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Abstract

Motivation: b-Propellers are found in great variety across all kingdoms of life. They assume many cellular roles, pri-
marily as scaffolds for macromolecular interactions and catalysis. Despite their diversity, most b-propeller families
clearly originated by amplification from the same ancient peptide—the ‘blade’. In cluster analyses, b-propellers of
the WD40 superfamily always formed the largest group, to which some important families, such as the a-integrin,
Asp-box and glycoside hydrolase b-propellers connected weakly. Motivated by the dramatic growth of sequence
databases we revisited these connections, with a special focus on VCBS-like b-propellers, which have not been ana-
lysed for their evolutionary relationships so far.

Results: We found that VCBS-like form a supercluster with integrin-like b-propellers and tachylectins, clearly
delimited from the superclusters formed by WD40 and Asp-Box b-propellers. Connections between the three super-
clusters are made mainly through PQQ-like b-propeller. Our results present a new, greatly expanded view of the
b-propeller classification landscape.

Contact: pereira.joanam@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins with a b-propeller domain are found in all kingdoms of life
(Fig. 1c). They are involved in diverse biological processes, from ad-
hesion to transcription regulation (Chen et al., 2011; Fülöp and
Jones, 1999; Guruprasad and Dhamayanthi, 2004; Pons et al.,
2003). In them, the b-propeller acts mostly as a recognition site for
different biomolecules, but may also carry catalytic activity. These
repetitive domains (Andrade et al., 2001; Söding and Lupas, 2003)
adopt a toroid fold, where between 4 and 12 (Fig. 1d) copies of a
widespread supersecondary structure, the 4-stranded b-meander, are
arranged radially around a central channel (Fig. 1a, b). These
repeats, whose strands are labelled A–D (Fig. 1b), are called ‘blades’
and the toroids they form correspondingly ‘propellers’. Blades carry
specific sequence motifs which allow the classification of cognate b-
propellers into a hierarchy of families and superfamilies (Chaudhuri
et al., 2008; Chen et al., 2011; Fülöp and Jones, 1999; Guruprasad
and Dhamayanthi, 2004; Pons et al., 2003).

Despite their wide sequence diversity (Fig. 1e, f), most b-propel-
ler families are related to each other and emerged by independent
amplification from a set of homologous ancestral blades, in a pro-
cess that is still visibly ongoing (Afanasieva et al., 2019; Alva et al.,
2015; Chaudhuri et al., 2008; Dunin-Horkawicz et al., 2014; Kopec
and Lupas, 2013). Classification studies (Chaudhuri et al., 2008;
Kopec and Lupas, 2013) suggested that most b-propeller families

form a supercluster centred on WD40 b-propellers, a large super-
family characterized by a Trp-Asp motif at the end of strand C (in
position 40). Proteins assigned to this supercluster in previous stud-
ies included the 7-bladed b-subunits of G-proteins, the 6-bladed
low-density lipoprotein (LDL) receptors, the 6-bladed protein kinase
PknD and the 5-bladed tachyletin-2 family, which comprises eu-
karyotic lectins involved in the innate immunity of cnidarians and
crustaceans (Beisel et al., 1999; Hayes et al., 2010; Neer et al.,
1994). Some peripheral groups connected weakly to this superclus-
ter (Chaudhuri et al., 2008; Kopec and Lupas, 2013), such as the 7-
bladed b-propeller domain of a-integrins, characterized by a Ca2þ-
binding DxDxDG motif in the loop connecting strands A and B
(loop AB) and an FG-GAP/Cage motif, which is contiguous in space
but not sequence, covering the N-terminal end of strand A and the
C-terminal end of strand B (Chouhan et al., 2011; Rigden and
Galperin, 2004). This connection was proposed to be weakly medi-
ated by Asp-Box b-propellers, most of whose members are charac-
terized by a SxDxGxTW motif in the loop connecting strands C and
D (loop CD) (Quistgaard and Thirup, 2009).

Missing from these studies were b-propellers of the Vibrio,
Colwellia, Bradyrhizobium and Shewanella (VCBS) family (Pfam:
PF13517), a poorly described group that has hitherto not been ana-
lysed systematically for its evolutionary relationships. VCBS encom-
passes the 7-bladed b-propellers in aldos-2-ulose dehydratases
(AUDH) (Claesson et al., 2012), ABC toxin component B (TcB)
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(Meusch et al., 2014) and fungal PVL lectins (Cioci et al., 2006),
and other found in a variety of hypothetical archaeal toxins
(Makarova et al., 2019). As PVLs carry a conserved Ca2þ-binding
DxDxDG motif in loop AB, their similarity to integrin-like b-propel-
lers has been conjectured (Cioci et al., 2006), but their mode of
carbohydrate recognition appears to be more similar to that of
tachylectin-2 (Beisel et al., 1999; Cioci et al., 2006). In order to ob-
tain further insight into this group and locate it within the b-propel-
ler landscape, we performed a survey of VCBS-like b-propellers and
their relationship to integrin-like, Asp-Box, tachylectin and WD40
b-propellers.

2 Materials and methods

Thirteen b-propeller representatives of known structure, chosen to
represent the families described above (Supplementary Table S1),
were used as queries for sequence searches with PSI-BLAST
(Altschul, 1997). Searches for most families were carried out with
the nr database filtered to a maximum sequence identity of 30%
(nr30, as of May 2020) (Zimmermann et al., 2018). Given their
sparse taxonomic distribution, tachylectins were searched on the nr
database filtered to a maximum sequence identity of 50%. Matches
covering more than 80% of the corresponding query were collected
after 2 rounds and filtered to a maximum sequence identity of 50%
with CD-HIT (Li and Godzik, 2006). The final sequences were
assigned an ECOD family by HHsearches against a database of
HMM profiles built for the ECOD database filtered to 70% max-
imum sequence identity (HHpred ECOD70 database as of March
2020) (Zimmermann et al., 2018). Each sequence was assigned the
best match at a probability better than 90%. Taxonomic informa-
tion was collected from the Entrez Taxonomy database.

Sequences were clustered with CLANS (Frickey and Lupas,
2004) based on the P-value of their BLASTp pairwise comparison,
computed using the BLOSUM62 scoring matrix. Clustering of the
entire set was preformed until equilibrium at a P-value of 10�5 and
superclusters identified manually based on the name of the corre-
sponding query sequences and the ECOD domains assigned. To
identify subclusters and internal connections, the sequences in the
VCBS supercluster, including and excluding the PQQ/RGL11

sequences, were re-clustered at P-values of 10�18 (Fig. 2b) and
10�20, respectively (Supplementary Fig. S1a).

In order to evaluate the domain environments of the b-propellers
in each subcluster, their parent full-length proteins were collected
and binned by size, with a step of 100 residues. A representative for
each bin was collected and domains annotated iteratively with
HHsearch as above. A maximum of four iterations was carried out,
where sequence regions not yet mapped to a domain were searched
individually. Only the best matches at a probability better than 70%
and larger than 40 residues were considered. Signal peptide predic-
tion was carried out with Phobius (Käll et al., 2004).

For HMM comparisons, the full-length sequences of the b-pro-
pellers composing the clusters and subclusters depicted in Figure 2
were used. For each group, the sequences were aligned with
MUSCLE (Edgar, 2004) and the alignment trimmed with trimAl
(Capella-Gutierrez et al., 2009), removing columns where >25% of
the positions were a gap (gap score of 0.75) and sequences that only
overlapped with less than half of the columns populated by 80% or
more of the other sequences. HMM profiles were built with
HHmake and aligned with HHalign (Söding, 2005), using default
parameters without secondary structure scoring. The alignments
were then inspected and segments corresponding to the best con-
served individual blades were used to build Figure 3b. Structural
alignments were carried out with TM-align (Zhang and Skolnick,
2005).

3 Results

PSI-BLAST searches with 13 b-propellers of known structure,
chosen to represent the families described above (Supplementary
Table S1), yielded a total of 5996 sequences from bacteria, archaea
and eukaryotes (see Methods). When clustered by pairwise similar-
ity (Fig. 2), these sequences form three superclusters organized
around cores of WD40, Asp-Box and VCBS-like b-propellers, re-
spectively. The WD40 and Asp-Box superclusters were expected,
based on previous analyses (Chaudhuri et al., 2008; Kopec and
Lupas, 2013), but we were struck by the clear grouping of the other
b-propeller families into a third supercluster, centred on VCBS and
clearly delimited from the other two.

The core of the VCBS supercluster comprises prokaryotic b-pro-
pellers from diverse hypothetical protein families (Supplementary
Fig. S1), which carry a signal sequence and may contain several b-
propeller domains, accompanied by domains associated with biomo-
lecular interactions (mostly immunoglobulin-like domains, but also
armadillo repeats and jelly-roll-like lectins, Supplementary Fig. S1).
The VCBS core group is connected to a large periphery of VCBS-like
families, including PVL, TcB and AUDH, as well as to diverse hypo-
thetical b-propellers, which have hitherto remained unstudied
(Fig. 2b and Supplementary Fig. S1). b-Propeller families in this per-
iphery are found in a variety of hypothetical proteins, whose domain
composition suggests an involvement in biomolecular interactions
and catalysis (Supplementary Fig. S1a). The most peripheral families
that still connect directly to the VCBS core are the integrin-like b-
propellers and the bacterial RGL11 family (rhamnogalacturonan
lyase YesX, ECOD: 001396995). Two other important b-propeller
families complete the VCBS supercluster, comprising tachylectins
and PQQ b-propellers, respectively. These connect to each other,
and also to the VCBS core via RGL11, in the case of PQQ and a b-
propeller family we have named VCBS actinolectins, in the case of
tachylectins.

We chose the name ‘VCBS actinolectins’ given their exclusive oc-
currence in actinobacteria and evolutionary connection to tachylec-
tins (Fig.1b and Supplementary Fig. S1), but no member of this
family has as yet been characterized functionally or structurally.
These b-propellers are found in proteins that carry a signal sequence
and either consist of the single b-propeller domain or of the b-pro-
peller preceded by a TIM barrel (Supplementary Fig. S1a). Their
connection to the tachylectin cluster is mediated by a core of bacter-
ial tachylectin-like sequences, which are found in secreted proteins
often containing additional domains involved in catalysis. Two
groups radiate from this core, the eukaryotic tachylectins-2 and a
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Fig. 1. General features of the b-propeller fold and its representation in the

Evolutionary Classification of Protein Domains (ECOD) database (Cheng et al.,

2014) filtered to a maximum sequence identity of 70%, as of January 2020. (a) 3D

structure of a b-propeller, exemplified by the crystallographic model of yeast ribo-

some assembly protein SQT1 (PDBID: 4ZOV_A), an 8-bladed member from the

WD40 supercluster. (b) 2D fold topology of the fold depicted in (a), highlighting the

different blades, the A-to-D naming of their constituent b-strands and the character-

istic ‘velcro-closure’. (c) Taxonomic distribution, (d) number of blades distribution

(topology), (e) median pairwise sequence identity between blades within the same b-

propeller and (f) pairwise sequence identity between all b-propeller domains. For

computing pairwise sequence identities, sequences were aligned with MUSCLE

(Edgar, 2004) and only the aligned regions considered

The VCBS superfamily 5619

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1085#supplementary-data


second family of actinobacterial b-propellers, both of which are
comprised of secreted proteins consisting of the b-propeller domain
alone. The identification of these multiple tachylectin-like families
was a striking result as tachylectin b-propellers have been considered
for long time as near-orphans and have so far only been reported in
eukaryotes (Beisel et al., 1999; Hayes et al., 2010; Smock et al.,
2016).

HMM comparisons highlight the sequence motifs behind the
connections described here (Fig. 3). The most prominent motif is the

aspartate-rich DxDxDG sequence of loop AB (Figs 3b and 4)
(Chouhan et al., 2011; Cioci et al., 2006; Rigden and Galperin,
2004). While in PVL and a-integrin, this loop binds Ca2þ (Fig. 4b),
in other members, it may recognize also other metal cations
(Chouhan et al., 2011; Claesson et al., 2012; Meusch et al., 2014;
Rigden and Galperin, 2004). Also conspicuous are two non-
contiguous, highly conserved residues of loop CD, G and W
(Fig. 3b). Their functional role is uncertain, but in integrin-like b-
propellers, the G coordinates a water molecule involved in Ca2þ
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binding (Chouhan et al., 2011), and in tachylectin-2 the W anchors
a short a-helix involved in forming the sugar-binding pocket
(Fig. 4). A fourth prominent motif is a GW in loop DA’ (the loop
that connects strand D from one blade to strand A of the next)
(Figs 3b and 4a, c), which in tachylectin-2 and PVL is involved in
forming the sugar-binding pocket (Supplementary Fig. S2) (Cioci
et al., 2006; Kawabata and Tsuda, 2002).

While widely represented in the families of the VCBS superclus-
ter, none of these motifs is universal. Thus, for example, the
aspartate-rich motif of loop AB is not found in tachylectin-like and
PQQ b-propellers. These are connected to other families in the
supercluster by the sequence of loop CD and, in the case of
tachylectin-like b-propellers, by the GW motif of loop DA’.

4 Conclusions

Our results confirm the relationship conjectured between fungal
PVL lectins, tachylectin-2 and integrin-like b-propellers (Cioci et al.,
2006). We find that all three of these eukaryotic protein families are
satellites of larger prokaryotic clusters, from which they are presum-
ably descended. Jointly with these, they are part of a supercluster of
b-propeller families, centred on the large group of prokaryotic
VCBS b-propellers. This supercluster had not been recognized in
previous studies (Chaudhuri et al., 2008; Kopec and Lupas, 2013)
because most relevant proteins could not be included, primarily due
to the lack of relevant sequences of known structure. We note that,
in a study on the prokaryotic ancestry of eukaryotic networks medi-
ating innate immunity and apoptosis (Dunin-Horkawicz et al.,
2014), the predicted functional interactomes in bacteria with com-
plex life cycles clearly separated b-propellers of the WD40 super-
cluster from those that we now recognize to be part of a new,
VCBS-like supercluster. Both superclusters show highly repetitive,
recently amplified members, highlighting the ongoing genesis of new
propellers in response to what we surmise are functional challenges
specific to each supercluster.

We believe two factors were essential in our ability to resolve the
evolutionary connections between the main b-propeller groups. The
first is the presence of members of the VCBS superfamily, which
revealed their intermediate position between integrin-like and PQQ
b-propellers, providing a context for the weak links previously

observed between integrin-like and Asp-Box b-propellers. The se-
cond was the collection of a substantial number of tachylectin-like
sequences. Given the structural approach of previous studies

(Chaudhuri et al., 2008; Kopec and Lupas, 2013), these encom-
passed only the one tachylectin-like sequence found in PDB, which
clustered in the WD40 supercluster. In our study, more than 140
tachylectin-like sequences were collected, including sequence inter-
mediates essential for the establishment of evolutionary links. Many

of these sequences are of bacterial origin and resulted from metage-
nomic studies, highlighting the importance of such efforts for the
better understanding of protein evolution paths and the structure of
the b-propeller sequence space.
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Fülöp,V. and Jones,D.T. (1999) b Propellers: structural rigidity and functional

diversity. Curr. Opin. Struct. Biol., 9, 715–721.

Guruprasad,K. and Dhamayanthi,P. (2004) Structural plasticity associated

with the b-propeller architecture. Int. J. Biol. Macromol., 34, 55–61.

Hayes,M.L. et al. (2010) High amino acid diversity and positive selection at a

putative coral immunity gene (tachylectin-2). BMC Evol. Biol., 10, 150.

Käll,L. et al. (2004) A combined transmembrane topology and signal peptide

prediction method. J. Mol. Biol., 338, 1027–1036.

Kawabata,S.I. and Tsuda,R. (2002) Molecular basis of non-self recognition by

the horseshoe crab tachylectins. Biochim. Biophys. Acta Gen. Subjects,

1572, 414–421.

Kopec,K.O. and Lupas,A.N. (2013) b-Propeller blades as ancestral peptides in

protein evolution. PLoS One, 8, e77074.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and compar-

ing large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658–1659.

Makarova,K.S. et al. (2019) Antimicrobial peptides, polymorphic toxins, and

self-nonself recognition systems in archaea: an untapped armory for intermi-

crobial conflicts. MBio, 10, e00715–e00719.

Meusch,D. et al. (2014) Mechanism of Tc toxin action revealed in molecular

detail. Nature, 508, 61–65.

Neer,E.J. et al. (1994) The ancient regulatory-protein family of WD-repeat

proteins. Nature, 371, 297–300.

Pons,T. et al. (2003) Beta-propellers: associated functions and their role in

human diseases. Curr. Med. Chem., 10, 505–524.

Quistgaard,E.M. and Thirup,S.S. (2009) Sequence and structural analysis of

the Asp-box motif and Asp-box beta-propellers; A widespread

propeller-type characteristic of the Vps10 domain family and several glyco-

side hydrolase families. BMC Struct. Biol., 9, 46.

Rigden,D.J. and Galperin,M.Y. (2004) The DxDxDG motif for calcium bind-

ing: multiple structural contexts and implications for evolution. J. Mol.

Biol., 343, 971–984.

Smock,R.G. et al. (2016) De novo evolutionary emergence of a symmetrical

protein is shaped by folding constraints. Cell, 164, 476–486.
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