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Abstract. Fatty liver disease (FLD) is characterized by 
accumulation of excess fat in the liver. The underlying 
molecular mechanism associated with the progression of 
the disease has been in elusive. Hepatocellular demise due 
to increased oxidative stress resulting in an inflammatory 
response may be a key feature in FLD. Recent advances in 
molecular biology have led to an improved understanding of 
the molecular pathogenesis, suggesting a critical association 
between the PI3K/AKT/PTEN signaling pathway and FLD. 
In particular, PTEN has been associated with regulating the 
pathogenesis of hepatocyte degeneration. Given the function 
of mitochondria in reactive oxygen species (ROS) genera-
tion and the initiation of oxidative stress, the mitochondrial 
antioxidant network is of interest. It is vital to balance the 
activity of intracellular key molecules to maintain a healthy 
liver. Consequently, onset of FLD may be delayed using 
dietary protective agents that alter PTEN signaling and 
reduce ROS levels. The advancement of research on dietary 
regulation with a focus on modulatory roles in ROS genera-
tion and PTEN associated signaling is summarized in the 
current study, supporting further preventive and therapeutic 
exploration.
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1. Introduction

The liver is an organ performing vital functions (1). Hepatic 
disorders can affect the physiological and biochemical func-
tions of the body. Fatty liver disease (FLD) is the prevalent 
form of chronic liver diseases that constitutes a range of disor-
ders, starting with steatosis progressing to advanced stages, 
such as steatohepatitis, liver cirrhosis and hepatocellular 
carcinoma (HCC) (2). The origin of FLD involves non-
alcoholic (NA) FLD and alcoholic liver disease (ALD (Fig. 1). 
In both cases, a complex process may cause the fatty liver 
in response to a variety of oxidative stress conditions (3). 
NAFLD is characterized by accumulation of excess fats in 
the liver of individuals unrelated to alcohol consumption; it 
is a progressive disease leading to irreversible liver injury (4). 
Non-alcoholic steatohepatitis (NASH) is an advanced stage of 
NAFLD, characterized by hepatic steatosis, ballooning injury 
and non‑bacterial inflammation with or without fibrosis (5). 
The pathogenesis of the progression from NAFLD to NASH 
coincides with metabolic disorders that cause hepatosteatosis, 
and further progression to steatohepatitis is due to additional 
cellular processes, including mitochondrial injury, excess 
oxidative stress and inflammation (6). Genomic instability 
is one stage of hepatic carcinogenesis (7). Growing evidence 
suggests a key function of oxidative stress caused by the 
generation of reactive oxygen species (ROS) in the progres-
sion of FLD (Fig. 1) (8,9). An additional influence in the 
progression from steatosis to steatohepatitis is the sensitization 
of hepatocytes to oxidative stress and cell apoptosis (10). As 
mitochondria serve a central role in the control of ROS genera-
tion and modulate the sensitivity to the cell apoptosis signaling 
pathway, mitochondrial function may be a key regulator in the 
development of steatohepatitis (11). Under normal conditions, 
living cells maintain a balance between ROS formation and 
quenching (12).
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An increasing incidence and prevalence worldwide mean 
that NAFLD has developed into a serious public health 
problem (13). As the underlying mechanism of FLD remains 
elusive and no effective therapeutic treatment has been estab-
lished to date. It is suggested that excess uptake of free fatty 
acids from food leads to an early pathogenesis (14). Exercise is 
a simple therapeutic intervention; however, it was determined 
to be insufficient to relief symptoms (15). Type 2 diabetes, 
hypertriglyceridemia and obesity are frequently associated 
with NAFLD and NASH, while alcoholic steatohepatitis (ASH) 
is associated with alcohol abuse (16). ASH and NASH are 
intermediate stages of FLD, which can develop into cirrhosis 
or HCC. PTEN, a tumor suppressor, has been valuable in eluci-
dating the pathways that regulate carcinogenesis in FLD (13). 
Progression of a fatty liver is accelerated by regulation of the 
liver PTEN signaling pathway (17). As with certain of other 
liver diseases, FLD increases the risk of liver cancer with poor 
outcomes and limited therapeutic options (13). Hence, a highly 
specific and effective drug treatment for FLD is required. The 
current review focuses on oxidative stress that contributes to 
the limited therapeutic effects in the treatment of FLD.

2. ROS involvement in the pathogenesis of fatty liver 
disease

Oxidative stress is considered as an imbalance between the gener-
ation of oxidants, such as ROS, and the activity of antioxidants, 
suggesting that the excess generation of free radicals and/or the 
modulation of antioxidant activity result in the accumulation of 
oxidative stress. Increased oxidative stress has harmful effects 
on cell functions that contribute to various diseases, including 
FLD (18). The imbalance in redox homeostasis is associated 
with the development of various tissue injuries, including 
brain, heart and bone (19). Cellular ROS increases via a certain 
pathways and mitochondrial damage. Mitochondria are the 
major intracellular site of oxygen consumption and are a source 
of ROS. Accordingly, alterations in mitochondrial function 
serve a significant role in the generation of ROS, which has 
been recognized to contribute to the development of ASH and 
NASH (11). Mitochondrial dysfunction is a contributor to ALD 
and this disease is linked to mitochondrial DNA fragmenta-
tion associated with active alcohol consumption (20). ROS 
are a group of oxygen-radical-containing molecules resulting 
from the metabolism of oxygen in the cells (21). Excessive 
concentrations of ROS result in macromolecular and genomic 
DNA damage, as well as cell death (22). In addition, elevated 
oxidative stress increases the risk of various cancer types (23). 
The formation of ROS during chronic inflammation is crucial 
to the progression of chronic liver diseases (24). ROS lead to a 
free radical chain-reaction in unsaturated fatty acids, a process 
called lipid peroxidation, generating toxic unsaturated alde-
hydes (25). The superoxide anion is the primary ROS generated 
in mitochondria and quenching of this compound is a critical 
step in preventing excessive oxidative stress. Additionally, 
ROS are physiologically important in signal transduction, 
cellular physiology, critical metabolic pathways and host 
defense (26,27).

ROS are abundant free radicals in nature, and ROS 
production and genomic stability are affected by lifestyle 
factors (28). Certain environment-associated lifestyle factors, 

including tobacco and alcohol consumption, ionizing radia-
tion, infection, inflammation and the aging process, cause 
oxidative stress (29). High blood glucose and excessive insulin 
further cause elevated ROS production (30). Hyperglycemia 
exacerbates FLD by elevating apoptosis via generation of 
excessive ROS (31). In addition, obese patients have shown 
significantly higher serum levels oxidative stress compared 
with non-obese controls (32). Intensive aerobic and anaerobic 
exercise increases oxidative damage (33). Strenuous exercise 
disturbs the antioxidant equilibrium by increasing ROS levels. 
However, regular exercise upregulates endogenous antioxidant 
levels and reduces oxidative damage (34). As continued expo-
sure to uncontrolled oxidative stress is an initiator of various 
chronic diseases and cancer, cells have developed a range of 
antioxidant strategies, including enzymatic and non-enzymatic 
antioxidants (35). Maintaining healthy ROS level is indispens-
able for the conservation of healthy cells and particularly in 
mitochondria a balance of antioxidants is necessary to avoid 
oxidative stress. Superoxide dismutases (SODs) have a strong 
antioxidant role characterized by scavenging ROS, through the 
reaction of superoxide to hydrogen peroxide (36). SODs are the 
primary defense against cellular damage by oxidative stress 
and the breakdown of mitochondrial superoxide is performed 
by manganese SOD (SOD2) (37). In addition to antioxidants, 
cells use distinct oxidative damage-repair mechanisms to 
eliminate DNA damage (38).

3. PTEN in the anti‑oxidative machinery

ROS have been shown to modulate various physiological 
processes, including the regulation of growth factor signaling. 
One mechanism by which ROS exert cellular effects is 
through the regulation of target molecules, including 
PI3K/AKT/PTEN (39). The PI3K/AKT/PTEN signaling 
pathway protects against damaging effects originating from 
high levels of insulin (40). In addition, the PI3K/AKT/PTEN 
signaling pathway regulates factors involved in cell survival 
and proliferation (Fig. 2) (40). PTEN is a dual specificity 
phosphatase, processing lipids and proteins, and it is a member 
of the protein tyrosine phosphatase family of phospha-
tases (41,42). PTEN downregulates AKT activity through the 
conversion of phosphatidylinositol 3,4,5-triphosphate (PIP3) 
to phosphatidylinositol 4,5-bisphosphate (43). Cells lacking 
PTEN have higher levels of PIP3, a critical second messenger 
mediating signals from various growth factors, including 
insulin (44). PTEN is a tumor suppressor and is involved 
in oxidative stress and genomic damage induction (45). 
Inactivation of PTEN leads to prolonged AKT activation, 
increased mitochondrial respiration and increased ROS in 
mouse models (40). Downregulation, inhibition or deactivation 
of PTEN results in an increase of mitochondrial ATP produc-
tion (46). Furthermore, PTEN is associated with the activation 
of the proteolytic cell apoptosis cascade through decreased 
activity of PI3K/AKT signaling (47).

Deficiencies of PTEN have been shown to promote 
NASH development (48). A hepatocyte‑specific deletion of 
the PTEN gene exhibited an age-dependent development of 
liver steatosis and HCC (49,50). In addition, animal models 
of PTEN haploinsufficiency exhibit hepatomegaly, increased 
liver lipogenic gene expression, including of peroxisome 
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proliferator-activated receptor (PPAR) γ and hepatic lesions, 
symptoms that are analogous to NAFLD (51). PTEN deficiency 
in hepatocytes induces upregulation of PI3K/AKT signaling, 
following increased lipogenesis and decreased lipolysis (52). 
Consistently, PTEN knockout mice exhibit insulin hypersen-
sitivity, constitutive lipogenesis and hepatomegaly (53). In 
humans, PTEN mutations have been described in association 
with insulin hypersensitivity and obesity (54). In patients with 
FLD, reduced expression of PTEN and upregulation of AKT 
have been observed in liver biopsies (55). In addition, patients 
with NASH have shown decreased expression of PTEN 

compared with healthy patients (56). A marked increase of 
PTEN in hepatocellular steatosis progresses the disease to 
steatohepatitis and fibrosis, and in certain cases HCC (57). 
A previous study described PTEN and obesity-associated 
disorders as risk factors for HCC (13).

4. Diet and hepatocyte protection

Various disease-protective factors have been suggested in 
epidemiological studies (58,59). Dietary choices have been 
indicated to serve a role in liver protection (Fig. 3). Particularly, 

Figure 1. ROS affects the development in fatty liver diseases. Various roles of ROS in the development of steatohepatitis, including NASH and ASH, liver 
cirrhosis and HCC. Certain factors and stages were omitted for clarity. ROS, reactive oxygen species; HCC, hepatocellular carcinoma; ALD, alcoholic liver 
disease; ASH, alcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

Figure 2. PTEN and oxidative DNA stress signaling pathways. Schematic representation of the regulatory pathways with exemplary molecules included; 
certain molecules were omitted for clarity. Solid arrows represent direct interaction; dashed arrows represent indirect interaction and the white head arrow 
refers to weak interaction. ROS, reactive oxygen species; SOD, superoxide dismutase; RTK, receptor tyrosine kinase.
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dietary choices that modify the PI3K/AKT/PTEN signaling 
pathway may prevent FLD or decrease the rate of disease 
progression (60). Certain plants and fruits are promising 
targets (61‑67).

Curcumin, an active ingredient derived from the root 
of Curcuma longa used as culinary turmeric, exhibits 
therapeutic potential for the treatment of diabetes and 
various types of cancer (62). Curcumin has strong anti-
oxidant and anti-inflammatory effects and exhibits liver 
protective properties in an animal model (61). This protection 
is mediated by the PI3K/AKT/PTEN signaling pathway (63). 
Shikonin is a natural compound extracted from the roots of 
Lithospermum erythrorhizon (64) that was shown to prevent 
hepatotoxicity by upregulation of the PI3K/AKT/PTEN 
signaling pathway in an animal model (65). Kaempferol is 
a flavonol present in several plants, including grapefruits 
and edible berries, which was shown to inhibit hepatocyte 
apoptosis and prevent acute liver failure in an animal 
study (66). Icariin is a prenylated flavonol glycoside from 
Epimedium koreanum, which downregulates PTEN expres-
sion following AKT overexpression in an animal model (67). 
An antihepatotoxic activity of Icariin has been demonstrated 
in carbon tetrachloride‑induced hepatocytes (68). In addition, 
in an animal model, rosemary (Rosmarinus officinalis L.) 
was shown to have liver protection activity at various stages 
of liver damage (69). Certain to‑date unknown components of 
rosemary inhibit PTEN expression in K562 myeloid cells (70) 
and rosemary promotes liver regeneration in an experimental 
injury model (69). In contrast, levels of PTEN are increased 
when treated with Ginsenoside, a class of natural steroid 
glycosides, which exhibit hepatoprotective effects against 
acute hepatotoxicity in mice (71). Furthermore, certain types 
of diet rich in fat or carbohydrates contribute to hepatocyte 

protection (72). Further exploration is required to establish 
whether the protective characteristics are associated with the 
PI3K/AKT/PTEN signaling pathway.

Antrodia camphorata is a common mushroom found 
and used in Asia that protects against liver injury through 
reducing mitochondrial ROS (73). The active ingredient 
Genistein inhibits ROS production by enhancing SOD activi-
ties in an animal model (74). Genistein protects hepatocytes 
against toxicity due to creating a resistance to oxidative 
stress (75). Lycopene, an antioxidant found in red fruits such 
as tomatoes, inhibits hepatocyte apoptosis by reducing ROS 
levels and inhibiting mitochondrial dysfunction, and may 
have the ability to prevent FLD (76). It has been suggested 
that dietary intake of copper chloride and/or copper sulphate 
stabilizes SOD activity in an animal model, indicating a 
potential therapeutic benefit for FLD (77). Expression of SOD 
is associated with PPAR activity (78). The grape antioxidant 
resveratrol and its analogs increase SOD mRNA and protein 
expression levels in vitro (79). Furthermore, increased expres-
sion of SOD2 has been detected after administration of grape 
juice to an animal model (80). Commercially available grape 
juice reduces oxidative damage in the liver of experimental 
rats (81). Stevioside from Stevia leaves, a natural sweetener, 
increases the expression of various SODs, including SOD2, 
in mice experiments (82). The antioxidant potential of stevia 
extracts from Stevia leaves has been reported in an experi-
mental liver damage model (83). Butyrate, a short-chain fatty 
acid which can be prepared from various vegetables, increases 
the expression of SODs (84), protecting mice from an early 
development of NAFLD (85). Blueberry juice protects liver 
function by reducing mitochondrial oxidative stress through 
elevating SOD and suppressing ROS activity in an animal 
model (86). Supplementation of antioxidants may protect 

Figure 3. Lifestyle and diet affect oxidative stress levels. Certain food ingredients and dietary components contribute to the prevention of fatty liver diseases via 
the modulation of PTEN and SOD activities and lifestyle choices can impact liver health. PPAR, peroxisome proliferator-activated receptor; SOD, superoxide 
dismutase; ROS, reactive oxygen species; DHA, docosahexaenoic acid; Vit, vitamin.
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hepatocytes from oxidative damage. Antioxidant vitamins, 
including C and E, have also presented hepatocyte protective 
effects in an animal toxicity model (87). Enhanced protection 
of liver membranes has been described for animals fed with 
a coenzyme Q10 (88). Consumption of vitamin E has been 
linked to regeneration of SODs in an animal model (89). In 
addition, a long-term diet rich in polyunsaturated fatty acid 
(PUFA) and/or docosahexaenoic acid (DHA) leads to lower 
oxidative damage to proteins. DHA supplementation has been 
suggested as a preventive approach for patients with ALD 
based on findings of an animal model (90). Perilla frutescens 
is a source of PUFA, with high levels present compared with 
other edible plants, and PUFA can be converted to DHA in the 
animal liver (91).

It is suggested that SODs, as well as dietary antioxidants, 
may offer hepatocyte protection against the progression of 
FLD (Fig. 3). However, the association between nutrient 
consumption and hepatocyte protection is complex and requires 
further investigation. In addition, the complexity of the human 
diet makes it challenging to examine distinctive effects. As 
presented, certain food or dietary components provide hepa-
tocyte protection through signaling pathway modifications via 
modulation of specific activities. Furthermore, the microbiome 
has been described as a hallmark of various liver diseases (92). 
It has been reported that probiotics, including Lactobacillus, 
restores gut microbiota and alleviates liver injury in animal 
models (93). The proportion of Bacteroides has been described 
as markedly higher in patients with liver fibrosis compared with 
healthy controls, which influences NAFLD progression (94). 
Furthermore, probiotic administration has been associated 
with improved levels of liver markers of hepatic inflammation 
in patients with NAFLD (95). Accordingly, modulation of the 
gut microbiome presents a new therapeutic target in NAFLD 
treatment due to the distinct changes in the composition of 
gut microbiota. In the future, dietary approaches restoring gut 
microbiota may emerge as a therapy fields for FLD.

5. Conclusions

The development FLD and co-morbidities has severe effects 
on the liver and associated functions. There are no approved 
therapies for the treatment of FLDs. Therapeutic progress is 
limited by the poor understanding of the initiating steps of fat 
accumulation in the liver. Accordingly, potential endogenous 
modulators of the pathogenesis may provide tools for thera-
peutic intervention. Any conceivable therapeutic strategy 
should build on the observation that there are changes in 
key processes required for the cellular function. Therefore, 
properties of food ingredients may have certain hepatocyte 
protective potentials, which are facilitated through reduction 
of ROS production. To maintain normal cellular function, 
cells are required to escape excessive oxidative stress. This 
represents a rational basis for the development of dietary 
treatments for FLD. However, despite the various experi-
mental observations using food ingredients, the precise 
mechanisms remain elusive and are therefore not suitable for 
clinical use. Additional mechanistic studies are required to 
understand detailed molecular mechanisms and to clarify if 
certain dietary intake is associated with improved hepatocyte 
survival.

Liver steatosis is associated with mitochondrial dysfunc-
tion and excessive mitochondrial ROS production. Although 
mitochondria are key in the maintenance of cell functions, 
they are also the main source of ROS. The dual function of 
ROS, as apoptosis triggers and performers in cell survival 
signaling, may determine the role of mitochondrial function in 
disease progression. An instrumental role of PTEN in hepatic 
carcinogenesis has been suggested for obese patients high-
lighting potential antioxidant involvement. It is imperative to 
exploit benefits from treatment in combination with chemical 
and medical modulators associated with the function of ROS 
and PTEN. Long-term clinical studies are further required to 
clarify distinct effects in the management of FLD to address 
therapeutic potential.

In conclusion, ROS and PTEN are involved in a pathogenesis 
of FLD and certain diets associated with PTEN signaling may 
contribute to disease prevention or progression through hepato-
cyte protection from apoptosis induced by oxidative stress.
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