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Abstract

How does attention enhance neural representations of goal-relevant stimuli while suppressing 

representations of ignored stimuli across regions of the brain? While prior studies have shown 

that attention enhances visual responses, we lack a cohesive understanding of how selective 

attention modulates visual representations across the brain. Here, we used functional magnetic 

resonance imaging (fMRI) while participants performed a selective attention task on superimposed 

stimuli from multiple categories and used a data-driven approach to test how attention affects both 

decodability of category information and residual correlations (after regressing out stimulus-driven 

variance) with category-selective regions of ventral temporal cortex (VTC). Our data reveal three 

main findings. First, when two objects are simultaneously viewed, the category of the attended 

object can be decoded more readily than the category of the ignored object, with the greatest 

attentional enhancements observed in occipital and temporal lobes. Second, after accounting for 

the response to the stimulus, the correlation in the residual brain activity between a cortical region 

and a category-selective region of VTC was elevated when that region’s preferred category was 
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attended vs. ignored, and more so in the right occipital, parietal, and frontal cortices. Third, we 

found that the stronger the residual correlations between a given region of cortex and VTC, the 

better visual category information could be decoded from that region. These findings suggest 

that heightened residual correlations by selective attention may reflect the sharing of information 

between sensory regions and higher-order cortical regions to provide attentional enhancement of 

goal-relevant information.
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1. Introduction

In the natural world, the human visual system is constantly inundated by many competing 

stimuli, some of which are relevant for behavioral goals and others that are irrelevant. To 

sort through this abundant visual input, human observers selectively focus their attention on 

important or goal-relevant stimuli, while ignoring irrelevant distractions, a process known as 

selective attention. However, it remains a mystery how the neural representations of attended 

and ignored items change to facilitate selective processing of relevant stimuli. Solving this 

ongoing puzzle requires understanding how visual inputs are represented across the brain 

as well as understanding how large-scale networks coordinate the allocation of attention to 

relevant representations.

It is well-documented that attention improves performance on a wide variety of tasks such as 

sensory discrimination (Lee et al., 1997) and target detection (Posner, 1980). The question of 

how attention leads to improved behavioral performance has been a subject of prior research 

in both humans and animal models for many years revealing that: attention increases neural 

firing rates (Motter, 1993), tunes visual cortical responses (Desimone and Duncan, 1995; 

Kastner et al., 1999, 1998), and is associated with coordinated activity in a large-scale 

fronto-parietal network (FPN; Corbetta and Shulman, 2002; Kastner et al., 1999; Nobre et 

al., 1997) that is related to goal-directed attention abilities (Fellrath et al., 2016; Prado et 

al., 2011). Although such studies have laid the groundwork for understanding the neural 

correlates of attention, we lack a clear understanding of how attending to or ignoring sensory 

stimuli modulates their neural representations across the brain.

Prior research on visual attention in humans has either examined how attention modulates 

the amplitude of cortical responses (Kay and Yeatman, 2017; Wojciulik and Kanwisher, 

1999) and cortical representations of visual stimuli (Baldauf and Desimone, 2014; Bugatus 

et al., 2017; Córdovaet al., 2016; Çukur et al., 2013; Peelen et al., 2009) or has examined 

how attention affects the interaction between ongoing activity in various brain regions 

(Al-Aidroos et al., 2012; Chadick and Gazzaley, 2011; Norman-Haignere et al., 2012) 

during an attentionally demanding task. The former research examined the effect of attention 

on bottom-up stimulus-evoked responses focusing mainly on high-level visual cortex in 

lateral occipital-temporal cortex (LOTC) and ventral temporal cortex (VTC) where category-

selective regions reside (Kanwisher, 2010) and distributed visual category representations 
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are salient across large cortical expanses (Cox and Savoy, 2003; Haxby et al., 2001; 

Kriegeskorte et al., 2008; Weiner and Grill-Spector, 2013). These studies revealed that visual 

attention to items of certain categories enhances responses in category-selective regions 

of the attended category (Kay and Yeatman, 2017; Moore et al., 2013; Wojciulik and 

Kanwisher, 1999) as well as the distributed representations (Çukur et al., 2013; Peelen et 

al., 2009). Nonetheless, other studies revealed that distributed responses in LOTC and VTC 

represent category information for both attended and unattended items (Bracci and Op de 

Beeck, 2016; Bugatus et al., 2017).

Other research examined how attention affects the interaction between brain areas by 

measuring the correlations between the residual activity of pairs of brain areas after 

accounting for the stimulus driven component, as the residual ongoing activity is thought 

to capture more of the top-down activity that one might continuously maintain while 

performing a task and is not locked to the stimulus. This approach, which we refer to 

as “residual correlations,” measures the correlation between residual activities across brain 

regions and has been referred to elsewhere as “background connectivity” (Al-Aidroos et 

al., 2012) or “task-residual functional connectivity” (Tran et al., 2018). Prior research 

has revealed that attention to visual items increases the strength of residual correlations 

between cortical regions of the frontal parietal network (FPN) and visual cortex (Chadick 

and Gazzaley, 2011; Griffis et al., 2015) as well as between category-selective regions of 

VTC (Norman-Haignere et al., 2012).

However, two main gaps in knowledge remain. First, it is unclear whether selective attention 

influences representations of visual object categories across the entire brain as most prior 

studies have focused on a handful of theoretically important, predefined cortical regions 

(but see Çukur et al., 2013). Second, it remains unknown whether neural representations 

of attended or ignored information vary with the strength of residual correlations between 

cortical areas and sensory regions processing the attended or ignored information.

To address these gaps in knowledge we examined the effect of attention on both visual 

category representations across the entire cortex and residual correlations between each 

cortical region in the brain and category-selective regions in VTC (Kanwisher, 2010; Peelen 

and Downing, 2005), when their preferred category is selectively attended or ignored. To do 

so, we leveraged a selective attention task we previously developed (Bugatus et al., 2017) 

while participants underwent fMRI scanning. In this task (Fig 1), participants were asked to 

view superimposed images of two categories, attend to items of one category and indicate 

when items of the attended category were inverted.

This experimental paradigm has three key advantages. First, this selective attention task 

utilized stimuli from five visual object categories that can be readily decoded from their 

distributed responses across LOTC and VTC (Bracci et al., 2017; Bracci and Op de Beeck, 

2016; Bugatus et al., 2017; Cox and Savoy, 2003; Grill-Spector and Weiner, 2014; Haxby et 

al., 2001; Kriegeskorte et al., 2008; Proklova et al., 2016), suggesting that we can use these 

stimuli to measure the effect of attention on bottom-up category representations for attended 

and ignored stimuli. Second, we use stimuli that are associated with category-selective 

regions in VTC (Kanwisher, 2010), in which activity is critical for recognition of these 
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categories (Gaillard et al., 2006; Jonas et al., 2014; Parvizi et al., 2012). This allowed us to 

examine the effect of attention on top-down brain activity by measuring residual correlations 

between each brain region and category-selective region when their preferred category 

was attended or ignored. Third, images of items from these attended and ignored object 

categories were overlaid in a single spatial location, and subjects were asked to conduct 

a perceptual task, which allowed us to probe the effects of attending and ignoring during 

visual competition without shifting the spatial focus of attention and without necessitating 

other cognitive processes such as working memory.

Additionally, we utilized a unique analytical approach, combining two quantitative 

techniques to answer our three main questions of interest. First, we aimed to test how 

selective attention modulates the representation of attended vs. ignored visual categories by 

testing its influence on the decodability of visual category information when the same items 

are attended or ignored. We used a data-driven whole-brain approach to determine where 

in the brain information about attended and ignored visual object categories are decodable. 

To do so, we examined the classification accuracy of category information in each of the 

180 brain areas of the Glasser atlas (Glasser et al., 2016), which is the most recent brain 

parcellation based on both functional and structural metrics. While it could be the case that 

information about attended and ignored object categories are equivalently decodable in all 

areas of cortex, or that attentional enhancement is present in all areas of cortex, based on 

prior findings summarized above, we hypothesized that both category information and the 

amount of attentional enhancement would vary across cortical regions.

Second, we aimed to test in a data-driven, whole-brain manner which cortical regions 

have strong residual correlations with category-selective regions of VTC when the latter 

regions’ preferred categories are either attended or ignored. Using functionally-defined 

category-selective regions of VTC representing either attended or ignored object categories 

provided us with an anchor to then investigate residual correlations between these regions 

and other parts of the brain. We hypothesized that the strongest residual correlations 

would be observed between regions of cortex and a particular category-selective region 

of VTC (e.g., a face-selective region in the fusiform gyrus) when participants are cued to 

attend that region’s preferred category (e.g., faces). However, an alternative hypothesis, 

consistent with literature showing that both attending and ignoring require top-down 

cognitive control (Martinez-Trujillo and Treue, 2004; Scolari et al., 2012), is that residual 

correlations with category-selective regions would be equally strong regardless of whether 

those preferred categories are attended or ignored. By utilizing both actively-attended and 

actively-ignored stimuli presented simultaneously in the same spatial location, we directly 

pit these competing hypotheses against one another.

Third, importantly, we investigated the relationship between the effects of attention on 

stimulus representations and residual correlations. That is, we sought to determine (i) 

whether there is a correlation between a region’s category representations and its residual 

correlations with VTC category-selective regions, and (ii) whether this relationship is 

modulated by attention. First, we hypothesized that if residual correlations reflect the 

sharing of information about attended visual object categories between VTC and other 

cortical regions, then it should follow that category classification accuracy would be 
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higher in cortical regions with stronger residual correlations with VTC category-selective 

regions. Second, we hypothesized that selective attention would modulate this relationship, 

revealing a stronger correlation between residual correlations and classification accuracy 

when images from these object categories are attended compared to when they are ignored. 

In particular, we hypothesized that this attentional enhancement of classification accuracy 

and residual correlations would be prominent in regions of the FPN, given this network’s 

established role in goal-directed attention. Together this combined novel approach allows 

us to systematically examine the impact of top-down selective attention on object category 

representations and their relationship across the brain.

2. Materials and methods

The fMRI data presented here were previously published in (Bugatus et al., 2017) and 

(Keller et al., 2021). Here we will briefly describe the subjects and acquisition as detailed 

information can be found in the original manuscript. Additionally, we describe in detail new 

analyses and methodological approaches that are unique to the present paper and have not 

been published or done elsewhere. Data/Code Availability Statement: Data and code are 

available at https://github.com/akjags/att_class_resid.

2.1. Subjects

Subjects recruited from Stanford University participated in one of two studies. The first 

study included twelve participants (5 female, ages 23–44) whose data was previously 

published in (Bugatus et al., 2017). These participants underwent fMRI scanning including 

three runs of the Selective Attention task and three runs of the Oddball task. The second 

study included 20 additional participants (10 female, ages 18–37) from (Keller et al., 2021) 

who participated in one run of the Selective Attention task and one run of the Oddball task 

as well as other tasks not relevant to this study. Because of time constraints, they participated 

in fewer runs of the Selective Attention and Oddball tasks. Seven subjects were excluded 

because of excessive head movement (>2 voxels either within-scan or between-scans) during 

one or more tasks and 4 subjects were excluded because we could not localize the majority 

of VTC functional ROIs of sufficient size. Thus, a total sample of twenty-one subjects (8 

female, ages 21–44) were included in our analyses. All subjects had normal or corrected-to-

normal vision. Ethics Statement: All procedures were approved by the Stanford Internal 

Review Board on Human Subjects Research. Participants gave written informed consent 

before participating in this study.

2.2. Data acquisition and preprocessing

Subjects were scanned using a General Electric Sigma MR750 3T scanner located in the 

Center for Cognitive and Neurobiological Imaging (CNI) at Stanford University using a 

custom-built 32-channel head coil. Using an EPI sequence with a multiplexing (multiband) 

factor of 3, we acquired 48 slices at 2.4 mm isotropic resolution, FOV = 192 mm, TE = 

30 ms, TR = 1 s, and flip angle = 62°. The slice prescription covered the entire brain, 

except for the very superior portion of the cortex, roughly corresponding to superior motor 

and somatosensory cortices. Additionally, T1-weighted anatomicals of the same prescription 

were acquired, which were used to align the fMRI data to the whole brain anatomical 
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images. Finally, whole-brain anatomical images of each subject’s brain were acquired using 

a T1-weighted SPGR sequence with a resolution of 1 × 1 × 1 mm, FOV = 240 mm, flip 

angle = 12° This volume anatomy was used to create a cortical surface reconstruction of 

each subject’s brain using FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu/).

Functional data from each run was aligned to the individual’s own brain anatomy. Motion 

correction was performed both within and across functional runs using mrVista (https://

github.com/vistalab/vistasoft) motion correction algorithms. Runs in which participants’ 

head motion was greater than 2 voxels were discarded. No slice-timing correction or global 

signal regression was performed. All data were analyzed within individual participants’ 

native brain anatomy space without spatial smoothing

2.3. Selective attention task

During fMRI, subjects viewed grayscale images from various object categories: faces, 

houses, cars, bodies, and pseudo-words while fixating at the center of the screen. Examples 

of the stimuli and task are in (Bugatus et al., 2017), Fig. 1. In each 8-second block, subjects 

were presented with a series of eight grayscale images each containing overlaid exemplars 

from two object categories (e.g., faces and houses). Before each block, a cue indicating the 

name of the category to be attended appeared for 1 second. Participants were instructed 

to attend to items of that category (e.g., faces), and to respond with a button press when 

an item of the attended category was presented upside-down. 0, 1, or 2 images of either 

the attended or ignored category were presented upside down at random in each block. 

This paradigm also necessitates active feature-based ignoring as subjects were instructed to 

withhold responses to upside-down items of the ignored category that occurred in the same 

frequency as the attended one.

Subjects performed between one and three runs of this task with different images. Image 

order and presentation was randomized across runs. Each run contained 40 blocks. Across 

blocks, all possible pairings of the 5 categories and attended/ignored conditions occurred.

2.4. Oddball task

The same participants also participated in an fMRI experiment in which they performed 

an oddball detection task. In this task, participants viewed grayscale images from the same 

categories: faces, houses, cars, bodies, and pseudo-words. Fixating at the center of the 

screen, subjects are presented with a series of 8 images in each block and were asked to 

respond when a phase-scrambled image without an object appeared. Either 0, 1 or 2 phase-

scrambled images were presented in each 8 image block. Since each item was presented 

individually, the neural responses measured during this task were used as the training data 

for the classification analysis.

2.5. Definition of regions of interest (ROIs)

We used two types of regions of interest (ROIs) to analyze the data: Functional ROIs (fROIs) 

to define category-selective regions of VTC at the individual subject level, and Glasser Atlas 

ROIs (Glasser et al., 2016) that tile the entire cortex.
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2.5.1. Functional regions of interest (fROIs)—To independently identify category-

selective regions of VTC, we used an independent localizer experiment in which subjects 

viewed in blocks images from 5 domains (faces, bodies, places, characters and objects). 

The localizer used 3 runs, similar to the (Stigliani et al., 2015 experiment available here: 

https://github.com/VPNL/fLoc). 8 subjects participated in a localizer with an oddball task 

and 2 categories per domain (as in Stigliani et al., 2015) and 24 subjects participated in an 

experiment with images from the same 5 domains and 1 category per domain, and a 2-back 

task (as in Bugatus et al., 2017). Prior experiments from our lab show that both tasks are 

able to localize VTC category-selective regions effectively (Bugatus et al., 2017; Weiner and 

Grill-Spector, 2010). Therefore, as a logistical convenience, the n = 8 participants who had 

already participated in an Oddball task localizer experiment (and whose fROIs had already 

been successfully identified) were not asked to complete another localizer experiment. This 

did not impact our ability to identify fROIs in all of the participants.

We analyzed the localizer data using a general linear model (GLM): (1) Using the GLM 

we estimated block-averaged response amplitudes (betas) to each category in each voxel. (2) 

Then, we generated several contrast maps comparing responses to images of one domain 

vs. all other domains (units of t-values). (3) Category-selective ROIs were defined as voxels 

in ventral temporal cortex (VTC) having significantly stronger responses to images of that 

domain compared to all others, with a threshold of t ≥ 3 (as t represents effect size), voxel 

level, uncorrected. All fROIs were a minimum of 5mm3 and maximum of 177mm3 each, 

with an average volume of 43.4 ± 6.67 mm3.

Here we analyzed data from one VTC category-selective region from each domain (faces, 

body, place, word) to test if effects vary across domains. As there are multiple face and 

word-selective ROIs in VTC, we selected one category-selective region within VTC for each 

object category of interest (faces, houses, bodies, words). This allowed us to compute the 

average residual correlation across conditions evenly, using one region per category for all 

categories. We chose mFus-Faces because it is anatomically proximal to OTS-bodies and 

CoS-places (e.g., Stigliani 2015), thought to be in the same level of the processing hierarchy 

(Weiner et al., 2017), and we were able to identify these regions in the majority of our 

participants. As mOTS-chars is left lateralized (Gomez et al., 2018; Stigliani et al., 2015) 

(only ~20% of participants have bilateral mOTS) but pOTS-chars is found bilaterally, we 

chose to use pOTS-chars rather than mOTS-chars as the other category-selective fROIs are 

bilateral. Supplementary Table 1 provides the details as to which fROI was identified in each 

participant and hemisphere.

mFus-faces was defined as a cluster of face-selective voxels in the lateral fusiform gyrus 

near or overlapping the anterior tip of the mid fusiform sulcus (MFS), as in (Weiner et 

al., 2017). We identified mFus-faces in 19/21 subjects in the right hemisphere and 14/21 

subjects in the left hemisphere.

CoS-places was defined as a cluster of place-selective voxels in the collateral sulcus (CoS) 

near/overlapping the junction between the CoS and the anterior lingual sulcus (ALS) as in 

(Weiner et al., 2018). We identified CoS-places in 21/21 subjects in the right hemisphere and 

21/21 subjects in the left hemisphere.
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OTS-bodies was defined as a cluster of body-selective voxels in the occipital temporal 

sulcus (OTS), typically between pFus- and mFus-faces (Weiner et al., 2017; Weiner and 

Grill-Spector, 2010). We identified OTS-bodies in 19/21 subjects in the right hemisphere 

and 10/21 subjects in the left hemisphe

pOTS-chars was defined as a cluster of character-selective voxels in the OTS. We identified 

pOTS-chars in 13/21 subjects in the right hemisphere and 17/21 subjects in the left 

hemisphere.

2.5.2. Glasser Atlas ROIs—To independently define ROIs tiling the entire cortex, we 

used the Glasser Atlas (Multi-Modal Human Connectome Project’s Atlas (HCP-MMP1.0) 

(Glasser et al., 2016). We chose this brain parcellation because (i) it is the most up to 

date parcellation of the entire brain, and (ii) it is based both on functional and connectivity 

properties of cortical regions which makes it unbiased and appealing for the questions 

of interest in the present study. We used the ROIs defined in the FreeSurfer 6.0 (https://

surfer.nmr.mgh.harvard.edu/) average brain (labels in FreeSurfer) and using cortex-based 

alignment in FreeSurfer we transformed these labels into each participant’s native cortical 

surface. Then we imported each ROI from FreeSurfer into mrVista for subsequent functional 

analysis. No additional voxel selection or ROI restriction was performed. Because ROI 

size is non-uniform in the Glasser atlas varies, we tested whether our key measurements 

(classification accuracy, Methods Section 2.6; and residual correlations, Methods Section 

2.7) are correlated with ROI size, which we computed as the number of voxels contained 

in the ROI on the freesurfer average (fsaverage) inflated surface. Results shown in 

Supplementary Table 2 reveal no correlation between classification accuracy or residual 

correlations and Glasser ROI size.

For analyses in which ROIs were analyzed separately by lobe, we assigned each Glasser 

Atlas ROI to its most proximal lobe: occipital, temporal, parietal, or frontal. Lobe 

assignments for each Glasser Atlas ROI are depicted in Supplementary Figure 1. The 

following Glasser atlas ROIs which overlap the average VTC functional ROIs described 

above (Rosenke et al., 2021; Weiner et al., 2017) were excluded from all statistical analyses: 

FFC, PH, PHA1, PHA2, PHA3, TE2p, VMV1, VMV2, VMV3. These ROIs are depicted in 

Supplementary Figure 2. Based on our hypothesis that regions of the fronto-parietal network 

(FPN) involved in goal-directed attention might show particularly notable enhancement of 

classification accuracy (Methods Section 2.6) and residual correlations (Methods Section 

2.7) with attention, we made note of the following Glasser Atlas ROIs that overlap the FPN 

(Osher et al., 2019): 6a, 6ma, 6d, 6v, 6r, i6–8, 8Av, 8C, 55b, FEF, PEF, IFJp, IFJa, IFSp, V7, 

IP0, IP1, IPS1, IP2, AIP, LIPd, LIPv, VIP, MIP, 7PL, 7 PC, 7AL, and PFt. These ROIs are 

also depicted in Supplementary Figure 2.

2.6. Category classification from cortical responses

To assess the degree to which category information is represented across cortex, we 

employed a multi-class support vector machine classifier (SVM, Boser et al., 1992), by 

constructing multiple one-versus-all SVM classifiers with a linear kernel to predict the 

object category that was attended or ignored from multivoxel patterns of activity. The SVM 
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was trained and tested on distributed responses across voxels of each of the Glasser Atlas 

ROIs. Other hyperparameter values include box constraint of 1, kernel scale of 1, alpha 

initialization of 0.5, and a Sequential Minimal Optimization (SMO) solver.

Classification Procedure: Classification was done independently in each ROI from the 

distributed responses of that ROI. The training and testing sets were from independent 

experiments: the training set consisted of data from the Oddball task and the test sets 

were the Attended or Ignored conditions during the Selective Attention task. We assessed 

the performance of the classifier that had been fit to the Oddball task in predicting the 

attended or ignored category in the Selective Attention task. Prior research suggests that 

category-specific information from raw response amplitudes (betas) can be cloaked by the 

mean response across all categories (Margalit et al., 2020; Sayres and Grill-Spector, 2008). 

Thus, in the classification analyses, we used t-contrasts to minimize the shared variance in 

the cortical responses to different categories (e.g., distance from the coil) and to examine the 

relative contribution of a category relative to other categories while taking into account the 

residual error of the GLM.

Training: The training set for each ROI consisted of the distributed responses from the 

Oddball tasks across the ROI, which were based on t-values. In brief, we first fit data from 

the Oddball task in each voxel in the brain using a GLM by convolving the design matrix 

of the Oddball experiment with the hemodynamic response function (hRF) implemented in 

SPM8 (https://www.fil.ion.ucl.ac.uk/spm/), to estimate response amplitudes (betas) for each 

of the five categories. From the GLM, we computed in each voxel a t-contrast for each 

category against all other categories. We extracted the distributed pattern of t-values across 

voxels in a given ROI and used this to train the classifier.

Testing: The testing set consisted of data in the same ROI from the Selective Attention 

task. Like the Oddball task, we fit a GLM in each voxel to the data of the Selective 

Attention task, and estimated response amplitudes (betas) to each of the 20 conditions of 

the task (attend/ignored × 10 pairings of 5 categories). From this we estimated distributed 

responses across the ROI for the attend/ignore conditions for each category. Attended: After 

fitting the GLM to the data of the Selective Attention task, we computed the t-contrast in 

each voxel, contrasting all the conditions in which a given category was attended against 

all the conditions in which that category was not present. This results in 5 contrasts. We 

then extracted the distributed pattern of t-values across voxels in a given ROI to evaluate 

the classifier. Ignored: Same as attended, but for all conditions in which the category was 

present and ignored vs. all conditions in which the category was not present. We performed 

these processing steps separately for each of the 3 runs, giving us a total of 15 observations 

for each of our test sets.

Using the data from the Oddball task as SVM training data, we tested the performance of 

the SVM classifier separately on the attended and ignored conditions. That is, in the attended 

condition the classifier predicts what category the subject is attending to and in the ignored 

condition the classifier predicts which category the subject is ignoring.
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In order to perform multiclass classification with a linear SVM, we employed the Matlab 

(mathworks.com) functions fitcsvm and fitcecoc to train a binary classifier for each category 

(1 vs. all others) and generate a prediction based on which classifier had the greatest 

separation from its category boundary to determine the category out of the 5 possible 

categories. We computed the noise ceiling performance by randomly permuting the category 

labels and using the trained multi-class SVM classifier to predict the randomly permuted 

labels 1000 times. This gave us a distribution of prediction accuracies, from which we could 

estimate the threshold required to exclude 95% of these predictions. This was computed 

individually within each subject and each ROI separately, and then averaged together to 

yield a global threshold that could be compared across all ROIs. However, we also verified 

that computing the confidence intervals separately and thresholding each ROI using a 

ROI-specific threshold did not change the number of ROIs which exceeded chance level 

classification accuracy in the brain maps. We thus used an accuracy threshold of 0.2002 ± 

0.0234 to decide which ROIs exceeded chance level classification.

Classification control: To test whether classification results are specific to this dependent 

variable (t-values), we replicated these classification analyses using raw responses (betas) 

for both the training and testing data. Results in Supplementary Figure 3.

2.7. Residual correlation analysis

To uncover functional relationships associated with top-down signals between cortical 

regions and category-selective regions under attended and ignored conditions of the 

Selective Attention task, we performed a residual correlation analysis (Supplementary 

Figure 4). First, we sought to isolate the top-down component of the BOLD signal 

that is independent from the bottom-up, stimulus driven component. Thus, we separated 

each voxel’s time course to 2 components: (i) the stimulus-evoked component, and (ii) 

the residual activity. To estimate the stimulus-evoked activity, we fit a general linear 

model (GLM) to the time course by convolving the experimental design matrix with the 

hemodynamic response function to generate predictors of the contribution of each condition 

to the BOLD response. Fitting each voxel’s time course data, we estimated betas for each 

predictor separately for each run. Then we extracted the residual activation in each voxel 

by subtracting the predicted time course calculated from the GLM from the measured voxel 

time course.

After these whole time course residuals were computed, we extracted the residual for 

each trial type: that is, each of four stimulus categories which are associated with a 

VTC category-selective ROI (faces, houses, bodies, and words) separately for when it was 

presented and attended (e.g., trials in which faces were presented and participants were cued 

to attend to faces) and when it was presented and ignored (e.g., trials in which faces were 

presented but a different category was attended to) and these trials from each condition 

were concatenated. Then, we calculated mean residuals across voxels of each of the VTC 

category-selective fROIs (mFus-Faces, CoS-Houses, OTS-Bodies, OTS-Words) as well as 

each Glasser Atlas ROI to determine the mean residual of each ROI. Since averaging across 

voxels removes independent noise among voxels, this residual reflects a component of the 

brain signal that is not explained by the stimulus, for example, top-down attention is not 
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modeled in the GLM. To determine the correlation in the time-series of residuals between 

ROIs, we then calculated the pairwise correlations between the average residual of each 

category selective ROI and each Glasser Atlas ROI. Correlations were calculated separately 

for trials in which the preferred stimulus category for each ROI (e.g., faces for mFus-Faces) 

was attended and when it was ignored. We refer to these resulting correlations as "residual 

correlations," as they refer to correlation between the residual signals of pairs of ROIs. 

Others have referred to these correlations as "background connectivity" (Al-Aidroos et al., 

2012).

To test whether the GLM captured the stimulus-evoked activity, we performed a control 

analysis, in which we computed correlations in residual activity between two trials of the 

same condition (e.g., face attended, body ignored condition). This control was done within 

each region of the Glasser Atlas in each hemisphere and subject (for this analysis, we 

utilized the 12 subjects who underwent three total runs of the experiment to maximize the 

number of trials of each condition type). We reasoned that if after removing the stimulus-

evoked activity estimated by the GLM, there still remained some stimulus-related activity 

that was not modeled by the GLM (e.g., offset response), then the within-region residual 

correlations among trials of the same condition would be significantly positive. However, 

contrary to this prediction, results of this analysis show that the distribution of these within-

ROI residual correlations to the same condition is not significantly greater than zero (mean 

± std: −0.010±0.051; t(11)=−0.712, p=.492, two-sided). As a second control, we conducted 

the same procedure on the original time series prior to removing the activity modeled by the 

GLM. Results show that doing the same analysis on the original data (prior to removing the 

task-based activation from the GLM) the mean within-region correlation to different trials 

of the same condition was positive on average (mean ± std: 0.008±0.044) and significantly 

greater than the distribution generated using the residual correlations (t(11)=3.069, p=.011, 

two-sided; Supplementary Figure 5). These analyses provide strong evidence that the GLM 

procedure effectively captures the stimulus-evoked activity. Residual correlations were 

computed using Matlab R2014a (mathworks.com), mrVista (https://github.com/vistalab/

vistasoft), and SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

2.7.1. Chance-Level residual calculations—To determine chance level residual 

correlation for each analysis, we used permutation testing. We hypothesized that if the 

residuals reflect top-down signals then they should be subject-unique. However, if there 

remained task-based activity that was not removed by the GLM, it would have remained 

across subjects and thus would have elevated the chance level residual correlations between 

subjects. Thus, for each Glasser Atlas ROI, we calculated correlations between the residuals 

in that ROI in one subject with the residuals of a VTC category-selective ROIs for a 

randomly-selected condition from a different subject. This process was repeated over 1000 

iterations for each Glasser Atlas ROI, each time randomly choosing two independent 

subjects, a VTC category-selective fROI, and a condition by sampling randomly with 

replacement. The mean correlation across these 1000 iterations provides an estimate of the 

chance residual correlation which was 0.01 ± 0.03. To further ensure that this chance-level 

was a reasonable estimate, we also computed a second chance-level aimed at breaking the 

temporal correlations between residuals: we randomly shuffled the time series of residuals 
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in each region and subject before computing pairwise correlations between residuals of 

different ROIs. This random shuffling procedure was repeated 1000 times for each region of 

the Glasser Atlas, in each hemisphere, and subject. Then we calculated the average chance 

level for each subject by averaging over regions and hemispheres and confirmed that no 

subjects’ shuffled chance-level were outliers (greater than two standard deviations of the 

mean). We then calculated the average chance-level across all subjects (−0.00002±0.009). 

Given that this second chance-level was less stringent than the above chance-level, we opted 

to use the stricter chance-level as a reference point in our figures.

2.8. Statistical analyses

To assess the significance of classification accuracy across Glasser ROIs and residual 

correlations of Glasser ROIs with VTC ROIs, we utilized separate three-way repeated 

measures analyses of variance (ANOVAs) for each metric with factors for lobe (frontal, 

parietal, temporal and occipital), hemisphere (left or right), and condition (attended or 

ignored) totaling 4 × 2 × 2 factors. To determine whether the effects of selective attention 

on residual correlations and classification accuracy varied systematically by their magnitude, 

we performed a regression analysis relating the magnitude of the metric (classification 

accuracy/residual correlations) separately for the attended and ignored conditions across 

ROIs in each lobe. The slope of the regression can be thought of as an attentional scaling 

factor, which represents the extent to which attention scales up or scales down each metric; 

Tables 1 and 2, respectively, provide details of linear regression results, with t and p values 

indicating whether the coefficients of the linear regression are significantly greater than 

zero (two-sided test). We applied Bonferroni correction for multiple comparisons to account 

for the eight linear models applied for each metric (classification accuracy and residual 

correlations). All statistical analyses were conducted in MATLAB 2014a (mathworks.com) 

and R (Version 3.5.0) using RStudio (Version 1.1.383).

Having computed the classification accuracy as well as the residual correlation for each ROI 

of the Glasser Atlas, we examined whether these measures were related. To quantify the 

relationship, we computed linear regressions between classification accuracies and residual 

correlations with VTC ROIs using data from all Glasser Atlas ROIs. The linear regressions 

were computed between the mean subject classification performance for that ROI and 

the mean subject residual correlation with the VTC ROIs. The regression analysis was 

done separately in each hemisphere, lobe, and attentional condition (attended, ignored) 

and these 16 regressions were Bonferroni corrected to account for multiple comparisons. 

To test whether these linear relationships varied significantly by attention condition, we 

used stepwise linear regression to predict classification accuracy in each hemisphere and 

condition using residual correlations (step 1), attention condition (step 2), and the interaction 

between residual correlations and attention condition (step 3). We report the results of the 

final model (step 3) in Table 3. Improvements in model performance at each step were 

calculated with a Chi-Squared test using the “anova” procedure in R.
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3. Results

3.1. Does attention affect the decodability of category information in the human brain?

To examine the effect of attention on category representations across cortex, we compared a 

classifier’s ability to decode category information from brain responses during the Selective 

Attention task when a category was attended to when it was ignored. We decoded this 

information independently in each ROI of the Glasser Atlas (Glasser et al., 2016) and 

compared classification accuracy to chance level classification. To that end, we used a 

support vector machine (SVM) classifier with a linear kernel to predict from each region’s 

distributed responses either the attended object category or the simultaneously presented 

ignored object category during each trial of the Selective Attention task (Methods, Section 

2.6). Importantly, the classifier was trained on distributed responses from a separate Oddball 

task, in which the subjects viewed single stimuli rather than overlaid stimuli, with no 

attentional cues.

Qualitatively, we observed that the category of the attended stimulus can be decoded 

with accuracy above chance in many regions across the cortex, with the highest decoding 

accuracy found in visual cortex, including early visual cortex, lateral occipital cortex (LOC), 

and ventral temporal cortex (VTC) (Fig 2a). Glasser ROIs with notable classification 

accuracy (greater than 0.5 compared to 0.2 chance level) during the attended condition 

were: bilateral V2, V3, V3CD, V4, V4t, V8, LO1, LO2, LO3, PIT, and left hemisphere 

V1 and V3B in the occipital lobe, as well as bilateral VVC and right hemisphere FST 

in the temporal lobe (Fig 2a). We observed that several of the Glasser ROIs overlapping 

the fronto-parietal network (Supplementary Figure 2) were in the top 15% of ROIs with 

the highest enhancement of classification accuracy with attention: 7PL, IP0, IPS1, V7, and 

VIP. Interestingly, we also found that category information was decodable above chance in 

regions not typically associated with visual representation, including primary somatosensory 

cortex and primary motor cortex (2 and 4). Furthermore, we found that the category of 

the ignored stimulus could also be decoded with accuracy above chance in several regions, 

particularly in Glasser ROIs spanning the visual cortex in the occipital and temporal cortices 

(Fig 2b).

To better visualize where in the cortex category classification accuracy is enhanced by 

selective attention, we subtracted in each of the Glasser ROIs the decoding accuracy 

during the ignored condition from that of the attended condition to develop a region-

specific measure of attentional enhancement. We found that there was an enhancement in 

classification accuracy with attention across multiple cortical ROIs, particularly in the visual 

cortex, with some minor decrements in classification accuracy in frontal lobe ROIs (Fig 2c; 

difference maps showing statistical significance in Supplementary Figure 6a).

To quantify significant differences in classification performance across lobes and conditions, 

we computed mean classification performance across lobes for each condition (Fig 

3a,c) and used a three-way repeated measures analysis of variance (rmANOVA), with 

factors for lobe (occipital/temporal/parietal/frontal) × hemisphere (left/right) × attention 

condition (attended/ignored) to test the significance of these results. The qualitative analysis 

of classification accuracy combined with the rmANOVA revealed three main findings: 
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(i) category information varied by lobe (main effect of lobe: F(3,60)=49.76, p<.001, 

νP
2=0.713) with highest classification accuracy in the occipital lobe (Fig 3a,c blue bars, 

Tukey HSD: all ps <0.001), (ii) category information varied across attended and ignored 

conditions (main effect of condition: F(1,20)=9.691, p=.006, νP
2=0.326) with higher 

classification accuracy during the attended than ignored condition (Fig 3a,c dark vs. light 

bars, Tukey HSD: p<.001), and (iii) the effect of attention varied across lobes: significant 

interaction between lobe and condition (F(3,60)=29.080, p<.001, νP
2=0.593), whereby 

there was a larger difference between attended and ignored conditions in the occipital 

lobe and a smaller difference between conditions in the frontal lobe (Tukey HSD: ps 

<0.001). There were no other significant effects (no main effect of hemisphere, interaction 

between condition and hemisphere, interaction between lobe and hemisphere, or three-way 

interaction between condition, hemisphere, and lobe; ps > 0.05). Results are similar when 

(i) examined separately for each category (faces, bodies, houses, and words; Supplementary 

Figure 7; Supplementary Table 3), suggesting that the results are not driven by a specific 

salient category, and (ii) when classification analyses of distributed responses were done for 

the raw signal amplitudes (Supplementary Figure 3).

We further determined which Glasser ROIs received the greatest boost from attention by 

sorting the ROIs in each lobe by their classification performance in the attended condition 

and directly visualizing classification accuracy across conditions for each ROI (Fig 3b,d). 

Results indicate that ROIs that have higher classification accuracy for the attended condition 

also tend to have higher classification accuracy for the ignored condition. Additionally, 

ROIs with higher classification accuracy during the ignored condition also have larger 

gains in classification performance during the attended condition than ROIs that have 

lower classification accuracy. To quantify this attentional enhancement, we ran a linear 

regression examining the relationship between mean decoding of category information for 

attended vs. ignored stimuli across ROIs, separately for each lobe and hemisphere. This 

approach allowed us to calculate a single scaling factor (the β value from the linear 

model) representing the attentional scaling factor for each lobe and hemisphere. Scaling 

significantly greater than 1 reflects attentional enhancement and scaling significantly less 

than 1 reflects attentional suppression. Results show that a linear model well captures the 

relationship between category information for attended vs ignored stimuli (all lobes and 

hemispheres ps < 0.05, Bonferroni corrected for multiple comparisons, except for the left 

frontal lobe p=.12, full stats in Table 1). The attentional scaling factor was 1.47 for the 

left and 2.02 for the right occipital lobe, 1.92 for the left and 1.60 for the right temporal 

lobe, 1.24 for the left and 1.14 for the right parietal lobe, indicating significant attentional 

enhancement of category representations bilaterally in these lobes. In the frontal lobe, the 

linear relationship was not significant after Bonferroni correction and showed a different 

trend in that the attentional scaling factor was less than 1 (0.17 in the left and 0.27 in the 

right frontal lobe). This indicates a trend in which category information in the frontal lobe 

was more decodable during the ignored condition than the attended condition.
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3.2. What is the nature of residual correlations between different cortical regions and 
ventral temporal cortex category-selective ROIs?

Having determined that the decodability of category information varies with attention 

across cortex, we next investigated a potential correlate of this attentional enhancement: 

the strengthening of residual correlations between category-selective regions of VTC and 

other regions of the brain. These residual correlations, computed after regressing out 

stimulus-evoked BOLD responses, are thought to contain non-stimulus-driven or top-down 

attention signals that are not time-locked to stimulus events. One possibility is that residual 

correlations with a category-selective VTC fROI would be significant and positive only 

when that region’s preferred category is attended. This would suggest that regions that show 

positive correlations with category-selective fROIs are involved in directing attention to 

the relevant stimuli. Alternatively, finding significant residual correlations with the category-

selective fROI when its preferred category is either attended or ignored would suggest that 

both attending and ignoring involve top-down control.

To distinguish between these hypotheses, we examined correlations in residual activity 

between each of the Glasser ROIs with four category-selective fROIs of VTC selective to 

different categories while attending or ignoring each region’s preferred category. To capture 

correlations in ongoing activity that were not time-locked to stimulus presentation, we 

subtracted the stimulus-evoked response in each voxel, and then measured the correlation 

between the mean residual activity of each region of the Glasser Atlas, and the mean 

residual activity in each of the category-selective fROIs of VTC (mFus-Faces, CoS-Houses, 

OTS-Bodies, OTS-Words) when subjects were either selectively attending or ignoring each 

category-selective region’s preferred category (Methods, Section 2.7). We refer to these 

correlations between residual activities as residual correlations and only consider Glasser 

ROIs that did not overlap with the VTC category-selective regions. We visualized for 

each Glasser ROI its mean residual correlation across the four VTC category-selective 

regions and all participants (Fig 4 and Fig 5b,c). Additional visualizations and statistics by 

category are shown in Supplementary Figure 8 and Supplementary Table 4, respectively. 

We summarized data per lobe (Fig 5a,c), and noted that these residual correlation values 

are well within the ballpark of what would be expected based on prior work (Tompary et 

al., 2018). We then tested whether there are significant differences in residual correlations 

to VTC fROIs using a three-way repeated-measures ANOVA with factors of lobe (occipital/

temporal/parietal/frontal) × hemisphere (left/right) × attention condition (attended/ignored). 

Results of these analyses reveal four main findings.

First, as visible in Figs 4 and 5a,b, residual correlations to VTC fROIs are heterogeneous 

across brain lobes (main effect of lobe, F(3,60)=59.04, p<.001, νP
2=0.747). Surprisingly, 

we observed the highest residual correlations between ROIs in the occipital lobe (Fig 

5a,c blue bars, Tukey HSD: ps < 0.001) despite having regressed out the stimulus-evoked 

hemodynamic response. This is also evident when examining individual Glasser ROIs, as 

residual correlations were above chance for all occipital ROIs (Fig 5b,d), but for only 

some of the ROIs in the other lobes. Second, we observed a significant interaction between 

lobe and attention condition (F(3,60)=4.96, p=.004, νP
2=0.199), with the greatest difference 

between the attended and ignored conditions in the occipital lobe. The difference between 
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the residual correlations per ROI for attended and ignored conditions is visualized on the 

Glasser Atlas (Fig 4c) again showing the largest enhancement in ROIs of the occipital 

lobe. Consistent with the lack of the main effect of attention condition, in many ROIs 

the differences in residual correlations are not significant at the ROI level (Supplementary 

Figure 6b). Third, we observed a significant three-way interaction among lobe, hemisphere, 

and condition (F(3,60)=3.12, p=.033,νP
2 =0.135). This three-way interaction appears to be 

driven primarily by the observation that in the occipital lobe, residual correlations in the 

attended condition were higher than in the ignored condition in the left hemisphere (Tukey 

HSD: p<.001) but not the right hemisphere (Tukey HSD: p>.05), whereas this pattern was 

not observed in any other lobe (Tukey HSD: ps>0.05).

Ordering the ROIs by residual correlations in the attended condition in descending order 

reveals that ROIs with high residual correlations to VTC fROIs are evident across the 

occipital, parietal, and temporal lobes (Fig 5b,d). In the occipital lobe, the top regions 

were intermediate and high level visual areas: bilateral V3, V3CD, V4, V8 and LO1, left 

hemisphere V1, V2, V4t, LO2 and PIT; in the temporal lobe: bilateral VVC; and in the 

parietal lobe: bilateral IP0, IPS1, and MIP, and left hemisphere LIPv (Fig 5b,d). We also 

observed that several Glasser ROIs overlapping the fronto-parietal network (FPN): 55b, 7 

PC, 7AL, 7PL, AIP, FEF, IP0, LIPv, V7 and VIP were among the top 15% of ROIs with the 

highest enhancement of residual correlations with attention.

To test whether the effects of selective attention on residual correlations vary by the 

magnitude of these residual correlations, we ran a linear regression relating the mean 

residual correlations in the attended and ignored conditions across ROIs, separately for each 

lobe and hemisphere. In line with our hypothesis, regions with higher residual correlations 

overall also received the largest attentional modulation in all lobes and hemispheres (ps < 

0.001, all surviving Bonferroni correction for multiple comparisons, full stats in Table 2). 

The attentional scaling factor was 1.18 for the left and 0.96 for the right occipital lobe, 

0.98 for the left and 0.93 for the right temporal lobe, 1.25 for the left and 0.99 for the 

right parietal lobe, and 0.91 for the left and 0.91 for the right frontal lobe. The attentional 

scaling factors for the residual correlations are smaller in magnitude than those for category 

classification accuracy and reveal attentional enhancement (scaling larger than 1) only in the 

left occipital lobe and left parietal lobe, with the largest attentional suppression (scaling less 

than 1) in the bilateral frontal lobes.

3.3. Does the category decodability within a given region correlate with the strength of 
residual correlations between that region and VTC?

Our results thus far demonstrate that there is variability in the extent to which particular 

ROIs contain visual category information, as well as variability in the strength of their 

residual correlations with VTC category-selective fROIs. Thus, we asked: (1) is there 

a significant correlation between classification accuracy and the strength of residual 

correlations with VTC fROIs? (2) Does this relationship vary across attended and ignored 

conditions? We reasoned that finding a positive correlation between these metrics as well 

as a higher correlation among these metrics during attended than ignored conditions may 

suggest that attention plays an active role in enhancing task relevant category information 
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by means of correlated activity among ROIs. To test this hypothesis, we measured the 

correlation between mean category classification accuracy and residual correlations with 

VTC fROIs. This analysis was done across the Glasser ROIs in each lobe (excluding the 

ROIs that overlap the VTC fROIs) and separately for the attended and ignored conditions.

Results shown in Fig 6 reveal three main findings. First, we found significant correlations 

between classification accuracy and residual correlation to category selective ROIs in 

the occipital, temporal, and parietal lobes (Fig 6; full statistics in Supplementary Table 

5). That is, regions that show higher classification accuracy also have higher residual 

correlations with category-selective regions of VTC. Second, these correlations varied across 

lobes. In particular, these correlations were higher in the occipital and temporal lobes, 

and lower in the parietal and frontal lobe. Third, these associations varied by attention 

condition. For each hemisphere and attention condition, a step-wise linear regression model 

relating classification accuracy to residual correlations revealed significant improvement in 

model variance explained with the addition of attention condition as a factor (ps<0.001) 

and with the addition of an interaction term between residual correlations and attention 

condition (Ps<0.001). Table 3 summarizes the results of these linear regressions including 

the interaction term by lobe. These interactions were significant, indicating a strengthening 

of the relationship between residual correlations and classification accuracy with attention, 

in the bilateral temporal lobes and the right parietal lobe, although the latter did not pass 

correction for multiple comparisons.

Since the FPN has been hypothesized to be involved in top-down modulation, we also 

computed linear regressions between classification accuracy and residual correlations for the 

Glasser Atlas ROIs overlapping the FPN (Supplementary Figure 9), which are a subset of 

the frontal and parietal ROIs. This analysis revealed significant interactions between residual 

correlations and attention condition in both the left and right hemisphere fronto-parietal 

network (ps<0.05, Bonferroni corrected; Supplementary Figure 9). As a comparison, we 

computed these relationships using the subset of frontal and parietal ROIs after excluding 

ROIs overlapping the FPN and found that these interactions were lower than those for FPN 

ROIs and failed to reach statistical significance after correction for multiple comparisons 

with the exception of the right frontal lobe (Supplementary Figure 10).

Together, these analyses show that there is a strong relationship between residual 

correlations and classification accuracy in the occipital, temporal, and parietal lobes, with 

significant attentional modulation in the bilateral temporal lobes. This suggests that regions 

spanning the occipital and parietal lobes show coupling between category information and 

residual correlations independent of attention condition while temporal lobes show enhanced 

coupling when stimuli are attended and category information is task-relevant. This effect 

appears to be primarily driven by increased category information when stimuli of these 

categories are attended.

4. Discussion

In this study, we investigated the ways that selective attention can influence visual 

category classification accuracy and the strength of residual correlations with VTC category-
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selective ROIs across the human cortex, and then assessed the relationship between these 

measurements. Our data reveal three main findings. First, we found that when two objects 

are simultaneously viewed, the category of the attended object can be decoded more readily 

from distributed responses in an ROI than the category of the ignored object. Second, 

we found that the strength of residual correlations with category-selective regions of VTC 

was higher when those regions’ preferred categories were attended compared to when they 

were ignored. Third, we found a positive correlation between classification accuracy and 

the strength of residual correlations to VTC category-selective ROIs, indicating that the 

stronger the residual correlations in a given region of cortex, the better we could decode 

category information from that region. Below we discuss the implications of these findings 

on elucidating the neural mechanisms of selective attention.

4.1. Classification accuracy of attended and ignored object category representations

Our data contribute to the longstanding debate about whether attentional selection occurs 

“early” (Gandhi et al., 1999; Martínez et al., 1999; Somers et al., 1999) or “late” (Seidl et 

al., 2012; Shomstein et al., 2019; Wojciulik and Kanwisher, 1999) in the visual processing 

hierarchy (Yantis and Johnston, 1990). Prior evidence shows that attention impacts neural 

activity in visual cortex in many ways, including increasing neural firing rates (Motter, 

1993) and tuning neural responses (Desimone and Duncan, 1995; Kastner et al., 1999, 

1998; Reynolds and Heeger, 2009). Other evidence from stroke patients with damage to 

the right parietal cortex (a condition known as hemi-spatial neglect) reveal that information 

about visual objects that are outside the scope of attention still traverses quite far in the 

brain without being fully suppressed. For example, a hemi-neglect patient who was unable 

to attend to the left visual field was still capable of avoiding danger signals on the left 

side of a cartoon house (Marshall and Halligan, 1988). These data suggest that information 

about ignored visual objects may still be present in the brain even if this information is 

not accessible to conscious awareness. As such, it is noteworthy that we found greater 

enhancement of classification accuracy with attention not in the temporal lobe, but rather, 

in early visual and intermediate regions in the occipital lobe, which are thought to encode 

low-level and mid-level visual features. This finding is in line with predictions of the 

Reverse Hierarchy Theory (Hochstein and Ahissar, 2002) which suggests that focal attention 

to objects enhances low-level visual features relevant to the task of identifying objects rather 

than the category, or gist, which is encoded in high-level visual regions of VTC.

Our data are also consistent with the large body of research suggesting that attended 

stimuli can be decoded across many regions of the human brain (Kay and Yeatman, 2017; 

Bugatus et al., 2017; Çukur et al., 2013; Lee Masson et al., 2016; Peelen et al., 2009; 

Weiner and Grill-Spector, 2010; Klein et al., 2014). This includes studies using similar 

superimposed semi-transparent stimuli to demonstrate the effect of object-based attention 

in face- and house-selective regions of high-level visual cortex (O’Craven et al., 1999; 

Serences et al., 2004). It is possible that if we had used a different attention task, such as 

a spatial attention task, we may have found larger attentional effects in the parietal lobe, 

in line with previous spatial attention results (Peelen et al., 2009; Sprague & Serences, 

2013). These results also extend prior findings from our lab showing that both attended and 

unattended category information can be decoded from distributed responses across the entire 
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lateral occipitotemporal complex (LOTC) as well as ventral temporal cortex (VTC), but 

that only attended information can be decoded from distributed responses across the entire 

ventrolateral prefrontal cortex (VLPFC) (Bugatus et al., 2017). Extending our prior results, 

we not only show the effects of selective attention to attended vs ignored stimuli relative 

to training with independent data using a different (oddball) task but also reveal the effect 

of attention at a finer spatial resolution across the entire brain. One potential mechanism 

that may underlie improved classification accuracy to attended vs ignored objects may 

be increased amplitude of BOLD activity and consequently higher signal-to-noise ratio 

(Buracas and Boynton, 2007; Gandhi et al., 1999; Martínez et al., 1999; Somers et al., 1999; 

Wojciulik and Kanwisher, 1999). Future studies would be needed to address whether this 

association is causal.

Our data also suggest that attention may function both by enhancing sensory representations 

in visual cortex (Baldauf and Desimone, 2014; Cohen and Tong, 2015; Zhou et al., 2015), 

and by flexibly altering the readout of those sensory representations in higher order cortical 

regions (Birman and Gardner, 2019; Bugatus et al., 2017; Peelen et al., 2009). Although we 

observed significant enhancement in classification accuracy with attention, we found that 

both ignored and attended categories could be classified significantly above chance in visual 

cortex. This implies that if the readout from the visual cortex to the frontal cortex were 

fixed, then category information would be decodable in the frontal lobe in both attended and 

ignored conditions, as in visual cortex. However, contrary to this prediction, we found that 

category information in the frontal lobe is only decodable for attended stimuli. This suggests 

a flexible readout of task-relevant information in the frontal lobe and that attention may 

enable the transfer of information from visual cortex to the frontal lobe.

4.2. Residual correlations may reflect sharing of attended information between cortical 
regions

Two aspects of our data support the hypothesis that residual correlations may reflect the 

sharing of information about attended visual object categories between sensory regions 

and higher-order cortices. First, we found that occipital and temporal lobes had both the 

strongest category information and the strongest coupling between classification accuracy 

and residual correlations. Second, we found that the bilateral temporal lobes showed the 

greatest enhancement of coupling between classification accuracy and residual correlations 

with attention. Future studies using causal manipulations of information transfer in the brain 

may further illuminate whether these residual correlations play an active role as well as have 

behavioral consequences.

Another interesting observation is that there were still substantial residual correlations 

between brain regions and category-selective regions in VTC when those regions’ preferred 

categories were ignored. This suggests that top-down control may be necessary not 

only when attending stimuli but also when ignoring stimuli, in line with prior work 

emphasizing the importance of top-down control for both enhancement and suppression 

of sensory information (Martinez-Trujillo and Treue, 2004; Scolari et al., 2012). While 

we acknowledge that our residual correlations do not inform about the directionality of 

information flow, our results set the stage for future studies to assess the causal relationships 
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between category information and residual correlations. For example, future studies could 

test whether manipulation of residual correlations between sensory and higher-order cortices 

directly affects the availability of category information in either of these regions.

4.3. Implications for clinical research

Attention difficulties are among the most debilitating symptoms of mental disorders 

(Cotrena et al., 2016; Fehnel et al., 2013) and are associated with poorer prognoses (Majer 

et al., 2004), yet they are often overlooked. In fact, they remain among the least well-

understood neurobiologically (Keller et al., 2019b) outside of well-documented attentional 

biases toward negative information (Gotlib and Joorman, 2010). Recent work has shown 

that visual selective attention in particular is severely impaired in a subset of individuals 

with Major Depressive Disorder (Keller et al., 2019a) and individuals with symptoms of 

generalized/physiological anxiety (Keller et al., 2021). In line with burgeoning efforts in 

psychiatric research to understand transdiagnostic dimensions of psychopathology across 

units of analysis, known as the “RDoC” initiative (Insel et al., 2010), our work advances our 

understanding of the widespread cortical regions involved in selective attention, providing a 

roadmap for future studies to probe causal mechanisms in psychiatric populations.

Two key challenges in addressing selective attention impairments in depression and other 

mental illnesses are: (1) the observation that selective attention impairments in depression 

are often not alleviated with current first-line antidepressant pharmacotherapy (Keller et 

al., 2019c), and (2) the lack of precise neural targets for novel treatment development 

targeting specific symptom dimensions (Williams, 2016). First, to reduce the burden on 

patients to undergo multiple rounds of treatment attempts (often with debilitating side 

effects) before finding an effective treatment, future studies may utilize our behavioral 

paradigm to develop a clinic-ready measure of attention impairment for guiding more 

personalized treatment selection among currently-available options. Second, our analysis of 

visual selective attention utilized a data driven whole-brain approach to look beyond sensory 

cortices, opening the door for the potential development of stimulation therapies targeting 

a wider range of accessible brain areas. Thus, our study of attention using a low-cost 

behavioral paradigm lends itself to translational efforts for mapping attentional difficulties in 

various psychiatric populations.

5. Conclusions

Our study demonstrates that correlations in residual activity between higher-order brain 

areas and the ventral temporal cortex is related to the sharing of task-relevant object category 

information across cortical regions. Both decodability of object categories and residual 

correlations with regions preferentially processing these object categories are enhanced 

when said categories are attended compared to when they are ignored. Importantly, these 

findings inform our understanding of how selective attention influences the representation 

of information across the brain by revealing residual correlations between regions that 

may reflect the preferential sharing of attended information. Future studies may probe 

the directionality of this information flow using causal manipulations, which may have 
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important implications for clinical research on selective attention impairments in psychiatric 

illness.
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Fig. 1. 
Selective Attention Experiment. (a) Example trial of the selective attention experiment. 

In the selective attention experiment each trial contained 8 images each from 2 different 

visual object categories that were superimposed and could be either upright or upside down, 

presented over the course of 8 s. Participants were instructed to indicate with a button press 

when items of the cued category (in this example, a face) but not the ignored category (in 

this example, car) were upside down. Image with black contour indicates such an example in 

this trial. (b) Example stimuli used in the experiment. (c) Example VTC category selective 

regions.
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Fig. 2. 
Classification of category information is higher for attended than ignored stimuli. Mean 

classification accuracy (proportion of object categories correctly classified) across 21 

subjects and 5 object categories for (a) attended and (b) ignored categories. Maps are 

shown for the inflated lateral (top) and medial (bottom) cortical surfaces as well as flattened 

views (right) and are thresholded at chance level. That is, gray ROIs represent those 

with classification accuracy below chance level (0.2). (c) Mean difference in classification 

accuracy between attended and ignored conditions. Statistical significance values of the 

difference for each Glasser ROI are shown in Supplementary Figure 6a. White indicates 

Glasser ROIs overlapping VTC category-selective ROIs which were excluded from analyses.
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Fig. 3. 
Classification accuracy by lobe, hemisphere, and condition. (a,c) Mean classification 

accuracy averaged across Glasser ROIs from each lobe: occipital (blue), temporal (green), 

parietal (red) and frontal (orange) lobes, in the left (a) hemisphere and right (c) hemisphere 

by condition: attended (dark colors) and ignored (light colors). Error bars: standard error of 

the mean across ROIs. (b,d) Same conventions as (a,c) but for each ROI separately. ROIs 

in the attended (solid line) and ignored (dashed line) conditions are ordered by the mean 

classification accuracy in the attended condition; shaded area: standard error of the mean 

across subjects. O: Occipital; T: Temporal; P: Parietal; F: Frontal. Horizontal lines : chance 

level; shaded region: the 95% confidence interval.
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Fig. 4. 
Comparisons of residual correlations with VTC category-selective regions during attended 

and ignored conditions. Mean correlations between residual activity in each Glasser ROI 

and residual activity in VTC category-selective regions, averaged across object categories 

and participants, in (a) the attended condition and (b) the ignored condition. Gray ROIs 

are those with residual correlations below 0.1. Colored ROIs are at least six standard 

deviations greater than chance level (0.01) for visualization purposes. (c) Mean difference 

between attended and ignored residual correlations. Visualization of these difference maps 

(c) depicting statistical significance for each ROI may be found in Supplementary Figure 

6b. White indicates Glasser ROIs overlapping VTC category-selective ROIs which were 

excluded from analyses.
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Fig. 5. 
Residual correlations to VTC regions by lobe, hemisphere, and condition. (a,c) Mean 

residual correlations between VTC category-selective regions and each Glasser Atlas ROI 

from the occipital (blue), temporal (green), parietal (red) and frontal (orange) lobes, in 

the left hemisphere (a) and right hemisphere (c), respectively by condition: attended (dark 

colors) or ignored (light colors). Error bars: standard error of the mean across ROIs. (b,d) 

Same conventions as (a,c) but for each Glasser ROI separately. ROIs in the attended (solid 

line) and ignored (dashed line) conditions are ordered by the mean residual correlation in the 

attended condition; shaded area : standard error of the mean across subjects. O: Occipital; 

T: Temporal; P: Parietal; F: Frontal. Horizontal lines: chance level; shaded region : the 

95%confidence interval.

Keller et al. Page 30

Neuroimage. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Attention enhances the correlation between classification accuracy and residual correlations. 

Each scatterplot depicts the relationship between mean classification accuracy (y-axis) and 

mean residual correlations (x-axis). Each point is a Glasser Atlas ROI marked by condition 

(dark-colored X’s: attended; light colored O’s: ignored). Data are shown separately for the 

(a) left hemisphere and (b) right hemisphere. Panels are arranged by lobe: blue: occipital; 

green: temporal; red: parietal; orange: frontal.
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