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Abstract

Background: Chlamydia is the most commonly diagnosed sexually transmitted infection

worldwide. Mathematical models used to plan and assess control measures rely on accu-

rate estimates of chlamydia’s natural history, including the probability of transmission

within a partnership. Several methods for estimating transmission probability have been

proposed, but all have limitations.

Methods: We have developed a new model for estimating per-partnership chlamydia

transmission probabilities from infected to uninfected individuals, using data from

population-based surveys. We used data on sexual behaviour and prevalent chlamydia

infection from the second UK National Study of Sexual Attitudes and Lifestyles (Natsal-2)

and the US National Health and Nutrition Examination Surveys 2009–2014 (NHANES) for

Bayesian inference of average transmission probabilities, across all new heterosexual

partnerships reported. Posterior distributions were estimated by Markov chain Monte

Carlo sampling using the Stan software.

Results: Posterior median male-to-female transmission probabilities per partnership

were 32.1% [95% credible interval (CrI) 18.4–55.9%] (Natsal-2) and 34.9% (95%CrI 22.6–

54.9%) (NHANES). Female-to-male transmission probabilities were 21.4% (95%CrI

5.1–67.0%) (Natsal-2) and 4.6% (95%CrI 1.0–13.1%) (NHANES). Posterior predictive

checks indicated a well-specified model, although there was some discrepancy between

reported and predicted numbers of partners, especially in women.

Conclusions: The model provides statistically rigorous estimates of per-partnership

transmission probability, with associated uncertainty, which is crucial for modelling and

understanding chlamydia epidemiology and control. Our estimates incorporate data
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from several sources, including population-based surveys, and use information con-

tained in the correlation between number of partners and the probability of chlamydia in-

fection. The evidence synthesis approach means that it is easy to include further data as

it becomes available.

Key words: Chlamydia, transmission, mathematical model, Bayesian statistics, evidence synthesis, population-

based survey

Introduction

Chlamydia is the most commonly diagnosed sexually

transmitted infection worldwide. In 2018 there were 1382

and 3694 chlamydia diagnoses per 100 000 15–24-year-

old US men and women, respectively,1 and 1342 and 2637

in England.2 There is marked geographic variation in chla-

mydia burden,3 and the effectiveness of widespread testing

and/or screening in chlamydia control remains uncer-

tain,4,5 but the need for cost-effective control measures

becomes ever-clearer as evidence for the link to pelvic

inflammatory disease (PID) is strengthened6 yet resources

for sexual health services are reduced.

Mathematical models are important tools for assessing

and predicting the effectiveness and cost-effectiveness of

chlamydia control policies. Numerous models have been

developed for these purposes7 but a comparison of three

individual-based models found they produced very different

results.8 A key parameter in any transmission-dynamic

model is the transmission probability per infectious contact,

where a ‘contact’ may be defined either as a partnership or

as a sex act. Transmission probability has to be estimated

indirectly, as it would be unethical to conduct a study mea-

suring it directly, and is subject to significant uncertainty.

Modelling studies have used values ranging from 0.0375 to

0.154 per sex act; sometimes assuming equal male-to-female

and female-to-male transmission rates, and sometimes

allowing for a higher risk in the male-to-female direction.7

Transmission probability estimates can be based on

cross-sectional concordance studies of sexual partnerships.

For example, Katz used data from a US clinic to estimate

the proportion of heterosexual couples forming in which

the man only, the woman only, neither partner, or both are

infected.9 Using the observed proportion of couples in each

state, he estimated the male-to-female and female-to-male

transmission probabilities over the time between partner-

ship formation and observation.9 However, concordance

was observed before the partnership ended, and so the esti-

mated transmission probabilities represented only trans-

mission before observation – not the full per-partnership

probability. Furthermore, these estimates do not allow for

recovery and/or re-infection within a partnership. Althaus

et al. proposed an alternative model based on differential

equations which explicitly incorporated partnership for-

mation and breakage, occurring with constant hazards.10

The analysis is informative but the estimates it provides de-

pend on values assumed for other parameters in the model,

some of which are not well-defined; in particular, the dura-

tion of infection and the number of partnerships in the last

6 months. Finally, transmission probabilities can be esti-

mated by calibrating a transmission model to population

prevalence data.11 With this approach, the values esti-

mated depend on the data to which the model is calibrated,

the values of other parameters, and the structural assump-

tions in the model.

Key Messages

• Estimates for parameters like transmission probability are important for building models of sexually-transmitted dis-

eases that can be used to understand their epidemiology and plan and assess control interventions.

• Average per-partnership (rather than per-sex-act) transmission probability is a particularly useful parameter because

there are more and better data on numbers of partnerships than numbers of sex acts.

• We have developed a new method for estimating per-partnership chlamydia transmission probability, using data

from population-level studies. We used a Bayesian approach to provide a probability distribution representing the es-

timate and associated uncertainty.

• We applied our method to the Second National Study of Sexual Attitudes and Lifestyles (Natsal-2) from the UK and

National Health and Nutrition Examination Surveys (NHANES) from the USA.
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In this paper we develop a different approach. We cal-

culate average per-partnership chlamydia transmission

probabilities from an infected man to an uninfected

woman and from an infected woman to an uninfected

man, using data from two population-based surveys: the

1999–2001 UK National Survey of Sexual Attitudes and

Lifestyles (Natsal-2)12 and the 2009–2014 US National

Health and Nutrition Examination Surveys (NHANES),13

synthesized with information on the clearance rate of

untreated chlamydia infections. The method avoids many

of the assumptions that are required for estimation within

a dynamic model, and its reliance on other unknown quan-

tities is minimal and well-described. Furthermore, because

estimates are based on data from population-based sur-

veys, the results are directly applicable to the general popu-

lation. The methods could also be applied to other sexually

transmitted infections with a susceptible–infected–suscepti-

ble (SIS) model of natural history.

Methods

The aim of the study was to provide a mathematical and

statistical model that can be used to infer per-partnership

transmission probability from survey data. We present an

overview of our methods; further details are in the

Supplementary Information, available as Supplementary

data at IJE online.

Mathematical model

We used an SIS model of infection and recovery (Figure 1).

Our model considers asymptomatic infections; symptom-

atic infections prompt treatment seeking and are therefore

short-lived and unlikely to cause onward infection or to be

detected in population-based surveys.

Let each individual j, of sex x, experience a force of in-

fection Fj. This force of infection (accounting for hetero-

sexual transmission only) is the rate at which an individual

makes contacts with infected members of the opposite sex,

vxj, multiplied by the per-contact transmission probability,

qx0!x:

Fj ¼ vxjqx0!x:

(x0 denotes the opposite sex to x.)

Individuals’ recovery rate is kx. The probability that in-

dividual j is infected at a given moment is pj. At steady

state, the number of new infections per unit time

(Fj 1� pj

� �
) equals the number of recoveries (kxpj,):

Fj 1� pj

� �
¼ vxjqx0!x 1� pj

� �
¼ kxpj

Hence,

qx0!x ¼
pj

1� pj
� kx

vxj

Data

We inferred parameter values in the model by synthesizing

data from several sources.

Clearance of untreated chlamydia infection

Data informing the clearance rate of untreated infections

came from studies in the literature synthesized in previous

analyses.14,15 Further details are provided in the original

papers.14,15

Numbers of partners

We used data on sexual behaviour and chlamydia infection

from two population-based studies: Natsal-2,16 and the

three NHANES conducted biennially between 2009 and

2014.17 We combined data from three NHANES to

achieve a larger sample size than would be possible using

only one.17*

In Natsal-2, participants reported on their number of

new opposite-sex partners in the last year, and this infor-

mation was used to inform a probability distribution for

the number of new partners in the last year.

In NHANES, participants were asked their number of

partners, and whether they had had any new partners, in

the last 12 months. We used these two questions to provide

a proxy for the number of new partners in the last year.

Where respondents reported no new partners in the last

year, we took the number of new partners to be zero;

where they reported one partner and a new partner, we

took the number of new partners to be one; otherwise, we

assumed that all but one of their total reported partners

was new. This approach is similar to the use elsewhere of

‘shifted negative binomial’ distributions for modelling

partner numbers.18

Infection status

The publicly-available data from both Natsal-2 and

NHANES also includes chlamydia infection status,

Figure 1 SIS model of chlamydia infection and recovery for individual j,

of sex x. pj is the probability of being infected with chlamydia and 1� pj

is the probability of being susceptible. Fj is the force of infection and kx

is the recovery rate
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diagnosed using nucleic acid amplification tests (NAATs)

on urine samples. Natsal-2 participants were eligible for a

urine sample if they were aged 18–44 years and had ever

had sex, and a randomly-selected half of those eligible

were invited to provide samples. All NHANES participants

aged 14–39 years were invited to provide a sample for test-

ing, but the publicly-available data excludes 14–17-year-

olds.

Numbers of partnerships reported by susceptible and

infected men and women in Natsal-2 and NHANES are

provided in Supplementary Tables 1 and 2, available as

Supplementary data at IJE online.

Statistical model

We conducted a Bayesian evidence synthesis, using data

from the sources described, to construct a likelihood.

Survey weights were incorporated by multiplying the rele-

vant component of the log-likelihood by the weight. The

likelihood was combined with appropriate priors to pro-

vide a joint posterior for the model parameters.

Clearance of untreated infections

The statistical model used for the clearance rates of

untreated chlamydia infection is described elsewhere.14

The model involves two courses for infection: fast- or

slow-clearing. A proportion p of incident infections clear

fast, and the remainder, 1 – p, clear slowly. Some of

the data on chlamydia clearance came from studies using

culture diagnosis methods, and the model accounts for this

using a sensitivity parameter for culture diagnosis in people

with a previous positive culture for that infection, w. In

this analysis we assumed that only the slow-clearing infec-

tions last long enough to be detected in population-based

studies. The clearance rate (denoted kx above) is therefore

equal to the slow clearance rate in the clearance model,

and the transmission probability we estimated is the proba-

bility that an infection is transmitted and then follows the

slow-clearing course.

Partnership dynamics

We used negative binomial distributions to model the esti-

mated numbers of new partners reported in the last year by

men and women. A negative binomial distribution with

size a and mean l can arise as a mixture of Poisson distri-

butions, where the mixing distribution for the Poisson rate

is a Gamma distribution with shape a and rate l
a.

19 In our

model, the shape and rate depend on the sex of the individ-

ual, but are constrained so that the expected number of

partnerships per man must equal the expected number of

partnerships per woman.

Prevalence

We used our model to calculate the probability pj of each

individual j being infected, given the number of partners

they reported. The infection status of j has a Bernoulli

distribution with parameter pj:

P djjpj

� �
¼ PBernoulli djjpj

� �
¼ pj dj ¼ 1

1� pj dj ¼ 0

�

where

dj ¼
1 if j is infected
0 if j is uninfected

�

Full likelihood

The log-likelihood of the data is given by:

L ¼ Lturnover þ Lclearance þ Linfection

where:

• Lturnover is the log-likelihood associated with partnership

turnover (negative binomial distribution);

• Lclearance is the log-likelihood associated with clearance,

and

• Linfection is the log-likelihood associated with the infec-

tion status of each participant at the time of testing in

the survey (Bernoulli distribution).

Inference and estimation

Priors

We used uninformative priors for all parameters except the

sensitivity of chlamydia diagnosis by culture, which enters

the model for chlamydia clearance. This had a w �
Beta 78;8ð Þ prior, based on studies comparing the perfor-

mance of culture diagnosis and NAATs.14

Bayesian methods and sampling of posterior distribution

Estimation was carried out by sampling from the posterior

using a Markov chain Monte Carlo (MCMC) algorithm

implemented in the Stan software,20 within the R environ-

ment.21 The data, Stan model file and R scripts used for

handling input and results are all available online at

https://github.com/joanna-lewis/ct_transmission_probs.

We ran four chains for 2000 iterations each, discarding the

first 1000 ‘warmup’ iterations of each chain. Posterior pre-

dictive checks were carried out, comparing simulated and

observed partner number distributions, and prevalence in

men and women reporting different numbers of partners.

We also used prior distributions for the proportion of

infections leading to symptoms for men and women to
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simulate the annual number of symptomatic infections that

would have occurred under the parameter values inferred

(see Supplementary Information, available as Supplementary

data at IJE online).

Sensitivity analysis

We conducted three sensitivity analyses to investigate dif-

ferent aspects of our model, which are described in detail

in Supplementary Information, available as Supplementary

data at IJE online. First, we relaxed the assumption of

equal average numbers of partnerships in men and women.

Secondly, we constructed a model in which individuals only

form partnerships with members of the opposite sex report-

ing the same number of partnerships. This tests two aspects

of the model: (i) by imposing totally assortative mixing by

number of partners, it tests the effect of assuming that part-

ners are chosen at random from all those available; and (ii)

by allowing for differing force of infection in individuals

reporting different numbers of partners, it tests the effect of

using a single average transmission probability across all

partnerships. Finally, we used data from Natsal-2 to investi-

gate the effect of studying the number of partnerships with-

out a condom, rather than total partnership numbers.

Results

For all parameters split R̂ statistics for the MCMC sam-

pling were between 0.9990 and 1.0032, indicating good

convergence, and the effective sample size was >0.4 per

transition of the Markov chain. No transitions ended with

a divergence.

In Natsal-2 the mean number of new partners per year

was inferred as 0.59 [95% credible interval (CrI) 0.54–

0.65]. Overall chlamydia prevalence was 2.1% (95%CrI

1.6–2.8%) in men and 2.0% (95%CrI 1.4–2.8%) in

women, compared with survey-based estimates of 2.4%

(95%CI 1.5–3.6%) and 1.5% (95%CI 1.0–2.1%). In

NHANES the mean number of new partners inferred was

0.92 (95%CrI 0.85–1.00). Prevalence was 1.7% (95%CrI

1.3–2.3%) in men and 3.7% (95%CrI 2.8–4.6%) in

women, compared with survey-based estimates of 1.9%

(95%CI 1.3–2.6%) and 2.3% (95%CI 1.7–3.0%).

Figure 2 shows posterior distributions for the per-

partnership transmission probabilities, derived using

Natsal-2 and NHANES. Using Natsal-2, the posterior me-

dian transmission probabilities were 32.1% (95%CrI

18.4–55.9%) (male-to-female) and 21.4% (95%CrI 5.1–

67.0%) (female-to-male). Using NHANES, they were

34.9% (95%CrI 22.6–54.9%) (male-to-female) and 4.6%

(95%CrI 1.0–13.1%) (female-to-male). The posterior

distributions for all parameters are summarized in

Supplementary Table 4, available as Supplementary data

at IJE online.

Posterior predictions for the partner number distribu-

tions generally agreed with data but there was some dis-

crepancy, especially in women (Supplementary Figure 2,

available as Supplementary data at IJE online). Predicted

Figure 2 Posterior distributions for the per-partnership probability of chlamydia transmission, derived using number of new partners reported in (A)

The second National Study of Sexual Attitudes and Lifestyles (Natsal-2), and (B) the National Health and Nutrition Examination Surveys (NHANES)

2009–2014 (all studies combined). The yellow line in each figure represents male-to-female transmission probability and the green line female-to-

male
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numbers of infections, by reported numbers of partners,

agreed well with observations in both sexes, for both stud-

ies (Supplementary Figure 3, available as Supplementary

data at IJE online).

For Natsal-2 we simulated median (2.5th–97.5th cen-

tile) 109 000 (25 000–327 000) symptomatic cases in men;

the number of diagnoses recorded in 2000 was estimated

as 30 000–41 000.22 In women we simulated median

(2.5th–97.5th centile) 46 000 (25 000–77 000) symptom-

atic cases; 48 000–105 000 diagnoses were recorded.22 For

NHANES, we simulated median (2.5th–97.5th centile)

397 000 (83 000–1149 000) symptomatic cases in men;

the number of diagnoses recorded in 2009 was 307 000.

We simulated median (2.5th–97.5th centile) 429 000

(259 000–682 000) symptomatic cases in women, and

879 000 diagnoses were recorded.

In the sensitivity analyses we found that relaxing the as-

sumption of equal partnership numbers in men and women

led to no meaningful differences in the posterior distribu-

tions for transmission probabilities. In a model where part-

nerships formed only between individuals reporting the

same number of partners, we found evidence of higher

transmission probabilities in couples reporting fewer part-

ners. Our model using data on partnerships without a con-

dom resulted in posterior distributions shifted to slightly

higher transmission probabilities, but the shift was small

compared with the width of the distribution.

Discussion

We have described a new statistical model for inferring the

per-partnership transmission probability of a sexually

transmitted infection, and have applied it to population-

level data on chlamydia from the UK and the USA. Our

method provides its estimates with uncertainty, which is

crucial for modelling and understanding chlamydia epide-

miology and control. Estimates of average per-partnership

(as opposed to per-sex-act) transmission probability are

valuable for building predictive models of control meas-

ures, because data availability means that behavioural

models can be parameterized more reliably in terms of

number of partnerships than number of sex acts. Our esti-

mates incorporate data from several sources including

population-based surveys and make use of information

that is often disregarded, contained in the correlation be-

tween the number of partners reported and the probability

of chlamydia infection.

In the UK we found a male-to-female transmission

probability of 32.1% per partnership (95%CrI 18.4–

55.9%), which was consistent with the corresponding US

result of 34.9% (95%CrI 22.6–54.9%). The posterior for

female-to-male transmission probability inferred from the

UK data was much more uncertain, with posterior median

21.4% (95%CrI 5.1–67.0%). The equivalent for the US

data was lower, but with a narrower and overlapping cred-

ible interval: 4.6% (95%CrI 1.0–13.1%).

Posterior predictive checks agreed well with the original

data, indicating a well-specified model. The main excep-

tion is the partnership number data in women: in both

Natsal-2 and NHANES, higher partner numbers are

under-reported compared to simulations. Under-reporting

of partner numbers by women is a recognized phenomenon

which has been widely discussed.23 The partnership num-

ber distributions may explain the low female-to-male

transmission estimated using NHANES. If NHANES

respondents reported new partner(s) in the last year, and

more than one partner in total, then we took the number

of new partners to be one less than the total number of

partners: in fact, this proxy is an upper bound, as more

than one could have been an existing partner. If the num-

ber of partners and hence the contact rate is over-estimated

by this proxy then there will be a corresponding reduction

in the per-partnership transmission probability.

Katz estimated a male-to-female transmission probabil-

ity of 39.5% (95%CI 19.3–59.7%) per partnership:9 con-

sistent with our estimate. Katz’s estimate for female-to-

male transmission probability is 32.3% (95%CI 10.0–

54.6%): well within our credible interval for UK data, but

barely overlapping for the US estimate. Althaus et al.’s

ODE-based pair model produced a higher estimated trans-

mission probability per partnership (55.5%, IQR 49.2–

62.5%), assuming two partners every 6 months (four per

year).10 However, they note that their model does not ac-

count for heterogeneity in transmissibility of chlamydia,

whereas ours allows for differences by sex. We also ac-

count for sex differences in chlamydia clearance rate and

heterogeneity in partnership turnover rates, which is an im-

portant feature in explaining observed partner number

distributions.

Our model assumes a closed system at steady state. This

assumption is reasonable as the number of people entering

and leaving the sexually-active population each year is

small compared to the total population, and any changes

in the model parameters are slow compared to the dynam-

ics of the system. We have ignored the role of same-sex

contacts, but their effect on our estimates is also likely to

be small because only people with at least one opposite-sex

partner were included in the data. We chose to include

people reporting partners of both sexes in our analysis to

maximise the amount of data used, and because excluding

them ignores their involvement in the heterosexual net-

work and could bias our results.

Another assumption of the analysis is that individuals

choose partnerships at random from all the partnerships
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offered by the opposite sex. Although we know that sexual

mixing is to some extent assortative, sensitivity analysis

indicates that assortativity would not lead to greatly differ-

ing force of infection per contact in people reporting differ-

ent numbers of partners (see Supplementary Information,

available as Supplementary data at IJE online). There was

some evidence from this analysis of a higher transmission

probability in people reporting no new partners, particu-

larly in the NHANES dataset. This could reflect lower con-

dom use or longer partnerships and would be an

interesting avenue for further research. However, even if

there are qualitative differences between partnerships,

leading to heterogeneity in transmission probabilities, this

does not invalidate the concept of a single average across

all partnerships, which is still a hugely useful quantity for

modelling. In a further sensitivity analysis we modelled

number of partnerships without a condom, estimated using

data from Natsal-2. The posterior distributions suggested

that qualitative differences such as condom use may reduce

population-average transmission probabilities, but to an

extent that is small compared with the uncertainty in the

estimates. It might be valuable for sexual behaviour sur-

veys to collect explicit information on the annual number

of new partnerships without a condom for parameter infer-

ence and predictive modelling, and our sensitivity analysis

suggests that our model could be used to infer transmission

probabilities from such data.

The evidence synthesis approach that we used can read-

ily incorporate further data as it becomes available, so that

improved data collection would allow our analysis to be

augmented to improve our estimates. For example, there is

particular uncertainty in the proportion of infections that

become symptomatic in each sex, and in the clearance rate

of untreated infections in men; the latter limiting the preci-

sion of the female-to-male transmission probability. We

have argued elsewhere that surveillance and screening pro-

grammes could be used to collect data on long-term chla-

mydia clearance in men to inform a more precise estimate

of clearance rate.15 Additionally, it has been suggested that

previous exposure to chlamydia may confer partial immu-

nity,24 which would reduce the transmission probability to

older and/or more sexually active individuals, who would

be more likely to have had a prior infection. Although fur-

ther empirical study of chlamydia immunology is required,

it is interesting that the posterior predictive checks showed

that our model tends to under-predict prevalence in those

reporting few partners and over-predict in those reporting

several partners (Supplementary Figure 4, available as

Supplementary data at IJE online), which would be consis-

tent with partial immunity in high-risk individuals who are

more likely to have been infected before.

In conclusion, it is important to use rigorous parameter

estimates in computational models, and to quantify their

uncertainty and its effect on conclusions and recommenda-

tions. Our method provides such estimates for the proba-

bility of chlamydia transmission, and with appropriate

data the methods described here could also be applied to

other sexually transmitted infections that can be repre-

sented using the SIS model. The estimates can be used in

transmission modelling to understand the effect of control

policies on patterns of prevalence.
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