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Murray recently introduced a novel computational lightness model, Markov illuminance
and reflectance (MIR). MIR is a promising new approach that simulates human lightness
processing using a conditional random field (CRF) where natural-scene statistics of
reflectance and illumination are implemented. Although MIR can account for various
lightness illusions and phenomena, it has limitations, such as the inability to predict
reverse-contrast phenomena. In this study, we improved MIR performance by modifying
its inference process, the prior on X-junctions, and that on general illumination changes.
Our modified model improved predictions for Checkerboard assimilation, the simplified
Checkershadow and its control figure, the influence of luminance noise, and White’s
effect and its several variants. In particular, White’s effect is a partial reverse contrast that
is challenging for computational models, so this improvement is a significant advance
for the MIR framework. This study showed the high extensibility and potential of MIR,
which shows the promise for further sophistication.

Keywords: lightness/brightness, computational model, illusion, Markov random field, Bayesian model

INTRODUCTION

In lightness/brightness perception research, it is desirable to establish a computational model that
precisely predicts human perception (e.g., Kingdom, 2011; Shapiro and Lu, 2011). Although Gestalt
theories have made many contributions to the development of this research field (e.g., Gilchrist
et al., 1999; Bressan, 2006), computational models (here, we refer to models that output rigorous
predictions of human perceptions of any arbitrary image inputs) have also been discussed by many
researchers. For instance, spatial-filtering models are known as a promising approach that many
researchers have examined and discussed (Blakeslee and McCourt, 1997, 1999; Dakin and Bex,
2003; Economou et al., 2007; Robinson et al., 2007; Betz et al., 2015; Zeman et al., 2015).

Although spatial-filtering models are known to have high performance for brightness prediction
(e.g., Blakeslee and McCourt, 2012), it is not necessarily easy to interpret psychological implications
from each computational process in these models (e.g., to assign high weights to higher frequency
filter outputs). This is not surprising because they are motivated by physiological processes in
the human brain (Blakeslee and McCourt, 1999; Robinson et al., 2007) and aim to account for
low-level processing in brightness perception (Blakeslee and McCourt, 2012). However, if there
is a computational model whose processes and structures are intuitively understandable as a
representation of the human mind, it will be useful for quantitative output predictions for arbitrary
images and contribute to the qualitative explanation of the perception of lightness/brightness.

Murray (2020)’s novel lightness model, Markov illuminance and reflectance (MIR), is promising
as an understandable computational model. MIR is based on a probabilistic model called a
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conditional random field (CRF). MIR’s CRF design is composed
of some prior assumptions motivated by natural-scene statistics
(e.g., “Illuminance spans a wide range, and lower illuminances
are more likely”; Murray, 2020, p. 19), supposing that humans
utilize these statistics to solve lightness ambiguity (Allred and
Brainard, 2013; Murray, 2013; Feldman, 2015). Therefore, large
parts of the computational processes in MIR have a certain
amount of psychological rationality, and the meaning of each
process can be interpreted relatively straightforwardly. In MIR,
the model output is obtained as an illuminance map (perceived
illumination, represented by a lux unit) and a reflectance map
(perceived reflectance, or lightness, represented by a percent
unit), and thus each output value is less arbitrary, unlike the
outputs of spatial-filtering models. Murray (2020) also argued
that MIR is compatible with the widely known Gestalt theories
(Gilchrist et al., 1999) because both share the idea that general
lightness perception can be explained by a relatively small
number of principles. Indeed, MIR incorporates Gestalt ideas
into the CRF, such as “illuminance edges tend to be straighter
than reflectance edges” (MIR’s constraint A7) (Adelson, 2000)
or “illuminance changes tend to be gradual, not abrupt” (MIR’s
constraint A3) (Land and McCann, 1971; Agostini and Galmonte,
2002b). MIR has been reported to be able to account for many
lightness illusions and phenomena, suggesting a high probability
that it will be a novel pathway in this research field.

In this study, we aimed to extend MIR. We present a modified
version of MIR that can account for different types of lightness
phenomena. The current version of MIR (Murray, 2020) does
not predict reverse contrasts (Nedimović et al., 2021), where
target areas neighboring dark regions appear darker than an
equiluminant target neighboring bright regions (Bressan, 2001;
Agostini and Galmonte, 2002a; Economou et al., 2015). White’s
effect is one of the most famous reverse contrasts (White, 1981,
1979). This is a partial reverse contrast in which a gray bar
that shares its longer edge with a dark adjacent area appears
darker than an equiluminant gray bar that shares its longer edge
with a bright adjacent area. Reverse-contrast phenomena are
challenging and important issues for lightness/brightness models
to explain because they highlight the fact that lightness/brightness
perception is more complicated than simply being determined
by immediate contrast (Gilchrist, 2006; Economou et al., 2015;
Agostini et al., 2020). It is a large leap for computational models
to be able to explain White’s effect, as suggested by the fact that
the ODOG model, a famous spatial-filtering model (Blakeslee
and McCourt, 1999), showed its high performance by accounting
for White’s effect (see Betz et al., 2015 for a counterargument),
which the authors’ preceding model (the DOG model) could not
account for (Blakeslee and McCourt, 1997).

We modified some prior assumptions of the original MIR to
reflect natural scenes better and improve its performance. The
most important improvement was the successful prediction of
White’s effect, but our model also includes several improvements.
Note that we designed the proposed model through multiple
performance tests. We have made our Python and Julia codes
available for readers at https://osf.io/ank4r/, and we welcome
further tests, improvements, and discussions (see the Section 1
in the Supplementary Material).

MODIFICATIONS TO THE ORIGINAL
MODEL

Full Use of the Available Links Between
Nodes
First, we modified the original MIR’s belief-propagation schedule.
This is a technical modification of the model’s inference process
rather than a modification of the model’s priors. Although the
original belief propagation efficiently converges to approximate
solutions, it does not fully utilize the available links in the CRF.
We added another phase of message passing to utilize all the links
in the CRF, and this helped the model to search for a solution
more efficiently. See the Section 2 in the Supplementary Material
for details of this modification.

Prior 1: Sign-Invariant Edges in
X-Junctions Cue Illumination Changes,
but Sign-Variant Edges Do Not
The original MIR considers that “X-junctions are evidence for
illuminance edges” (Murray, 2020, p. 20) and assigns no cost
to the illuminance change between two pixels that constitute
an X-junction. This rule contributes to the correct predictions
of illusions that give shadow impressions, such as the Argyle
illusion, Snake illusion, and Koffka ring (Adelson, 2000). In
the original MIR, this rule was applied to any X-junction
without considering the relationships among the luminances of
the four pixels.

Although X-junctions are likely to occur in situations where
illumination boundaries exist, they do not always do so. When
two colinear luminance edges in an X-junction show the same
contrast polarity (Figure 1A), these edges can be considered
a cue of illumination changes. However, when two colinear
luminance edges in an X-junction show different contrast
polarities (Figure 1B), they are unlikely to cue an illumination
change. Following Gilchrist et al. (1983) and Gilchrist (2014),
we call these two types of edges “sign-invariant” and “sign-
variant” edges, respectively. If two colinear luminance edges
are only caused by an illumination change, the edges must be
sign-invariant. A white–black checkerboard that is uniformly
illuminated, for example, consists of many X-junctions caused
only by reflectance edges (all of them are sign-variant edges),
but the original MIR is likely to see them as illumination
changes. The model’s expectation for illumination changes at a
pixel pair is represented by a cost parameter assigned to the
pair; a high cost (w) indicates the model’s lower expectation
for illumination changes (i.e., uniform illumination). We put a
higher cost on sign-variant edges in X-junctions (wXvar = 50)
than on luminance edges not included in X-junctions, to which
a cost ranging between 0 and 50 is assigned, as described in the
next section. This parameter design indicates the model’s prior
that illumination changes are less likely at sign-variant edges in
X-junctions than at luminance edges not included in X-junctions.
We also kept the cost on sign-invariant edges in X-junctions at
zero (wXinv = 0) and the cost on equiluminant pixel pairs at 600
(w0 = 600), as in Murray (2020). It is widely known that humans
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FIGURE 1 | Examples of X-junctions. Each set of four squares represents an X-junction composed of four pixels. The orange arrows indicate an increasing edge,
where a pixel at the arrowhead is brighter than that at the arrow’s root. The blue arrows indicate a decreasing edge, where a pixel at the arrowhead is darker.
(A) Examples of sign-invariant edges in an X-junction. Two vertical colinear luminance edges (those between two horizontally aligned pixels) are both increasing (left)
or decreasing (right). (B) Examples of sign-variant edges in an X-junction. Two vertical colinear luminance edges show inconsistent contrast polarities.

take into account contrast polarities in X-junctions when they
judge surface characteristics (Kitaoka, 2005), and X-junctions
are presumably important for solving the lightness–illumination
ambiguity (e.g., Adelson, 2000), so the complication of this prior
seems necessary for model improvement.

Prior 2: Scenes With More Luminance
Contrasts Contain More Illuminance
Changes
In the original MIR, the cost for illuminance changes in two
pixels at a luminance edge (except for two pixels included in
an X-junction) was held constant [the weight for Equations 6
and 7 in Murray (2020) was held at w1 = 20]. This parameter
largely controls the contrast of the model’s illuminance map
output. Holding it constant means that the model does not
modulate its expectation regarding illumination changes for any
images or scenes.

However, information included in an entire image is useful for
judging whether a certain luminance edge should be attributed
to illumination or reflectance. A scene with high illuminance
contrast (i.e., illumination that is less homogeneous) also casts an
image with a high luminance contrast. Therefore, it is plausible
to expect more illuminance change for an image with a high
luminance contrast. This assumption may seem too simple,
but we observed that it plays a good role in predicting many
illusions (see section “Model Performance”). We implemented
this assumption into the model by modulating the parameter w1
depending on the luminance contrast of the input image.

In our modified model, parameter w1 was controlled as below.
First, as a measurement of an image’s contrast, the average
Michelson contrast can be obtained as:

MCtotal =
∑
i

(
|li1 − li2|
li1 + li2

)

MCaverage =
MCtotal
√
m2 + n2

where i represents each pair of adjacent pixels in the input image,
and li1 and li2 are luminance levels (cd/m2) of the two pixels
constituting i. Therefore, MCtotal is the sum of the Michelson
contrast of all adjacent pixel pairs. The image’s height and width
(numbers of pixels) are represented by m and n, respectively,
so the denominator of the second equation is the length of a

diagonal line in the image. MCaverage is used as a measurement
of an image’s luminance contrast (here, the term “average” is
not used in the strict sense). MCtotal or that quantity divided
by the number of pixels may seem to be useful measurements
but they vary depending on the image size (i.e., these values
increase or decrease when an image is up-sampled). MCagerage
depends on both the luminance range and the magnitude of
articulation in a stimulus image. The parameter w1 is determined
as w1 = wXvar × exp(−MCaverage). This exponential function
returns 50 (wXvar) when an image has a zero luminance contrast
(i.e., a homogeneous image), and the returned value decreases
as the image’s luminance contrast increases, but it never reaches
zero. Therefore, w1 is automatically determined by the image
content, unlike Murray (2020)’s original model, and it falls in the
range between wXinv and wXvar .

MODEL PERFORMANCE

Below, we demonstrate the performance of our modified
model by comparing it with Murray (2020)’s original model.
One run consisted of five iterations in Murray (2020)’s
original implementation, but one iteration in our modified
model requires twice as much computation as the original
because of the modification of the belief propagation schedule.
Therefore, in the following model tests, one run of the modified
model consisted of three iterations and that of the original
model consisted of six. This makes the model comparison
fairer because it makes single runs of both models equally
computationally complex.

Main Illusory Images Employed by
Murray
Murray (2020) employed 12 famous illusory figures to
examine the model’s performance (Figure 2). First, we
compared the two models’ performances using them.
Murray (2020) adopted the best result (with the lowest
energy) of 10 runs, but we observed minor random
fluctuations in the outputs with this number of runs;
thus, we decided to take the best result of 30 runs to
improve the accuracy.

Table 1 shows the predictions of the two models for all
12 images. They are similar, except for White’s effect and
Checkerboard assimilation, which we will discuss later. The
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FIGURE 2 | Twelve stimuli used by Murray (2020). Green and red dots indicate the target areas.

modified model predicts illusions for images where the original
model also predicts illusions, and the modified model does
not predict illusions for images where the original model
does not. The modified model does not predict an illusion in
Koffka connected while the original does, but Murray (2020)’s
experiment on human observers indicated that this figure does
not cause a significant illusory effect; thus, the modified model’s
prediction may be closer to human perception. The modified
model also successfully accounts for differences in illusion

TABLE 1 | The modified (M) and original (O) models’ lightness (perceived
reflectance) predictions for the target areas in the 12 figures employed by Murray
(2020).

Left (M) Right (M) Left (O) Right (O)

Argyle 0.68 0.41 0.68 0.41

Long range Argyle 0.68 0.41 0.68 0.41

Broken Argyle 0.41 0.41 0.41 0.41

Snake 0.80 0.48 0.62 0.48

Snake control 0.54 0.54 0.54 0.54

Koffka Broken 0.66 0.51 0.66 0.51

Koffka–Adelson 0.66 0.51 0.74 0.51

Koffka connected 0.57 0.57 0.66 0.57

SLC 0.59 0.40 0.59 0.40

Articulated SLC 0.76 0.40 0.76 0.40

White’s effect 0.46 0.41 0.41 0.41

Checkerboard assimilation 0.41 0.41 0.36 0.68

“Left” and “Right” refer to the target areas indicated in Figure 2 by green and red
dots, respectively.

magnitudes in the stimuli pairs (Argyle vs. Broken Argyle, Snake
vs. Snake control, Koffka–Adelson vs. Koffka connected, Koffka
broken vs. Koffka connected, and SLC vs. Articulated SLC),
for which the original model was reportedly able to account
(Murray, 2020). Moreover, the modified model also predicts the
effects of the highest luminance rule, glow, codetermination,
and articulation as the original did (these results are shown at
https://osf.io/ank4r/). Therefore, the modified model replicated
all the successful results reported by the original model in Murray
(2020).

For White’s effect and the Checkerboard assimilation, where
the original model fails, we observed improvements in the
modified model. The modified model correctly predicts White’s
effect and sees clear illuminance stripes (Figure 3). We focused
on the prediction of White’s effect in this study, and it will be
discussed further in a later section.

The modified model also improved in the prediction of
Checkerboard assimilation (De Valois and De Valois, 1990;
Blakeslee and McCourt, 2004). It perceives the same lightness
level for the two targets, whereas the original model sees the
right target as much lighter. Humans perceive the left one
slightly lighter (Murray, 2020), but the effect depends upon
the frequency of the checks (Blakeslee and McCourt, 2004).
The modified model’s prediction is obviously closer to human
perception, although it may not be complete. This difference
between the predictions by the two models is largely caused by
the modification of the belief propagation schedule. Similarly, it
also largely reduced the energies (i.e., the model finds a better
solution) in the prediction for Articulated SLC. In summary, for
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the stimuli used by Murray (2020), the modified model provided
several improvements without any performance deteriorations.

Influence of Pixel-Wise Luminance Noise
Betz et al. (2015) examined the ODOG model (Blakeslee and
McCourt, 1999) by running it on White-effect figures with
narrowband noise. They found that the influences of narrowband
noise on the ODOG model and on humans do not match. Testing
models with noised images is important for investigating whether
the correct prediction can be observed robustly. However, using
narrowband noise is difficult in our case because the models
assume smaller images; thus, we created images with pixel-
wise luminance noise based on Murray (2020)’s SLC figure
(Figure 2). First, the 16 × 16 image was up-sampled to be a
32 × 32 image so that the influence of each pixel’s noise was
moderate. Then, all pixel luminances were independently noised;
random and independent samples from a uniform distribution
were added to each pixel (the distribution’s expected value was
zero, and the upper and lower limits were manipulated). One
of the two targets was copied onto the other target to make
both targets physically identical. We prepared five conditions
by manipulating the magnitude of noise (i.e., the upper and
lower limits of the uniform distributions of the noise) from
one to five. Although we did not conduct an experiment
on human observers, our informal observation confirmed a

stable illusory effect even for the SLC image with the most
noise (Figure 4A).

We created 10 randomly noised images for each noise
magnitude condition (one to five); thus, 50 images were obtained.
The two models were tested on these images (here, a single
test was composed of 10 runs, not 30 runs) (Figure 4B). The
results revealed that the original model is vulnerable to pixel-wise
noise; it predicts a very weak illusion even for an image with the
smallest noise. However, the modified model correctly predicts
moderate illusions consistently for all conditions. The modified
model’s output also shows a trend: the illusion magnitudes
decrease with larger noise, which human observers should
observe as well. These results show that the original model’s
correct prediction for SLC is less robust and that the modification
to the model enhanced its stability against luminance noise. This
improvement is mainly because of the modification of the belief
propagation schedule.

Simplified Checkershadow Illusion
We tested the models on images composed of sign-variant and
sign-invariant edges. We employed Blakeslee and McCourt’s
(2012) (Fig. 3) because it can be represented using a small simple
image. The image used in this study is shown in Figure 5A left.
This image can be understood as a simplification of Adelson
(1995)’s famous Checkershadow Illusion. As in Adelson (1995)’s

FIGURE 3 | Outputs for the predictions of White’s effect by the two models.

FIGURE 4 | (A) Example of a noised image. In this example, the lower and upper limits of the uniform distribution are ± 5. The SLC effect should be present in most
observation environments. (B) Results of the test for the noise’s influence on the model predictions. Each error bar represents the standard deviation of 10 tests in
each condition.
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FIGURE 5 | (A) Simplified Ceckershadow Illusion (SCS) and both model
outputs. Both models perceive the difference between the two target area
reflectances (tiles with green and red frames), but the modified model
perceives the shadowed region more clearly. (B) The SCS control and the
models’ outputs for it. The modified model does not observe a reflectance
difference, while the original model does.

original image, the figure is composed of a checkerboard and a
simulated shadow (or transparent filter), and lighter tiles in the
shadow have a luminance that is physically equal to that of darker
tiles out of the shadow. However, humans perceive the former
as lighter (and brighter) compared with the latter (Blakeslee
and McCourt, 2012). However, the illusory effect becomes much
weaker or absent when the shadow is shifted to share its boundary
with edges in the checkerboard (Figure 5B left). We tested the
two models on these two images (hereafter, we call them SCS,
referring to the simplified Checkershadow Illusion, and SCS
control, respectively).

Figure 5 shows the results of the tests. For the SCS, both
models correctly predict illusory effects with similar magnitudes.
However, the illuminance map of the original model contains
speckled noise, which does not match our intuitive illumination
impression. The modified model outputs an illuminance map
that better matches the illumination impression by humans,
containing a clear shadowed region. More importantly, the
original model predicts an illusion for the SCS control image with
a magnitude similar to (or stronger than) that for the SCS, while
the modified model does not. Thus, the modified model correctly
predicts the presence of the illusion for the SCS and its absence

for the SCS control, while the original model predicts illusions
for both. This difference in performance between the two models
is obviously caused by the modification to the prior regarding
X-junctions.

Further Tests for White’s Effect
As mentioned, the modified model’s most important
improvement is its ability to account for White’s effect,
which has been an important and challenging issue for lightness
models and theories (Anderson et al., 2001; Howe, 2005;

FIGURE 6 | (A) Double-increment version (left) and double-decrement (right)
version of the White-effect figure. Both are considered to cause virtually no
illusions. (B) Heatmap of the modified model’s illusion prediction for the
White-effect figure with various stripe luminance conditions. In the original
image used in Murray (2020) and the test shown in Figure 3, the two stripes’
luminances were 17.5 and 70 cd/m2. (C) Heatmap of the original model’s
prediction.
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Bressan, 2006). We further tested our model on other variants of
the White-effect figure.

Spehar et al. (1995) reported that White’s effect becomes
almost absent when both the two luminance levels of the stripes
are modified either to be brighter (Figure 6A left) or darker
(Figure 6A right) than the gray targets (i.e., the targets are in
double decrements or double increments). We examined the
model prediction by manipulating the luminance levels of the two
surrounding stripes. In this test, both stripes’ luminances were
manipulated from 10 to 70 cd/m2 with 2-cd/m2 intervals (i.e.,
the brighter ones’ luminance range from 12 to 70 cd/m2, and
the darker ones’ range from 10 to 68 cd/m2). Conditions where
the two stripes’ luminances become equal or reversed were not
included. The target luminance was fixed to that used in Murray
(2020)’s original White’s-effect stimulus, which was 35 cd/m2.

The results are shown in Figures 6B,C via heatmaps. Each
row indicates the luminance levels of the darker stripes, and
each column indicates those of the brighter stripes. The color of
each block indicates the magnitude of the predicted illusion; i.e.,
the difference between the predicted lightness of the two targets
(left–right). The modified model generally predicts an illusory
effect when the target luminance lies between the two stripes (the
area surrounded by the orange frame; Figure 6B) and predicts
greater effects as the contrast between the stripes becomes larger.

Moreover, the model rarely predicts an effect when the targets
are in double increments or double decrements (outside of the
orange frame; Figure 6B). These results show the robustness of
the correct predictions for White’s effect and its control version
(Spehar et al., 1995; Howe, 2005). Figure 6C shows the results
of the same test on the original model. The original model’s
performance for these stimuli is obviously worse than that of
the modified one.

White’s effect is known to be enhanced when the stripe’s
frequency becomes higher (White, 1979; Blakeslee and McCourt,
2004). This can be easily tested even on 16× 16 sized images. We
tested our model on three conditions (Figure 7) where the stripe’s
frequencies were 2, 4, or 8 cycles/image. The luminance levels
of each region were equal to those in Murray (2020)’s original
figure (Figure 2). The results showed that the modified model
correctly predicts a stronger effect for a figure with a higher
stripe frequency (Figure 7). The original model does not predict
illusions for any of these three conditions (the results of the
original model are shown in the Section 3 in the Supplementary
Material and the online repository).

The modified model also succeeds in predicting human
perceptions for some other variants of White’s effect. It has
been suggested that White’s effect is enhanced as the target
width (more specifically, the lengths of the sides parallel to the

FIGURE 7 | Effect of stripe frequency on the modified model’s output. The modified model predicts stronger illusions as the stripe frequency increases.
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FIGURE 8 | Some variants of the White-effect figure and the modified model’s
outputs for them. (A) A White-effect figure variant with narrow targets. The
model correctly predicts illusion enhancement (i.e., a stronger effect than in
the original White-effect figure). (B) A White-effect figure with taller targets. The
model predicts a reversal of the effect. (C) Howe (2001)’s variant. The
modified model correctly predicts no illusion.

stripes) becomes shorter (Kingdom and Moulden, 1991; Blakeslee
and McCourt, 2004). The modified model predicts a slight
enhancement for narrower targets (Figure 8A). Moreover, Otazu
et al. (2008) introduced a White-effect variant in which the effect
is greatly reduced when targets span three stripes. Via informal
observation, we observed that the effect was reversed rather
than canceled, as shown in Figure 8B. Our model thus predicts
an illusion reversal from White’s original effect. Furthermore,
the model correctly predicts no illusion for Figure 8C, which
was introduced by Howe (2001) as a control for White’s effect.
Predicting the absence of the effect in this control figure is
challenging for models that consider T-junctions around the
targets as the main cause of White’s effect. The present model
does not explicitly take into account T-junctions in its processing,
and thus it correctly predicts the elimination of the effect.
For the three White-effect variants discussed here, the original
model does not predict any illusions (see the Section 3 in the
Supplementary Material and the online repository for details).

Limitations of the Modified Model
We have shown several successful predictions by our modified
model, but we are also aware that it has some limitations. First,
our model does not predict the illusory effect in Anderson et al.
(2001)’s configuration (Figure 9A). Anderson et al. (2001) created
this figure to show that White’s effect is recovered when targets
are shifted from their positions in Howe (2001)’s control figure
(Figure 8C). Thus, it is challenging for computational models

to predict both the effect’s presence in Anderson et al. (2001)’s
stimulus and the effect’s absence in Howe (2001)’s version.
Spatial-filtering models also fail at this (Robinson et al., 2007).
Moreover, our model does not predict a stable illusion for
Todorović (1997)’s White-effect variant (Figure 9B). The model
sometimes predicts the effect, as in the case shown in Figure 9B,
but it is not stable (see the Section 3 in the Supplementary
Material). Our model also does not predict an illusion in Clifford
and Spehar (2003)’s zigzag variant of White’s effect (Figure 9C),1

which is reportedly accounted for by some spatial-filtering
models with certain parameter settings (Robinson et al., 2007;
Zeman et al., 2015). The original model does not predict correct
illusions for any of the three stimuli shown in Figure 9.

Argyle and Snake-Illusion Variants
In this section, we show mixed results; the modified model
sometimes yields better results than the original but sometimes
opposite results are obtained. We thought that the modification
to the prior on X-junctions would affect the models’ predictions
for variants of the Argyle and Snake illusions. The appearance
of the Argyle and Snake illusions is highly dependent on the
X-junctions in these images, as is obvious in the “Broken Argyle”
and “Snake control” images in Figure 2, where the effects are
absent when the X-junctions are removed. Moreover, contrast
polarities in the X-junctions are crucial for the occurrence and
direction of illusory effects (e.g., Bressan, 2001). Thus, modifying
the contrast polarities in the X-junctions in the Argyle and
Snake-illusion figures is expected to differentiate the original and
modified models’ predictions and their appearances to human
observers. We created some variants of these illusions (Figure 10)
and tested the models on them.

The results are shown in Figure 10. Figure 10A, or Argyle
control 1, is a variant created from the Argyle image shown
in Figure 2 by making the darkest regions of the X-junctions
moderately bright. In this figure, the illusory effect observed in
the original Argyle is almost eliminated, and our modified model
predicts no illusion. However, the original model still predicts
a moderate illusion and sees illuminance stripes (see the online
repository for the output maps). When the X-junctions’ brightest
regions in the Argyle image are made darker (Figure 10B; Argyle
control 2), the illusory appearance is also eliminated, and neither
model predicts an illusion.

For the variant of the Snake illusion shown in Figure 10C
(Snake control 1), where the darkest regions in the X-junctions
of the original Snake-illusion figure (Figure 2) are made brighter,
the illusory effect becomes weaker but is still observable because
of SLC. In this figure, while the original model correctly predicts
a weak illusion, the modified model predicts no illusion. For
Figure 10D (Snake control 2), where the brightest parts of
the X-junctions are darkened, the modified model does not
predict an illusion. The original model predicted an effect, but
its magnitude is almost the same as, or stronger than, that for

1Clifford and Spehar (2003) was a conference presentation, and their
original figure was not available to us. We designed the stimulus based on
Robinson et al. (2007).
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FIGURE 9 | Variants of the White-effect figure and the modified model’s outputs for them. (A) Anderson et al. (2001)’s variant. The model does not predict an illusion
for it. (B) Todorović (1997)’s variant. Although the model predicts an illusion for the case shown in this figure, it is highly unstable. (C) Clifford and Spehar (2003)’s
variant. The modified model does not predict an illusion.

FIGURE 10 | Variants of Argyle and Snake-illusion figures and the models’ predictions. Green and red frames indicate the target areas. (A) Argyle control 1; the
darkest pixels in the original Argyle (Figure 2) are moderately brightened. (B) Argyle control 2; the brightest pixels are darkened. (C) Snake control 1; the darkest
pixels in the original Snake (Figure 2) are brightened. (D) Snake control 2; the brightest pixels are darkened.

the original Snake illusion, which does not match the subjective
strength of the effect.

In summary, for variants of the Argyle and Snake illusions
(Figure 10), the results were mixed. The modified model shows
better predictions than the original model in some cases (mainly
in variants of the Argyle illusion), and the original model shows
better predictions than the modified model in some cases (mainly
in variants of the Snake illusion). Many more variants that
can differentiate the two models’ predictions can be created, so
these tests are far from exhaustive. Because further tests and
comparisons with human data are needed, we cannot make a
definite conclusion here on this issue.

DISCUSSION

In this study, we introduced a modified version of Murray’s
(2020) MIR. We modified the original model in the following
three aspects: (1) The belief propagation was made more efficient,

(2) different potential functions are assigned for sign-variant and
sign-invariant edges in X-junctions, and (3) the parameter for
illuminance changes is determined flexibly based on the total
luminance contrast of the input images. The first aspect is a
technical improvement of the inference process, and the latter
two are modifications to the model’s priors. The priors should
reflect observers’ beliefs about scenes, and we believe that the two
modifications largely reflect them. These “natural” priors showed
significant improvements in the model’s performance without
any deterioration. The main results obtained in this study are
summarized in Table 2.

Specifically, the main improvements are as follows: (1) the
prediction for the Checkerboard assimilation figure is closer to
human perception, (2) the prediction of SLC is more stable and
more immune to luminance-noise influence, (3) the predicted
lightness and illuminance maps for the SCS and SCS control
(Blakeslee and McCourt, 2012) are much closer to human
perception, and (4) the model correctly predicts White’s effect.
The first two improvements (Checkerboard assimilation and
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TABLE 2 | Summary of the model tests performed in this study.

Modified Original

Checkerboard assimilation I W

White’s effect C W

Noise on SLC (Figure 4) C W

SCS (Figure 5A) C I

SCS control (Figure 5B) C W

Spehar’s WE variant (Figure 6A) C NA

Frequency’s effect on WE (Figure 7) C W

Target width in WE (Figure 8A) C W

Target height in WE (Figure 8B) I NA

Howe’s WE variant (Figure 8C) C NA

Anderson’s WE variant (Figure 9A) W W

Todorović’s WE variant (Figure 9B) I W

Clifford’s WE variant (Figure 9C) W W

Argyle control 1 (Figure 10A) C W

Argyle control 2 (Figure 10B) C C

Snake control 1 (Figure 10C) W C

Snake control 2 (Figure 10D) W W

Items that were already shown in Table 1 and do not differentiate the two models’
predictions are not included here. “C” refers to correct predictions, “W” refers to
wrong ones, and “I” refers to intermediate ones. WE stands for White’s effect. Given
that the original model does not predict the original White’s effect, its predictions of
the absence of the effect for Spehar’s variant, the target height effect, and Howe’s
variant were not considered successful; thus, we marked NA instead of C.

noised SLC) are largely due to the modification of the belief
propagation schedule. This modification seemed to contribute to
embodying the model’s assumptions in highly articulated images
better. Moreover, successful predictions in the SCS variants are
due to modifications to the prior about X-junctions. The original
MIR is likely to interpret sign-variant edges of the X-junctions
in the checkerboard as illuminance boundaries, whereas the
modified MIR appropriately judges that only sign-invariant edges
are cues for illuminance boundaries. The SCS control does not
contain any sign-invariant edges of X-junctions, so the modified
MIR correctly predicted uniform illumination. Furthermore, the
correct predictions of White’s effect and its variants are mainly
due to the flexible setting of the parameter for illumination
changes, but the originally implemented prior—that illuminance
edges tend to be straight—also plays a significant role. White-
effect images tend to have high contrasts so the modified MIR
expects more illumination changes, and stripes with long straight
lines are likely to be judged as illuminance boundaries. These
correspondences between the illusions and the added priors
provide suggestions about what assumptions by humans cause
these illusions.

Among the improvements we have made to MIR, the
prediction of White’s effect is particularly important. It has
been challenging and of high importance for lightness models
because this effect highlights the fact that lightness cannot
be explained solely by the contrast between adjacent areas
(Wallach, 1948). White’s effect has long been known as a problem
for simple contrast-based theories and has been discussed by
many lightness/brightness researchers (Spehar et al., 1995; Taya
et al., 1995; Anderson et al., 2001; Howe, 2005; Gilchrist,
2006; Betz et al., 2015). Although there have been various
qualitative explanations of White’s effect (e.g., Howe, 2001), not

many quantitative (i.e., computational) models have correctly
explained it (see Blakeslee and McCourt, 1999; Lerer et al.,
2021 for successful cases). Therefore, it is highly important for
computational models to incorporate the prediction of White’s
effect. We not only showed our model’s ability to predict this
effect in a single image but also examined several variant
White-effect figures. The elimination of White’s effect in double-
increment/decrement conditions (Spehar et al., 1995) has rarely
been predicted by computational models, but our model succeeds
in predicting the presence and absence of the effect for figures
whose stripe luminance levels are manipulated (Figure 6). It
also predicts the effect’s enhancement caused by a higher stripe
frequency (Figure 7) and in narrower targets (Figure 8A).
Moreover, our model predicts a reversed effect in a variant in
which targets span several stripes (Figure 8B), which matches
our informal observation. Additionally, it correctly predicts the
absence of the effect in Howe (2001)’s control figure (Figure 8C),
which should be predicted to yield an illusion by models that
depend on the processing of T-junctions (Todorović, 1997).
Failures in the prediction of reverse-contrast phenomena have
been a major weakness of the original MIR (Murray, 2020;
Nedimović et al., 2021), but this study proved that it is possible
for the MIR framework to overcome this weakness.

Although our model showed significant improvements, it still
has some limitations. For example, the model is not able to
account for Todorović (1997)’s illusion (Figure 9B). This may
be caused by the same mechanism that is responsible for White’s
effect (Gilchrist, 2006); however, our model failed to predict it.
Future models should address this shortcoming by implementing
additional priors, such as that on T-junctions. However, we note
that none of the computational models currently available have
explained all the known variants of White’s effect (Blakeslee and
McCourt, 1999; Robinson et al., 2007; Zeman et al., 2015). Other
complete reverse-contrast phenomena (Bressan, 2001; Agostini
and Galmonte, 2002a; Economou et al., 2015) are also problems
for many computational models, including MIR, so they must be
addressed in future improvements.

Although we believe that our model’s additional two
priors are natural (i.e., they largely reflect natural-scene
characteristics), their further clarification may be possible.
We simply distinguished X-junctions into two patterns, but
a more detailed evaluation of X-junctions can likely be
implemented. This may improve the model’s performance
for illusions related to transparency or to the Argyle and
Snake illusions. Regarding the prior for the expectation of
illumination changes, future studies may need to consider
accumulated knowledge about illumination perception by
humans (e.g., Pont and Koenderink, 2007; Murray and Adams,
2019). Although our model simply expects a monotonic
increase in the illuminance change’s likelihood as the total
luminance contrast increases, a more complex relationship
between the two variables may better reflect the illumination
interpretation of humans. Incorporating “natural” priors will
enhance MIR’s performance. In this study, we proposed one
possible modification to MIR, but it requires further studies
and improvements.

To our knowledge, this study is the first extension of
Murray (2020)’s original MIR. This study highlights MIR’s

Frontiers in Psychology | www.frontiersin.org 10 July 2022 | Volume 13 | Article 915672

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-915672 July 4, 2022 Time: 16:59 # 11

Kobayashi and Kitaoka Improving Markov Illuminance and Reflectance

high extensibility and potential; the MIR framework welcomes
various patterns of modifications based on natural-scene
statistics and knowledge about human vision. We improved
the model’s performance by implementing two additional priors
and optimizing the inference. In future studies, perceptual
grouping—which is known to be an important factor for reverse
contrasts (Gilchrist et al., 1999; Agostini et al., 2020)—should be
implemented into the model. It may not be simple to represent
perceptual grouping in CRFs, but computational methods
that represent perceptual grouping, which have recently been
presented, may be useful (Froyen et al., 2015; Lezama et al., 2016).
These recent developments of computational methods should be
highly beneficial for the MIR framework, computational models,
and rigorous understanding of human vision.
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