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Helicobacter pylori (H. pylori) is one of the globally recognized causative

factors of gastric cancer (GC). Currently, no definite therapy and drugs for

H. pylori-related GC have been widely acknowledged although H. pylori

infection could be eradicated in early stage. Inflammation and immune

response are spontaneous essential stages during H. pylori infection. H

pylori may mediate immune escape by affecting inflammation and immune

response, leading to gastric carcinogenesis. As an important component

of transcriptome, non-coding RNAs (ncRNAs) have been proven to play

crucial roles in the genesis and development of H. pylori-induced GC. This

review briefly described the effects of ncRNAs on H. pylori-related GC from

the perspective of inflammation and immune response, as well as their

association with inflammatory reaction and immune microenvironment. We

aim to explore the potential of ncRNAs as markers for the early diagnosis,

prognosis, and treatment of H. pylori-related GC. The ncRNAs involved

in H. pylori-related GC may all hold promise as novel therapeutic targets

for immunotherapy.
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Introduction

Gastric cancer (GC) is one of the leading malignancies
in terms of morbidity and mortality worldwide, which has
attracted extensive attention among global health problems (1).
Its high incidence and mortality are mainly attributed to some
unclear pathogenesis. The chronic infection of Helicobacter
pylori (H. pylori) has been well-accepted as one of the
multiple pathogenic factors of GC. It has been listed as a
primary carcinogen by the International Agency for Cancer
(2, 3). Chronic H. pylori infection can result in diseases
such as gastritis, gastric ulcer and GC over time, and gastric
mucosa-associated lymphoid tissue (MALT) lymphoma may
also develop in some patients (4–7). However, the specific
mechanism of H. pylori infection on gastric carcinogenesis
remains unidentified in spite of the known causality between
them. Exploration for the mechanism would be conducive to GC
prevention and treatment.

As a key element of pathogenic factors for H. pylori-related
GC, the virulence factors of H. pylori associated with immune
response mainly consist of cytotoxin-associated gene A (CagA),
vacuolating cytotoxin A (VacA), and H. pylori neutrophil-
activating protein (HP-NAP), etc. (8). Among them, CagA
was reported to exist in more than 60% of H. pylori strains
considered to be a strong activator of NF-κB and a major
mediator of carcinogenesis (9). CagA can not only bind to NF-
κB via beta-catenin but also independently affect NF-κB and
produce inflammatory factors such as IL-8 to mediate immune
response (9, 10). VacA inhibits capital histocompatibility
complex class II (MHC II)-dependent pathways and releases
pro-inflammatory factors including IL-1β, IL-6, IL-10, and
tumor necrosis factor-alpha (TNFα) by forming vacuoles within
macrophages, thus inducing immune escape and protecting
H. pylori (11). Unlike VacA, HP-NAP up-regulates MHC II,
promotes Th1 immune response, induces the expression of IL-
12 and IL-23 in neutrophils and monocytes, and triggers ROS
release to destroy epithelial cells (12, 13). The recognition of
lipopolysaccharide (LPS) from H. pylori by toll-like receptors
(TLRs, mainly TLR4 and TLR2) in human body could
activate the NF-κB pathway and promote the chemotaxis
of immune cells such as neutrophils and dendritic cells to
release large amounts of inflammatory factors attempting to
phagocytose H. pylori. However, the specific virulence factors of
H. pylori could protect themselves from phagocytosis initiated
by innate immune response. Consequently, the large quantity
of inflammatory factors have to accumulate at H. pylori
colonization sites and cause a long-term inflammation in
epithelium, leading to chronic gastritis and even GC (14).

The unique virulence factors enable H. pylori to escape
from the eradication by immune system and colonize in gastric
mucosa making carcinogenic effects. After H. pylori infection,
innate immunity is first activated to release pro-inflammatory
factors and immune cells intending to phagocytose and

eliminate H. pylori, then local immune microenvironment is
altered. Once the changes fail to resist the pathogenic effects
of virulence factors, H. pylori could colonize in gastric mucosa,
break through the barrier and survive in the deep site of stomach
chronically, resulting in gastritis, gastric ulcer and even GC
over time. Therefore, inflammation and immune response are
essential parts during the initiation of H. pylori-related GC.

Mounting studies about H. pylori-related GC have focused
on non-coding RNAs (ncRNAs). NcRNAs consist of microRNAs
(miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs),
small nucleolar RNAs (snoRNAs), and piRNAs (15). In
the early stage after discovery, ncRNAs were regarded as
useless “garbage” in body due to the lack of capability to
encode proteins. With the depth of research, however, the
important regulatory function of ncRNAs in many basic
cellular processes has been gradually revealed including
development, differentiation, proliferation, transcription, post-
transcriptional modification, immune regulation, cell apoptosis,
and metabolism (16). Despite the inability of ncRNAs to directly
encode proteins, more than 60% of their downstream target
genes have the competence (17). It has been suggested that
rare ncRNAs can independently function in diseases. They
usually interact with each other to construct powerful networks
and affect many proteins determining cell fates as well as
specific cellular biological process by regulating functional
stability. The complex interactions make the dysregulation
of ncRNAs quite common in cancer (18–20). The immune
inflammatory response occurring in H. pylori-related GC can
alter the expression patterns of ncRNAs, thereby affecting the
expression of downstream proteins or target genes and GC
biological behaviors.

In the present review, we integrated the articles studying
ncRNAs with immune inflammation in H. pylori-related GC,
summarize the research frontiers of ncRNAs in this field and
explore the potential of ncRNAs as diagnostic and prognostic
markers for H. pylori-related GC, aiming to provide theoretical
basis for further investigation of ncRNAs on the immune
direction in H. pylori-related GC. The immunization of ncRNAs
in H. pylori-related GC might give a new sight for GC
diagnosis and treatment.

MiRNAs and Helicobacter
pylori-related gastric cancer

MiRNAs are short ncRNAs with approximately 22
nucleotides in length. They can inhibit the expression or
function of downstream target genes by inducing degradation or
translational inhibition through binding to the 3′ untranslated
region (3′-UTR) of target genes (especially mRNAs) with their
5′ ends (21). MiRNAs are the most extensively studied ncRNAs
so far. The association of miRNAs with H. pylori-related GC has
been gradually emphasized on immune inflammation. TLRs
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could be activated by LPS from H. pylori, and aberrant TLRs
may promote the expression of some miRNAs. MiRNAs can
also affect the NF-κB pathway by regulating TLRs expression
and the TLR signaling pathway in turn, inducing the release of
pro-inflammatory factors, transcription factors and cascades
(22, 23). The structure of LPS could also be modulated by small
RNAs to influence the immune recognition in host thereby
enhancing H. pylori resistance (24). Therefore, miRNAs are
shown to have the potential to serve as detective markers for
early diseases (25–28).

MiR-155

MiR-155 has emerged as a key factor in innate immunity
and inflammatory reaction. H. pylori could induce miR-155
in gastric epithelial cells and gastric mucosa, which has been
widely reported to damage H. pylori by triggering immune
response (23, 29–33). The induction of miR-155 in T cells
mediated by H. pylori might be based on a cAMP-Foxp3-
dependent manner (34). MiR-155 promotes the release of
inflammatory factors including TNF-α, IL-6, and IL-23 in
exosomes from macrophages infected with H. pylori and
simultaneously increases the expression of CD40, CD63, CD81,
and MCH-I, suggesting that miR-155 may regulate H. pylori-
induced inflammation in host cells via exosomes (35). MiR-155
can also promote H. pylori elimination by inducing autophagy to
enhance the sterilization ability of host to intracellular H. pylori
(36). The association of miR-155 with immunity in H. pylori
infection appears to be proved in mice. The generation of miR-
155−/− mice might be owing to an inherent defect in T cells
that impairs specific Th1 and Th17 cells making them disabled
to proliferate, produce IFN-γ and IL-17, thus control H. pylori
infection effectively (37). In addition, miR-155 is up-regulated in
macrophages during H. pylori infection dependent on TLR and
type IV secretion system (T4SS), inhibiting cell apoptosis caused
by DNA damage (38).

However, some researchers believed that miR-155 negatively
regulated inflammatory reaction and reduced immune response
of body to protect H. pylori. Xiao et al. (39) found that
the induction of miR-155 by H. pylori was dependent on
the activation of NF-κB and AP-1 pathways. After miR-
155 overexpression, a down-regulation was demonstrated in
IkappaB kinase epsilon (IKK-ε), Fas-associated death domain
(FADD) as well as Sma- and Mad-related protein 2 (SMAD2),
which negatively regulated the release of IL-8 and growth-
related oncogene-α (GRO-α). Except for miR-155, myeloid
differentiation protein 88 (MyD88) was also observed to
be involved in the negative regulation of H. pylori-induced
inflammatory reaction as a target gene of miR-155 (40).

The diverse roles of miR-155 in H. pylori-induced immune
inflammatory response mentioned above indicated it as a
potential marker for H. pylori-related GC.

MiR-223

MiR-223 was also suggested to be involved in pathways
associated with innate immunity and inflammatory reaction
in patients with H. pylori infection (41–43). CagA of H. pylori
may induce miR-223-3P expression through the NF-κB
pathway. And miR-223-3p can directly target AT-rich
interactive-domain 1A (ARID1A), a tumor suppressor
protein with ATP enzymatic activity, to promote GC
proliferation and migration. Therefore, H. pylori might
participate in CagA-mediated biological effects in GC cells
via the NF-κB/miR-223-3p/ARID1A axis (44). MiR-223-3p
and IL-10 secreted by macrophages exert inhibitory effects
on pro-IL-1β and inflammasome NLRP3 both secreted by
monocytes during H. pylori infection (32, 45). Furthermore,
the mucosal expression level of miR-223 was significantly
decreased following with the disappearance of neutrophils
from gastric mucosa in patients after H. pylori eradication
(46). A recent study, however, showed that miR-233 expression
decreased in H. pylori-associated autoimmune atrophic
gastritis and multifocal atrophic gastritis. Hence, the anti-
inflammatory function of miR-233 might vary with different
microenvironments (47). These findings made miR-223
also a potential marker for the diagnosis or treatment of
H. pylori-related GC.

MiR-375

MiR-375 appears to be closely associated with immune
inflammatory response in H. pylori-related GC. It was shown
to be down-regulated after H. pylori infection accompanied
by the activation of JAK2-STAT3 (48–51). Janus kinase
2 (JAK2) was identified as a target gene of miR-375,
and miR-375 could negatively regulate the expression of
programmed cell death-ligand 1 (PD-L1) in GC through the
JAK2/STAT3 signaling pathway (50). H. pylori may affect
the JAK2-STAT3 pathway releasing cytokines including IL-
6, IL-10, and VEGF by down-regulating miR-375, inhibit
the maturity of dendritic cells, reduce CD4+ and CD8+ T
cells, then inhibit immune response mediating the immune
escape of H. pylori to promote gastric carcinogenesis (52).
Moreover, the regulation of JAK2-STAT3 signaling by
miR-375 could release IL-1β, IL-6, IL-8, and TNF-α by
activating downstream target genes BCL-2 and TWIST1,
which promotes tumor transformation and gets involved in
H. pylori-induced cell proliferation and migration (53). Rossi
et al. found that the levels of IL-6, IL-12A, and IL-2 were
significantly elevated in H. pylori-positive patients followed
by the down-regulation of miR-103, miR-181c, miR-370, and
miR-375 (54). All above-mentioned results suggested that
miR-375 participated in H. pylori-related GC by regulating
immune response.
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MiR-146

MiR-146 might be involved in the development of H. pylori-
related gastric diseases via the NF-KB pathway. H. pylori
infection could trigger inflammatory reaction of body and
induce the production of IL-17A, GRO-α, IL-8, and miR-146α in
GC cells successively. For its mechanism, IL-17A might mediate
miR-146α to regulate inflammatory reaction in an NF-κB-
dependent manner during H. pylori infection (55). Other than
H. pylori-related GC, miRNAs especially miR-146a and miR155
also received much attention in H. pylori-related pediatric
gastritis, which were likely to be associated with its prognosis
(56, 57).

Other miRNAs

Most miRNAs involved in the regulation of H. pylori-
related GC had association with the NF-κB pathway. The
decrease of miR-204 level induced by H. pylori infection
could up-regulate the downstream target gene BIRC2, enhance
the activity of BIRC2/TNF-α/NF-κB signaling pathway, thus
promote angiogenesis and metastasis of GC cells, leading to
poor prognosis of H. pylori-related GC patients (58). H. pylori
infection was reported to induce miR-18a-3P and miR-4286
expression in GC through TLR4/NF-κB molecules related to
immune recognition, inhibit the expression of downstream
target gene BARAP1, thereby participate in innate immune
response of body and inflammatory pathways associated with
NF-κB (59). H. pylori activates NF-κB and reduces miR-218
expression to increase the level of downstream target gene called
epidermal growth factor receptor-amplified and overexpressed
protein (ECOP) promoting cell proliferation. Accordingly,
Gao et al. believed that miR-218 could be considered as a
therapeutic target for H. pylori-related GC. The inhibition
of NF-κB by increasing miR-218 expression level artificially
might become a kind of therapy to prevent the progression
from precancerous lesion to cancer (60). In gastric epithelial
cells infected with H. pylori, Tip-α inhibits miR-3178 targeting
TRAF3 to increase TNF-α and IL-6 activating NF-κB to
promote GC cell proliferation (61). Let-7b targeting TLR4
was shown to decrease in gastric epithelial cells infected with
H. pylori. The knockdown of TLR4 concurrent with let-7b
overexpression could reduce the expression of downstream
genes associated with immune inflammatory response including
NF-κB, MyD88, NF-κB1/p50, and RelA/p65 (62). Lin et al.
found that serum miR-130b level was elevated in human and
mice after H. pylori infection activating the NF-κB pathway
positively correlated with myeloid-suppressor Schlafen4 (Slfn4).
Further research revealed that gastric SLFN4+ cells infected
with H. pylori might induce miR-130b and exhibit a T cell
suppressive phenotype resulting in H. pylori-induced gastric
metaplasia, tumor formation and growth (63). Based on these

findings, H. pylori infection may activate the NF-κB pathway by
regulating miRNAs to affect biological function facilitating the
development of inflammation and cancer.

Additionally, miRNAs may also influence H. pylori-related
GC by regulating PD-1/PD-L1 involved in immune response.
PD-L1 might be a downstream target of miR-140. MiR-140
could increase IFN-γ and TNF-α levels, inhibit the PD-L1
and mTOR signaling pathways, and raise CD8+ T cells, thus
inhibiting the proliferation of H. pylori-positive GC to exert
anti-cancer roles (64). Xie et al. (65) reported that H. pylori
could regulate B7-H1 binding to PD-1 by inhibiting miR-152
and miR-200b in GC cells, thereby suppress T cell proliferation
and immune response. H. pylori might also alter the levels of
miR-326 and miR-663 in CD4+ T cells (66).

Methylation has been suggested to be another mechanism by
which miRNAs affect H. pylori through immune inflammatory
response. The extract of Celastrus orbiculatus (COE) regulates
H. pylori-induced inflammatory response by inhibiting miR-21
expression and the methylation level of target gene programmed
cell death 4 (PDCD4) (67). Furthermore, the tumor suppressor
factor miR-124 silences spermine oxidase (SMOX) in H. pylori-
related GC via DNA methylation (68). JARID1B is a histone
demethylase and its up-regulation is associated with immune
cell infiltration in H. pylori-related GC. Therefore, the miR-
29c/JARID1B/cyclinD1 axis could be a novel therapeutic
pathway for GC (69).

Some other miRNAs were also indicated to be associated
with immunity or inflammation in H. pylori-related GC.
H. pylori up-regulates the immune receptor CD300E by down-
regulating miR-4270 to enhance the pro-inflammatory potential
and impair the sterilization ability of macrophages (70).
Chronic inflammation caused by H. pylori infection was shown
to increase CD44V9 by down-regulating miR-328 in gastric
mucosa (71). Except for miR-223-3p mentioned above, miR-22
can also directly target NLRP3, reduce inflammasomes levels
and maintain the homeostasis of gastric microenvironment.
H. pylori disrupts microenvironment homeostasis by inhibiting
the regulation of miR-22 on downstream factor NLRP3 (72).
In conclusion, miRNAs could regulate the expression of
inflammatory factors and suppress immune response after
H. pylori infection, contributing to the immune escape of
H. pylori and ultimately GC (Table 1 and Figure 1).

LncRNAs and Helicobacter
pylori-related gastric cancer

LncRNAs are long ncRNAs with more than 200 nucleotides
in length. They play vital roles in cellular process despite not
encoding proteins (73, 74). LncRNAs have been widely proven
to be associated with GC genesis and development by affecting
biological function (75).
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TABLE 1 The regulation of miRNAs on inflammation and immune response in H. pylori-related gastric cancer.

MicroRNA(s) Expression Patients Cell line Target Mechanism of action References

miR-155 Up RAW264.7 Promoted the expression of TNF-a, IL-6,
IL-23, CD40, CD63, CD81, MCH-I, MyD88,
and NF-κB

(35)

miR-155 Up miR-155 -/- mice produce fewer IFN-γ and
IL-17 than wt-T cells and do not differentiate
into Th1 or Th17 cells, and do not cause
immunopathology.

(37)

miR-155 Up 22 GES-1, AGS,
MKN45 (HEK)
293

IKK-ε, SMAD2,
and FADD

Down-regulate NF-κB and AP-1 pathway to
negatively regulated IL-8 and GRO-α.

(39)

miR-155 Up MKN74, AGS The protein
kinase A
inhibitor alpha
(PKIalpha)

miR-155 -cAMP-Foxp3 axis in T cells (34)

miR-155 Up GES-1 Induce the autophagy to decrease the survival
of intracellular H. pylori

(36)

miR-155 Up AGS and (HEK)
293 cells

MyD88 Reduce IL-8 production induced by H. pylori
infection.

(40)

miR-223 Up 22 AZ-521 Increase the neutrophil and/or mononuclear
cell infiltration

(46)

miR-223-3p Up 50 SNU, AGS,
MGC-803, and
MKN1

ARID1A NF-κB/miR-223-3p/ARID1A axis is involved
in CagA-induced cell proliferation and
migration

(44)

miR-223 Up THP-1, AGS NLRP3 Increase the copious amount of IL-10, IL-1β (45)

miR-22 Down NLRP3 Riggers’ uncontrolled proliferation of
epithelial cells and the emergence of GC

(72)

mir-375 Down BGC823, GES-1,
and MFC

JAK2-STAT3 Promote the secretion of IL-6, IL-10, and
VEGF, leading to immature differentiation of
DCs and induction of gastric cancer.

(52)

miR-375 Down BGC-823, AGS,
SGC-7901, and
MKN-45

JAK2 miR-375/JAK2-STST3 is involved in
H. pylori-induced inflammation to induce IL-8
and TNF-α and promotes neoplastic
transformation by affecting the expression of
BCL-2 and TWIST1

(53)

miR-375 Down 31 Up-regulation of TNFA, IL6, IL12A, IL2, and
TGF-β-RII.

(54)

miR140 Down 15 AGS, MGC803,
SGC7901,
BGC823,
MKN45

PD-L1 Suppress GC by targeting immune checkpoint
molecule PD-L1.

(64)

miR-200b Down 76 AGS B7-H1 H. pylori promoted B7-H1 expression which
binds to PD-1 and inhibited miR-152 and
miR-200b expression to promote gastric
cancer

(65)

miR-152

miR-204 Down 26 AGS, BGC-823,
SGC-7901, and
MGC-803

BIRC2 miRNA-204 leads to enhanced BIRC2
expression level and BIRC2/TNF-a/NF-kB
signaling pathway activities, which promoted
angiogenesis and metastasis of gastric cancer
cells.

(58)

miR-18a-3p Up AGS, N87, and
MKN45

BZRAP1 miR-18a-3p and miR-4286 activated the
NF-κB transcription factor to increase cancer
cell proliferation and motility and both
inhibited expression of BZRAP1, but TAK-242
(TLR4 inhibitor) blocked this effect.

(59)

(Continued)
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TABLE 1 (Continued)

MicroRNA(s) Expression Patients Cell line Target Mechanism of action References

miR-4286

miR-218 Down AGS and
MKN45

ECOP miRNA-218 inhibits NF-κB activation by
decreasing ECOP expression, increasing cell
proliferation, and inhibiting cell apoptosis.

(60)

miR-146a Up SGC-7901 miR-146a inhibits the inflammatory responses
induced by IL-17A during the infection of Hp

(55)

miR-3178 down GES-1,
SGC7901, and
MGC803

TRAF3 Tip-α might activate NF-κB to promote
inflammation such as TNF-α and IL-6, and
carcinogenesis by inhibiting miR-3178
expression, which directly targets TRAF3

(61)

miR130b Up 21–63 MiR130b induce T-cell suppressor phenotype
and promoted Helicobacter-induced
metaplasia

(43)

miR-21 Down PDCD4 COE could inhibit microRNA-21 (miR-21)
expression and target PDCD4 and induce
inflammatory factors such as IL-6, IL-8, and
TNF-α.

(67)

miR-124 Down AGS SMOX miR-124 through the inhibition of
SMOX-mediated DNA damage in the etiology
of H. pylori-associated gastric cancer.

(68)

miR-4270 Down 10 CD300E HP modulating the expression of the immune
receptor CD300E through miR-4270

(70)

miR-328 Down 54 AGS.AGS cells
were treated
with TNF-α,
interleukin-1b
(IL-1b), or
H2O2

CD44v9 High CD44v9 expression is significantly
associated with low miR-328 expression can
avoid cell death caused by various stress
inducers and inhibit gastric cancer
development.

(71)

miR-29a-3p Down 82 GES-1,
MGC-803, AGS,
MKN-45,
SGC-7901 and
HGC-27

LTβR/NF-κB HOXA-AS3/miR-29a-3p/LTβR/NF-κB
regulatory axis contributes to the progression
of GC

(83)

let-7 Down TLR4 let-7b downregulate TLR4 and attenuated
NF-κB, MyD88, NF-κB1/p50, RelA/p65, IL-8,
COX-2, and CyclinD1

(62)

It has been preliminarily explored for the regulatory
relationship with mechanisms of lncRNAs in H. pylori-related
GC. However, few studies have focused on immunity and
inflammation, which is ought to be future research direction
in this field. LncRNAs were demonstrated to be implicated
in viral infection recently (76). In H. pylori-infected GC, a
decreased expression of TNF-α, IL-1β, and IL-8 was detected
after knockdown of plasmacytoma variant translocation 1
(lncPVT1) and the migration of GC cells was inhibited,
suggesting that lncPVT1 might activate immune function to
affect GC caused by H. pylori (77). Similar to this result,
another study reported that the overexpression of lncRNA
H19 induced inflammatory reaction via the NF-κB pathway,
released pro-inflammatory cytokines including TNF-α, IL-1β,
IL-6, and IL-8, then promoted GC cell proliferation, migration
and invasion infected with H. pylori (78). Besides, circulating

lncRNA H19 expression was significantly increased in H. pylori-
positive peptic ulcer patients and further increased in GC
patients statistically positively correlated with the levels of
TNF-α, IFN-γ, and gastrin. Hence, lncRNA H19 could be
applied to distinguishing GC from peptic ulcer with positive
H. pylori (79). LncRNA SGK1 was found to be elevated in
T cells of H. pylori-related GC, induce Th2 and Th17 cells,
reduce Th1 cell differentiation through the SGK1/JunB signaling
pathway and be associated with poor prognosis of H. pylori-
infected GC (80). LncRNAs may also affect the progression of
H. pylori-related MALT. It was shown that lncRNA GHRLOS
exhibited significant change in gastric MALT patients, which
had differential expression both in H. pylori-positive gastritis
and GC tissue (81). That might be a sound evidence for lncRNAs
as important factors in the development of gastric malignancies.
The above findings indicated that lncRNAs might participate in
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FIGURE 1

Microenvironment changes in H. pylori-infected gastric mucosa. The virulence factors of H. pylori can affect immune response or inflammation
of host inducing H. pylori-related gastric carcinogenesis. The participation of H. pylori may not only directly through virulence factors but also
by altering the expression of ncRNAs especially miRNAs, which might serve as potential therapeutic targets for H. pylori-related GC.

gastric malignant tumors induced by H. pylori with the potential
to be predictive biomarkers.

Other than independent effects, lncRNAs can also interact
with miRNAs forming ceRNA networks to jointly regulate
H. pylori. MiR-375 has been identified as an inhibitor of
H. pylori-related GC, and the expression of lncRNA SOX2OT
was down-regulated after miR-375 overexpression, suggesting
the relationship of co-regulation between lncRNAs and miRNAs
on H. pylori-related GC (82). LncRNA HOXA-AS3 is elevated
in GC relevant with H. pylori infection. It negatively regulates
miR-29a-3p and inhibits the downstream target gene LTβR
regulating the NF-κB pathway to affect GC cell migration,
proliferation, metastasis and invasion (83). CDK2, a negative
regulator of T cells, was determined to form a cross-
network with lncRNAs and miRNAs integrating lncRNA-TF-
mRNA and ceRNA networks related to H. pylori, regulating
immune microenvironment with pathogenic roles of H. pylori
(84). A ceRNA network constituted by the lncRNA-RP11-
1094M14.8/miR-1269a/CXCL9 axis was revealed to be linked

to a variety of immune cells via CXCL9, making it a
potential target for GC with different degrees of immune cell
infiltration (85).

LncRNAs can not only influence immune function directly
by themselves but also affect the carcinogenesis of H. pylori
by forming ceRNA networks with miRNAs to jointly regulate
H. pylori-related tumor microenvironment.

CircRNAs and Helicobacter
pylori-related gastric cancer

CircRNAs are recognized to form a covalently closed loop
structure by unique reverse splicing with the lack of terminal
5′ cap and 3′ polyadenylated tail (86). Due to their structural
property, circRNAs have a high level of stability and tissue-
specificity in physiological environment of eukaryotes. Most
circRNAs are aberrantly expressed in pathological conditions
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FIGURE 2

H. pylori infection alters the expression of ncRNAs leading to a series of biological effects in vivo and GC eventually.

such as cancer (87), which are also potential markers for
disease progression.

The regulatory relationship of circRNAs with GC has been
extensively studied. In recent years, circRNAs have shown
promise as biomarkers for cancer diagnosis and prognosis
especially for early cancer detection (88, 89). CircSOBP is
closely associated with GC metastasis and poor survival of 5-
year follow-up (90). CircARID1A regulates GC proliferation by
forming an RNA-protein ternary complex with IGF2BP3 and
SLC7A5, thus the circARID1A-IGF2BP3-SLC7A5 axis could be
a novel therapeutic target for GC (91). The circ0008287/miR-
548c-3p/CLIC1 axis promotes cell apoptosis and immune
escape by impairing the function of CD8 + T cells in GC (92).
CircEIF4G3 can inhibit GC cell proliferation and metastasis by

regulating the miR-4449/SIK1 axis (93). Moreover, circ0002360
up-regulates PDLIM4 expression by sponging miR-629-3p (94).
All these reports suggested the great potential of circRNAs to be
prognostic biomarkers and therapeutic targets for GC.

However, the association of circRNAs with H. pylori and
H. pylori-related GC remains rarely explored. Only a few studies
presented that circRNAs might regulate the biological function
or prognosis of H. pylori-related GC independently or by
networks with miRNAs (95). H. pylori infection was found to
increase circFNDC3B expression. In early gastric cancer (EGC)
patients treated with endoscopic submucosal dissection (ESD),
the expression of miR-942 and miR-510 was suppressed while
their target genes CD44 and CDH1 were increased in the group
with high circFNDC3B expression when compared with the
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low expression group, which contributed to a higher recurrence
rate in EGC patients consequently (96). CD44 was considered
as a stem cell-like cancer cell marker affecting EGC initiation
with H. pylori infection (97). Earlier studies also confirmed that
circFNDC3B could mediate GC cell migration and invasion
by promoting epithelial-mesenchymal transition (EMT) (98).
Additionally, H. pylori can upregulate circMAN1A2 expression
in GC cells, and circMAN1A2 may promote proliferation,
migration and invasion of H. pylori-induced GC by sponging
miR-1236-3p to increase MTA2 expression (99).

In spite of the previous research on circRNAs associated
with H. pylori-related GC, further investigations are needed
to support circRNAs in serving as diagnostic biomarkers and
therapeutic targets for H. pylori-related GC.

Other ncRNAs and Helicobacter
pylori-related gastric cancer

Except for the highly studied miRNAs, lncRNAs, and
circRNAs, ncRNAs also contain snoRNAs and piRNAs.
The research on them could also be conducive to deeply
understanding the association of ncRNAs with H. pylori-related
GC although the known mechanisms are limited. H. pylori
was suggested to be delivered into host cells by two snoRNAs
enriched in outer membrane vesicles of bacteria including sR-
2509025 and sR-989262, reduce LPS stimulation and inhibit
IL-8 secretion, thereby mediating immune escape (100). The
association of other ncRNAs with H. pylori-related GC worth
further exploration (Figure 2).

Summary

NcRNAs play critical roles in transcriptome with regulatory
function in all aspects of physiological process, pathological
process and disease progression. As one of the important
pathogenic factors of GC, the association of H. pylori with
ncRNAs has been extensively studied. NcRNAs have been
clarified as a key link from persistent infection of H. pylori to GC
and to make profound impacts despite the specific mechanisms
to be confirmed. The regulation of ncRNAs on the immune

microenvironment of body after H. pylori infection could be a
therapeutic target for H. pylori in the future. The present review
elaborated the bridge role of ncRNAs between H. pylori and
GC from the perspective of immune inflammatory response,
indicating that ncRNAs held promise as biomarkers for the
early diagnosis, prognosis, and treatment of H. pylori-related
GC. However, relevant exact molecular mechanisms need to be
verified and more clinical data should be involved as additional
evidence to the prognosis study, aiming to improve the survival
and life quality of H. pylori-related GC patients.
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