcumin remains unconfirmed until better experiments are
carried out.

More importantly, both phase I and II clinical studies with curcumin have been carried
out and showed some encouraging results. Despite its poor bioavailability, phase I studies
indicated that curcumin is well tolerated [708] and provided substantial improvement in
patients with advanced colorectal cancer when treated with curcumin (360–500 mg) [693],
with minimal drug–curcumin interactions [709]. Likewise, phase II studies showed treat-
ment with curcumin can improve the clinical outcome in patients with advanced pancreatic
cancer [710]. These clinical studies suggest that it would be worthwhile to test curcumin
as an adjuvant along with traditional chemotherapy drugs to overcome MDR in cancer
patients.

Among all natural product modulators, the most well-studied and well-known are
flavonoids, which include flavonols, flavones, isoflavones, flavanols, flavanolols, flavanones,
and chalcones [711]. Typically, each person consumes a substantial amount of flavonoids
per day from fruits, vegetables, food supplements, and tea. They are known to have many
prominent health benefits [712,713], including anticancer properties [714–716]. In terms of
MDR, flavonoids have been studied and characterized extensively by many research groups
to determine their capability to restore drug sensitivity in MDR tumor cells [717–720].

Artemisinin possesses some advantages, including less susceptibility to resistance,
that makes it worthy of development as a novel anticancer agent. In Pubmed, there are only
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three studies in the last three years. Some previous clinical studies before 2019 have been
comprehensively reviewed by Efferth and Zhang et al. [721,722]. Despite using different
modes of artemisinin administration for different cancers, no solidly concluded results can
be seen yet.

Sanctioned by the State FDA of China, the compound Kushen Injection (CKI) has been
utilized as an adjunctive therapy to Western antitumor medication for various forms of
malignancy [723]. It comprises alkaloids, flavonoids, saccharides, and organic acids [724]
and is derived from the medicinal plants, Radix Sophorae flavescentis and Rhizoma
Smilacis Glabrae [725]. CKI is believed to be efficacious in preventing metastasis and
overcoming multi-drug resistance [725]. However, to date there are no studies to this effect
in the literature available in English; any existing research presents few convincing results.
Thus, in vivo work and the clinical pertinence of CKI requires additional study in order to
determine the efficacy of any chemosensitizing properties.

Polyphenolic natural products, such as Ellagic Acid and Schisandrins, represent a
chemically unique class of molecules as potential anticancer agents to overcome multidrug
resistance in cancer [93]. However, clinical studies to support this benefit are required.

Epigallocatechin gallate (EGCG) is one of the major bioactive components in green tea.
EGCG enhances the effect of cisplatin and oxaliplatin-induced resistance of cancer cells and
exerts synergistic effects with anticancer agents. In addition to cisplatin and oxaliplatin,
these agents include temozolomide, doxorubicin, resveratrol, vardenafil, erlotinib, and
curcumin [726–728].

In order to appraise the acceptability, pharmacokinetics, and effectiveness of EGCG in
humans for tumor therapy, clinical studies are in progress. A phase I clinical trial evaluating
therapy for radiation dermatitis in patients with breast neoplasia studied concurrent
radiotherapy and EGCG solution. The highest dose of 660 pM of EGCG was without
significant side effects [729], and the solution was deemed efficacious for the therapy of
radiation dermatitis. EGCG was also appraised in a phase II clinical study to explore
its advantages in acute radiation-induced oesophagitis in individuals with stage 3 lung
tumors. Oral EGCG delivery was proven to be useful; phase III studies are expected to
follow [730].

Gambogic acid (GA) is one of the main compounds derived from the gambogic resin
exuded from a plant of the genus Garcinia [731]. It has a variety of biological activi-
ties, including anticancer properties [732]. The combination of GA and other anticancer
agents has been widely used to improve the therapeutic effectiveness against various
tumors [732–735]. Cisplatin resistance, which is a main clinical challenge in the treatment
of lung cancer, can be decreased in human NSCLC cisplatin-resistant A549/ DDP cells by
combining cisplatin and GA [734].

To asses the safety and effectiveness of GA in patients with advanced malignant
tumors, different doses have been compared in a phase IIa clinical trial [736]. GA is safe
at a dose of 45 mg/m2. Patients taking GA on days 1–5 within a two-week cycle showed
a higher rate of disease control, with only grade I and II adverse reactions. A phase IIb
clinical trial with a larger sample size of participants would be required to better investigate
the safety and efficacy of GA.

A major limitation in all of the clinical studies has been the identification of appropriate
pharmacodynamic biomarkers evaluating changes in autophagy.

Autophagosomal configurations can act as scaffolds to initiate apoptosis [365] and
necroptosis [365,737], and so their accrual may enhance these cues within some contexts. If
this notion were true, it may be preferable to inhibit autophagosomal breakdown with a
lysosomal inhibitor instead of suppressing autophagosome production which may avoid
malignant cell eradication. Lastly, the issue of autophagy inducers to circumvent oncoge-
nesis requires addressing. It has been postulated that enhancing autophagy may hinder
the onset of neoplasia by restricting genomic mutations, fostering oncogene-produced
quiescence and diminishing cancer-induced inflammation [738]. This is therefore a compli-
cated problem owing to the interplay of autophagy with various genetic contexts, e.g., the
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mutations of p53 recognized in tumors of the pancreas [739] and breast [740] where the
reaction to autophagy initiation may be impacted by the sequencing of p53, thus creating a
pro- or anti-carcinogenic effect.

Contemporary clinical trial designs frequently permit specimen gathering from ma-
lignancies, together with serum pre and post therapy. These may assist in the generation
of improved bioindicators to act as pharmacodynamic markers for the effectiveness of
autophagy inhibitors and to enhance patient selection for this therapy type. If enhanced
clinical trials are added to in-depth molecular and cellular appraisal in order to compre-
hend the pathways underpinning the setting-reliant influence of autophagy on malignancy,
a more logical foundation to inform judgements about when and in which trajectory au-
tophagy could be influenced during tumor treatment could be developed. As changes
in autophagy are inevitable during malignancy and such alterations will impact cancer
progression, turning a blind eye to the issue is a poor choice. It is preferable to comprehend
the biology and then use that information in effectively designed clinical studies.

The final objective of laboratory tests is to attain clinical usage. In clinical trials, subjects
are typically split into two cohorts, i.e., controls administered traditional chemotherapy and
the intervention arm who are additionally given natural products. The impact of Fritillariae
thunbergia was evaluated in 90 individuals with acute leukemia [741]; compared with
controls, individuals in the intervention arm exhibited a smaller population of leukemic
cells within the bone marrow, diminished MDR1 protein titres, and a lower remission rate.
The same substance was appraised in 30 individuals with acute leukemia with elevated
MDR1 expression [742]. The intervention arm subjects had three-fold reduced MDR1
protein concentrations, an increased response rate to therapy, i.e., 55% as opposed to 20%,
and a smaller bone marrow proportion of leukemic cells, i.e., 26% compared to 50%. A
total of 36 individuals with acute leukemia underwent measurement of bone marrow cell
mRNA titres of MRP and ˆ2M using real-time PCR. An MRP/ˆ2M parameter ≥0.3 was
deemed MRP positive [743]. Those subjects receiving a 15-day course of 120 mg daily
intravenous ligustrazine had a greater likelihood (45.5%) of becoming negative for MRP
than controls (7.1%) and to have a reduced fraction of bone marrow leukemic cells, i.e.,
21.4% as opposed to 55.6%.

Inhibitors or modulators derived from natural resources are occasionally termed
‘fourth-generation inhibitors’. Such substances offer a spectrum of de novo chemical
scaffolds that are apposite for the creation of new agents. It can be anticipated that scientists
appreciate the role of screening for novel natural compounds that exhibit these properties,
as they are more likely to have a positive outcome than many existing products. There
is an enormous range of resources that could be used; biologically active constituents
are currently derived from vegetation, fungi, and even sea life, following which they are
purified and studied in depth. An advantage is that these natural substances are typically
of minimal toxicity and produce few side effects.

Individuals with solid tumors [744] and disseminated breast malignancy [745,746]
found artemisinin to be tolerable and non-toxic. Nevertheless, prompts for ongoing surveil-
lance during artemisinin prescription to record adverse effects should be contemplated
particularly when it is utilized in high dosages. If appropriate, pharmaceutical agents
used to avoid side effects should be given together. Furthermore, despite the fact that in
patients with malignancy it can be challenging to distinguish whether adverse incidents are
a result of pathology or medication, recent data indicate that such reports may have been
associated with artemisinin; this should be evaluated in further clinical studies. Certain
variables, i.e., route of delivery, quantity, and course length of medication, affect safety
and effectiveness, and this needs to be studied in depth. Lastly, the accessible data from
the phase I clinical studies for artemisinin were restricted, and the patient population was
low in number. Thus, more expansive clinical trials for phases II, III, and IV are required
in order to offer more compelling data for the appropriateness of artemisinin in clinical
cancer therapy.
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Although uncertainty remains, clinical modulation of autophagy in oncology is cur-
rently in progress [747] with most endeavors aimed towards autophagy suppression. In
fact, a survey of the ClinicalTrials.gov website, entering the terms ‘autophagy’ and ‘cancer’,
brought up over 50 studies which concentrated on autophagy inhibition and assessment to
enhance clinical endpoints. In keeping with other sectors of tumor biology, e.g., the promise
of the immune system to potentiate and to suppress carcinogenesis and advancement, the
principal factor impacting positive outcomes from treatments relating to autophagy arises
from the delineation of the way in which the autophagic process influences cancer onset
and evolution.

Chemical biology methods and cell culture-based approaches are powerful but have
limitations that can unintentionally introduce confusion or uncertainty conclusion. Consid-
eration of these limitations may help avoid common pitfalls and, in the fullness of time,
lead to useful reinterpretation of existing data. Thus, additional future studies using in vivo
systems and better clinical trials for the clinical management of resistance to drug-induced
tumor cell death are needed to determine the clinical effectiveness and safety of these
natural compounds.

7. Safety Aspects of Natural Products in Cancer Management

While many natural products used for cancer are associated with minimal or no risk,
this is not true for all such therapies. Potential toxicities include direct toxicity of natural
products, indirect effects of natural products due to interactions with other medications,
and also the risk to the patient who uses natural products to avoid or delay established,
effective treatment in the management of cancer disease [748,749].

There are some potential side effects associated with commonly used natural products
and other types of CAM [750,751]. For example, green tea can cause emesis and diarrhea,
in addition to insomnia and confusion.

Many natural products are pharmacologically active, raising concerns about potential
interactions with conventional therapy, both cytotoxic agents, and other medical ther-
apies [752–755]. Many anticancer drugs are metabolized through the cytochrome p450
system. Thepolyphenols present in green tea suppress many cytochrome p450 enzymes,
which are important in drug metabolism and induce other drug-metabolizing enzymes.
Several components of green tea and green tea extract can antagonize the effectiveness of
bortezomib by different interaction mechanisms while increasing the effect of medicine
such as anthracycline, taxanes, and tamoxifen (CYP3A4 inhibition) [756]. Additionally,
Essiac, which consists of multiple biologically active substances, can act synergistically
with anticancer drugs by the cytotoxic or immunosuppressive activities of anthraquinones
existing in this mixture or through its inhibition of CYP3A [757]. Ginkgo biloba and panax
ginseng enhance the functional activity of many drug-metabolizing CYP family enzymes,
and it is recommended to be avoided in patients receiving agents metabolized by CYP3A4
or CYP2C19 [758]. Curcuma, used in some types of cancers, can cause nausea, gastric
irritation, diarrhea, and bleeding problems. Curcuma interacts with many drugs, mainly
doxorubicin and cyclophosphamide [759].

Although not a direct “toxic” effect, the use of natural products may result in a
significant delay in instituting conventional treatment that is of documented benefit for a
specific condition [760]. As non-natural products, in some cases, are imagined to negate
the benefit of the therapy, it is usually required that natural products alone be taken for the
duration of the CAM treatment. This strategy of care can lead to the rejection of effective
medical therapies [748]. Although the data are limited, there is an adverse impact of
refusing/delaying standard treatments in favor of alternative therapies [761,762].

In a previous report, 258 patients diagnosed with nonmetastatic breast, prostate,
lung, and colorectal cancer in the National Cancer Database between 2004 and 2013 who
underwent alternative medicine treatment as the sole therapy (identified as those coded
as “other unproven cancer treatments administered by nonmedical personnel”) and who
also did not receive conventional cancer treatment were compared with a matched cohort
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of 1032 patients who received conventional cancer therapy [762]. Patients who chose
alternative therapy had higher refusal rates for surgery (70 versus 0.1 percent), radiation
therapy (53 versus 22 percent), chemotherapy (34 versus 3 percent), and hormone therapy
(34 versus 3 percent). Alternative medicine use was associated with worse five-year overall
survival (82.2 versus 86.6 percent), while the use of alternative treatment was independently
associated with a greater risk of death (hazard ratio [HR] 2.08, 95% CI 1.50-2.90). These data
indicate that the refusal of conventional cancer therapy was associated with the mortality
risk. Important limitations of this study are its observational nature and the reliance on
medical diagnosis coding at a single facility, which may have underascertained the use of
conventional cancer treatment for patients who received treatment at a different facility or
those who initially received alternative medicine prior to presenting to the facility that was
reporting data.

The use of autophagy-related kinase inhibitors/activators may lead to unwanted and
uncontrolled side effects, despite their potential therapeutic benefits in animal models.
Considering the protective properties of autophagy on neurons, it is reasonable to enhance
the brain specificity of autophagy-related therapies for neurodegenerative conditions.
Different delivery approaches and photodynamic chemotherapy are proposed to attain
the goal of organ specificity. Additionally, as known for the common kinase drugs, these
autophagy-related kinase inhibitors/activators share the complications of target selectivity
and resistance [763].

The lack of cancer cells’ killing selectivity of thapsigargin prevent its direct use as
an anticancer agent. To transport thapsigargin directly to cancer sites, some prodrugs
have been developed. For example, G115 and G202 are prodrugs created by a conjugation
of thapsigargin to substrates of proteolytic enzymes that are available only in tumor
cells. Additionally, JQ-FT is an antileukemic prodrug established by a conjugation of
a thapsigargin derivative and folic acid. These prodrugs represent an efficient way to
overcome thapsigargin cytotoxicity and provide targeted cancer therapy [764].

8. Conclusions

Natural products are emerging as a promising source for effective anticancer agents.
The numerous sources of these products cause high diversity in targets and mechanisms of
action. Such diversity has encouraged scientists to consider natural products as therapies
for drug resistance in cancer. Some natural products showed high potential to target drug
resistance mechanisms in cancer and caused tumor regression. Many of these natural
compounds were successfully considered as therapies in preclinical and clinical studies.
However, the use of natural product as a standard therapy to treat drug resistance is
still limited. Further studies are needed to explore the potential of natural products in
combination therapies to overcome drug resistance. Future studies can focus on studying
the possible synergistic effect of natural product combinations to target multiple biomarkers
in drug resistance. Studies can also consider using natural products as adjuvant treatments
to augment conventional anticancer therapies.
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