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Objective. Head and neck squamous cell carcinoma (HNSCC) is one of the worst-prognosis malignant tumors. This study used
bioinformatic analysis of the transcriptome sequencing data of HNSCC and the patients’ survival and clinical data to construct a
prediction signature of glycolysis-related genes as the prognostic risk markers. Methods. Gene expression profile data about
HNSCC tissues (n =498) and normal tissues in the head and neck (n = 44) were got from The Cancer Genome Atlas (TCGA),
as well as patients’ survival and clinical data. Then, we obtained core genes; their expression in head and neck squamous cell
carcinoma tissues is significantly different from that in normal head and neck tissues. The predicted glycolysis-related genes are
screened through univariate Cox regression analysis, and then, the prognostic risk markers were constructed through further
correction of multivariate Cox regression analysis. The Kaplan-Meier curve and receiver operating characteristic curve are used
to analyze the potential value of these risk markers in diagnosis and prognosis. We also evaluated that the glycolysis-related
prognostic risk markers composed of 6 oncogenes are correlated with clinical features, such as age, gender, grade, and clinical
stage of the tumor, by univariate and multivariate Cox regression analyses. Results. Differentially expressed glycolytic genes in
HNSCC tissues and normal head and neck tissues were screened from TCGA databases using the bioinformatic method. We
confirmed a set of six glycolytic genes that were significantly associated with OS in the test series. According to our analysis, the
prognostic risk markers composed of HPRT1, STC2, PLCB3, GPR87, PYGL, and SLC5A12 may be an independent risk factor
for the prognosis of HNSCC. Conclusions. Through this analysis, we constructed new prognostic risk markers related to
glycolysis as a prognostic risk marker for patients with HNSCC and provided new ideas and molecular targets for the research
and individualized treatment of HNSCC.

1. Introduction

Head and neck cancer is one of the main causes of global
morbidity and mortality, of which HNSCC accounts for
90% [1]. Current research indicated that HNSCC is closely
related to numerous factors, including smoking, drinking,
and human papilloma virus [2, 3]. In recent years, fiber rhi-
nopharyngoscope and other related examinations have been
widely applied to detect early lesions of HNSCC; hence,

HNSCC patients can be diagnosed and treated early [4]. In
order to study the mechanism of HNSCC, countries from
all around the world have invested a lot in scientific research
and made great progress in diagnosis and treatment of
HNSCC [5]. However, the incidence and mortality of
HNSCC remain high [6]. In addition, due to the heteroge-
neity of molecular mechanisms and tumor behaviors
related to HNSCC, the widely recognized clinical factors
including lymph node metastasis and histological grade
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FIGURE 1: GSEA of glycolysis-related gene sets. Enrichment plots of four glycolysis-related gene sets between HNSCC and paired normal

tissues identified by GSEA.

are not sufficient to predict the prognosis of a patient.
Therefore, identifying clinically relevant biomarkers for
HNSCC can facilitate correct treatment decisions and
improve prognosis [7]. However, studies have not identi-
fied an effective clinical biomarker for the prognosis of
HNSCC so far.

Aerobic glycolysis is one of the most important features
of tumor metabolism [8]. In recent years, research has found
that this feature can be a new breakthrough for studying
tumor occurrence and development and antitumor treat-
ment. An increasing number of studies have found that
glycolysis-related genes may make for prognostic risk
markers [9], but most of the markers have not been clinically

applied, and studies that select and analyze a specific charac-
teristic or a single signal pathway are rare. This may be a new
key breakthrough for our research on the occurrence and
development of tumors. This study intends to set up a predic-
tion signature of glycolysis-related genes as the prognostic
risk markers by mining the transcriptome sequencing data
of HNSCC.

2. Materials and Methods

2.1. Obtained HNSCC Gene Expression Profile and Clinical
Related Data from TGCA. The transcriptome gene expres-
sion profile of HNSCC was obtained from TCGA (https://
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TaBLE 1: The core gene were screened from 3 glycolysis-related gene sets.

The ID of core gene (n =207)

DLD, NUP35, NUP188, HPRT1, IL13RA1, B4GALT7, PEBP1, NUP54, NUP205, GPI, STC2, NUP214, SL16A8, MDH2, TGFBI, NDCl1,
NUP58, CD44, PGP, PPIA, AGL, SERPINA1, TFF3, HSPAS5, RBCK1, PPP2R5D, SLC16A3, B4GALT4, ARPP19, PKM, EXT1, B4GALT1,
UGP2, XYLT2, KRT7, PFKFB1, AGRN, PGM2L1, NUP160, POLR3K, SLC16A7, SDC3, PFKP, STC1, ABCB6, NUP155, NDUFV3,
B3GAT3, BPNT1, NUPS88, P4HA1, TXN, CENPA, NASP, PMM2, BPGM, NUP37, PLCB3, KIF2A, NUP133, HMMR, 1SG20, EGLN3,
CXCR4, GYS2, GCKR, NUP107, CDK1, GOT1, HK3, SDC1, ATP5F1D, MED24, CASP6, PGK1, SLC16A1, CLN6, GCK, HS2ST1, PFKL,
VCAN, HK1, GNPDA1, LDHA, ELF3, B4GALT2, MXI1, CACNA1H, EXT2, GMPPA, CLDN3, ANXA1, ARTN, SLC5A8, PAXIP1, CHPF,
GPR87, NANP, PDK3, GAPDHS, NUP62, COG2, SOD1, SDC2, NT5E, PLOD2, NUP50, PFKFB4, PRPS1, TPST1, COPB2, GCLC, GLCE,
SAP30, PC, SPAG4, GALE, NUP85, ECD, POM121, ANG, NUP98, IGFBP3, CHST4, CHST12, GNE, PYGL, PSMC4, P4HA2, SLC25A13,
PFKFB3, ALDH7A1, PLOD1, GRK4, KIF20A, TPBG, LCT, HK2, MERTK, CTH, PPP2CB, NUP153, AKR1A1, EPHX1, AK3, PYGB, ACTB,
DHI1, G6PD, RAE1, ALGI1, MIOX, GPC1, TPR, GSTP1, STMNI1, ME1, CYB5A, FBP2, EGFR, NUP210, ENO1, ENO3, SLC5A12, KDELR3,
GALK2, B3GALT6, COL5A1, FUTS, PGM2, AAAS, CAPN5, CHST2, PGAM1, ADPGK, LHPP, ADORA2B, FKBP4, VLDLR, RRAGD,
GAPDH, SEH1L, NUP93, RPE, CHPF2, DEPDC1, DDIT4, ENO2, ME2, CITED2, VEGFA, TGFA, NUP43, AURKA, CHST1, ALDOC,
LHXO9, BIK, MET, GUSB, CALU, ANKZF1, ALDH9A1, POM121C, TPI1, GMPPB, MIF.

portal.gdc.cancer.gov/repository), and the corresponding
clinical follow-up information was also obtained from
TCGA. Then, we obtained a total of 498 cases of HNSCC
patients and 44 cases of normal tissue gene expression pro-
files and corresponding clinical information.

2.2. Identified Prognostic Glycolysis-Related Genes and
Constructed New Predicted Risk Markers. Gene Set Enrich-
ment Analysis (GSEA) is used to detect 4 gene sets about
glycolysis (GO_LACTATE_TRANSPORT, CHEN_LUNG_
CANCER_SURVIVAL, HALLMARK_GLYCOLYSIS, and
REACTOME_GLYCOLYSIS) from GSEA (https://www
.gsea-msigdb.org/gsea/login.jsp); the gene files of gmp for-
mat were got from the Molecular Signatures Database
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Then,
we analyzed the expression differences of the above-
mentioned glycolysis-related gene set in HNSCC tissues and
normal tissues in the head and neck. The expression differ-
ences of glycolysis-related genes were characterized by associ-
ated p values and logFC (fold change), and the core genes was
constructed. The risk markers related to prognosis were
screened by univariate and multivariate Cox regression analy-
ses based on the core genes, and the prognostic risk markers
were constructed.

2.3. Statistics and Survival Analysis. The screening of differ-
ential genes and the analysis of the Cox proportional hazards
regression model in this research are mainly achieved by R
language (R x64 3.6.3). We loaded the limma (Linear Models
for Microarray Data) package to analyze the differential
expression of the preprocessed data.

Sorting out the gene expression information through lin-
ear models, a comparison model was constructed to compare
the gene expression data of patients in the high-risk and low-
risk groups. These patients” unique risk score was obtained
based on the prognostic risk score formula and the expression
level. Risk score = expression of gene 1 x 31 + expression of
gene 2 x 32 + ---+expression of genen x fn. A unique risk
score for each patient with HNSCC was divided into the high-
and low-risk groups by the median of risk score values.

A Kaplan-Meier curve is used to analyze the constructed
prognostic risk markers to predict the patients’ OS with
HNSCC. When using prognostic risk markers to predict a

patient’s OS, their diagnostic efficacy is further verified
through receiver operating characteristic (ROC) curve analy-
sis. The relation between the risk score and clinical character-
istics was analyzed by univariate and multivariate Cox
regression analyses, including age, lymph node metastasis,
stage, gender, and classification.

p value < 0.05 was considered statistically significant.

3. Results

3.1. Glycolysis-Related Gene Sets. This study analyzed
HNSCC such as oral squamous cell carcinoma and throat
squamous cell carcinoma. The transcriptome expression pro-
file of HNSCC can be obtained from TCGA, and the corre-
sponding clinical follow-up data can also be obtained from
TCGA. We observed and screened the glycolysis-related gene
sets on the GSEA website. We, respectively, explored 4 differ-
ent gene sets (CHEN_LUNG_CANCER_SURVIVAL, GO_
LACTATE_TRANSPORT, HALLMARK_GLYCOLYSIS,
and REACTOME_GLYCOLYSIS) as to whether the expres-
sion of tumor samples in these 4 glycolysis-related gene sets
is different from that of normal head and neck samples. We
found that the CHEN_LUNG_CANCER_SURVIVAL,
REACTOME_GLYCOLYSIS, and HALLMARK_GLYCO-
LYSI gene sets in HNSCC are significantly different between
the normal head and neck samples and the tumor samples
(FDR are 0.008, <0.001, and <0.001, respectively). For
HNSCC, the GO_LACTATE_TRANSPORT gene set is not
significantly different between the tumor sample and the nor-
mal head and neck sample (FDR =0.433) (Figure 1). Next,
the core genes were screened from 3 glycolysis-related gene
sets (CHEN_LUNG_CANCER_SURVIVAL, HALLMARK _
GLYCOLYSI, and REACTOME_GLYCOLYSIS), which are
the differentially expressed genes about glycolysis in the
tumor tissue and normal tissue, as shown in Table 1.

We further verified the correlation between core genes
and glycolysis; GO analysis is used to evaluate their biological
processes (BP), molecular function (MF), and cellular com-
ponent (CC). Next, KEGG pathway enrichment analysis is
used to verify their biological pathways. The results show that
the biological processes (BP) of these core genes have the
highest enrichment among several metabolic processes,
molecular function (MF) is related to the enzyme activity
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FiGurg 2: The functional enrichment analysis of the core genes. Gene Ontology (GO) terms (a) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (b) were significantly enriched by the core genes.



BioMed Research International

TaBLE 2: The information of six glycolysis-related genes associated
with overall survival in patients with HNSCC.

Gene Cox (B) HR

HPRT1 0.019464 1.019654
STC2 0.0261 1.026443
PLCB3 0.012804 1.012886
GPR87 0.005647 1.005663
PYGL 0.005313 1.005327
SLC5A12 0.384181 1.468411

and glucose binding of multiple metabolic pathways, and the
KEGG pathway enrichment analysis involves carbon metab-
olism and glycolysis/gluconeogenesis. It was further verified
that the core genes screened out were related to glycolysis
(Figure 2).

3.2. Construction of Prognostic Risk Markers Based on Core
Genes. The overall survival data of patients with HNSCC
were sorted out, and these core genes were further analyzed.
The glycolysis-related genes related to the patient’s OS were
screened through univariate Cox regression analysis. The
correlation of glycolytic gene expression profile and patient’s
OS was further verified though multivariate Cox regression
analysis. After analysis, the screened result is the prognostic
risk markers composed of OS-related glycolysis genes, that
is, HPRT1, STC2, PLCB3, GPR87, PYGL, and SLC5A12.
The prognostic risk markers based on glycolysis-related
oncogenes are constructed (Table 2).

The regression coeflicient (f8) of each prognostic risk
marker was calculated through multivariate Cox analysis.
These patients’ unique risk score was obtained based on
the regression coefficient and the expression level. Risk score
= expression of HPRT1 x 0.019464 + expression of STC2 x
0.0261 + expression of PLCB3 x 0.012804 + expression of
GPR87 x 0.005647 + expression of PYGL x 0.005313 +
expression of SLC5A12 x 0.384181. A unique risk score for
each patient with HNSCC was divided into the high- and
low-risk groups by the median of risk score values and then
the high-risk (n=249) and low-risk (n=249) groups,
respectively. The Kaplan-Meier (KM) survival curve was
used to evaluate the prognosis difference between both
groups. Results show that the survival rate of the high-risk
group is significantly lower than the low-risk group (p value
< 0.001) (Figure 3(a)). In order to test the impact of
glycolysis-related prognostic risk markers composed of six
oncogenes in predicting the 3-, 5-, and 10-year OS rate of
HNSCC patients, their diagnostic efficacy was further veri-
fied by ROC curve analysis. The results found that the area
under the curve (AUC) is 0.710, 0.675, and 0.740, respec-
tively (Figure 3(b)), indicating that the prognostic risk
markers have a good performance in predicting the OS rate
of HNSCC patients. Based on the risk scores, the risk curve
was constructed (Figure 3(c)); we further found that the
higher the risk score, the less the patients’ survival time.

3.3. The Prognostic Risk Markers and Clinical Characteristics.
In order to assess whether the glycolysis-related prognostic

risk markers composed of 6 oncogenes are correlated with
clinical features such as age, gender, grade, and clinical stage
of the tumor, we used clinical parameters as covariates in the
entire data set with univariate and multivariate Cox regres-
sion analyses. The result data shows that in the univariate
Cox regression analysis, age, tumor clinical stage, and risk
score are both significantly correlated with overall survival
time, while gender and tumor grade are not significantly cor-
related. After multivariate adjustment, the risk score is still
significantly correlated with the overall survival time
(p<0.001, 95% CI 1.304-1.702, HR = 1.884). The result of
univariate and multivariate Cox regression analyses and
stratified analysis shows that the glycolysis-related prognos-
tic risk markers composed of the six screened oncogenes pre-
dict patient prognosis and can be independent of clinical
characteristics. In a word, the prognostic risk markers could
be applied to predict OS in patients with HNSCC (Figure 4).

We further evaluate the risk score correlation with clini-
cal characteristics, excluding patients with unknown clinical
data (including age, gender, grade, T, N, and tumor clinical
stage). We performed a stratified analysis of each clinical
characteristic, respectively. The prognostic risk markers
stratified patients based on age; one is the <65-year-old group
with high risk (n = 159) and low risk (n = 165), and the other
is the >65-year-old group with high risk (n = 90) and low risk
(n=84). It is concluded that the overall survival rates
between the two subgroups in both groups have significant
differences (p < 0.001 and 0.003, respectively). The patients
were stratified by gender and are divided into males and
females. Among them, women have 66 high-risk cases and
67 low-risk cases; men have 183 high-risk cases and 182
low-risk cases. The analysis shows that the overall survival
rates between two subgroups in both groups are significantly
different (p=0.007 and <0.001, respectively). Then, all
patients were stratified based on the tumor grade, divided
into two subgroups, named grades I and II (n=359) and
grades III and IV (n = 120), respectively. Based on the rick
score, grades I and II have 183 high-risk cases and 176 low-
risk cases. We found that overall survival of the two sub-
groups is significantly different (p < 0.001). The same results
are also observed in two subgroups of grade III and IV
patients (p = 0.003). Based on the T stage of tumors, patients
were divided into the T1 and T2 groups (n = 176) and the T3
and T4 groups (n =266). Among them, the survival rate of
high-risk patients in the T1 and T2 groups is not significantly
different from that of the low-risk subgroup (p=0.338),
while the survival rate of high-risk patients in the T3 and
T4 groups is significantly different from the low-risk sub-
group (p <0.001). According to the presence or absence of
lymph node metastasis, these patients were divided into
two groups. We found that survival rates between high-risk
and low-risk patients in both groups are significantly differ-
ent (p=0.023; p <0.001). Lastly, we divided patients based
on the clinical stage of the tumor: one is the stage I and II
group (n =94) with high risk (n =45) and low risk (n =49)
and the other is the stage III and IV group (n =336) with
high risk (n=174) and low risk (n=162). In the stage III
and IV group, the survival rate of high-risk patients is signif-
icantly different from low-risk patients (p <0.001). In
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F1GURE 3: Risk score based on the 6 glycolysis-related gene prognostic risk markers in patients with HNSCC. (a) Kaplan-Meier curve of OS in
the high- and low-risk groups. (b) Time-dependent ROC curves of the 6 glycolysis-related gene signatures for prediction of 3-, 5-, and 10-year
OS. (c) The distribution of the 6 glycolysis-related gene risk scores and survival status for each patient.
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Univariate Cox regression analysis of each clinical parameter

pvalue Hazard ratio
Age <0.001 1.024 (1.010-1.039)
Gender 0.103  0.761 (0.547-1.057)
Grade 0.345  1.122(0.883-1.426)
Stage <0.001  1.403 (1.160-1.698)

Riskscore <0.001

1.521 (1.333-1.734)
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Multivariate Cox regression analysis of each clinical parameter

pvalue Hazard ratio
Age 0.002  1.025 (1.009-1.042)
Gender 0.149  0.773 (0.545-1.097)
Grade 0.771  1.038 (0.809-1.331)
Stage <0.001  1.462 (1.200-1.782)

Riskscore <0.001

1.490 (1.304-1.702)
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o
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FI1GURE 4: Univariable and multivariable analyses for the risk score and each clinical feature.

another group, p = 0.700 indicates that there is no significant
difference in the survival rate of patients in the two subgroups
(Figures 5(a)-5(f)).

3.4. Expression of Six Glycolysis-Related Genes in HNSCC. In
the cBioPortal online database, we analyzed the mutations of
6 glycolysis-related genes in HNSCC through clinical sam-
ples. The result shows that in overall 498 cases, 93 patients
(18.6%) had gene mutations. Among them, HPRT1 gene
mutations include 4 cases of amplification, 2 cases of mis-
sense mutations, and 1 case of deep deletion; STC2 gene
mutations account for 0.6%, PLCB3 gene 4%, GPR87 gene
9%, PYGL gene 2%, and SLC5A12 gene 1.4% (Figure 6(a)).
We further analyzed the differential expression of
HPRT1, STC2, PLCB3, GPR87, PYGL, and SLC5A12 in
HNSCC and normal head and neck tissue and found that
the expression of 6 glycolysis-related genes in HNSCC tissues
is significantly upregulated compared with normal tissues
(among which p <0.001 for HPRT1, STC2, PLCB3, GPR87,
and SLC5A12; p < 0.01 for PYGL) (Figure 6(b)). We sorted
the expressions of each gene in the tumor samples from
HNSCC patients, and then, these patients were split into

two subgroups based on the median expression value, high-
and low-expression groups, respectively. The Kaplan-Meier
curve analyzes whether the high or low expression of each
gene is correlated with the OS of HNSCC patients. It is found
that HPRT1, STC2, PLCB3, GPR87, PYGL, and SLC5A12
may be correlated with the poor prognosis of HNSCC
(p=0.004, <0.001, 0.027, 0.035, 0.030, and 0.009, respec-
tively) (Figure 7(a)). When the HPRTI1, STC2, PLCB3,
GPR87, PYGL, and SLC5A12 were used as independent bio-
markers, their prognostic efficacy needs further verification.
We performed ROC curve analysis further which verified
their prognostic efficacy (Figure 7(b)), but the AUC values
of the six glycolysis-related genes predicting OS of HNSCC
patients were all less than 0.710, 0.675, and 0.740, respec-
tively, and their predictive performance was all worse than
prognostic risk markers.

4. Discussion

The active proliferation, differentiation, and other life activi-
ties of cancer cells are significantly not like the normal ones
[10]. In order to provide the large quantity of protein, lipid,
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nucleic acid, and other molecular materials that tumor cells
need, the proliferation and metastasis of malignant cells
require metabolic reprogramming to accelerate anabolism
to support cell growth [11]. In order to meet its biosynthetic
needs, tumor cells increase glucose uptake through glycolysis
and oxidative phosphorylation. A series of changes make
tumor cells reregulate the production of ATP or increase glu-
cose uptake to facilitate energy production. Studies have
shown that with adequate oxygen, tumor cells can promote
rapid energy supply of glycolysis due to the change of micro-
environment, which is known as the “Warburg Effect” [12].
In the “Warburg Effect,” a tumor cell promotes glycolysis to
produce sufficient ATP to maintain its proliferation and dif-
ferentiation [13]. At the same time, lactic acid, the end prod-
uct of glycolysis, is released into both internal and external of
the cell, acidifying its microenvironment and facilitating the
formation of microcapillaries. This process helps tumor cells
to meet their nutritional requirements and strengthen their
resistance to oxidative damage, which may also be an impor-
tant immune escape mechanism in tumors [14].

According to reports, when clinicians predict the progno-
sis of cancer patients, traditional clinical parameters and
pathological characteristics are not enough to accurately pre-
dict. The comprehensive genomics research based on high-
throughput ribonucleic acid sequence and microarray map
has made significant research progress, and some research
results have been developed and applied to clinical practice
[15]. Some biomarkers used to predict the prognosis of can-
cer patients have been confirmed, such as glycolysis-related
genes. Although the specific mechanism between glycolysis
and metastasis in the process of cancer progression is still
unknown, more and more glycolysis-related genes were ver-
ified that are related to the development, differentiation,
invasion, and metastasis of cancer cells in recent years. A
variety of glycolysis-related genes are related to regulating
cell metabolism to maintain tumor proliferation, metastasis,
and invasion. Yin et al. [16] found that 4-mRNA signature
related to glycolysis may be prognosis marks of patients with
bladder cancer and may correlate with the occurrence and
development of tumor cells. In addition, Chen et al. [17]
found that glycolysis-based seven genes were identified,
which can be used as a prognostic marker for patients with
colon adenocarcinoma. Meanwhile, the progress achieved
in tumor glycolysis and metabolism has promoted rapid
development of personalized cancer treatment and manage-
ment [18]. The identification of key biomarkers may help
to formulate personalized treatment and prognosis of
HNSCC. Although surgical resection is still an important
treatment for HNSCC patients, increasing adjuvant treat-
ments (such as chemotherapy, radiotherapy, and immuno-
therapy) have achieved rapid development in recent years,
especially for patients with advanced HNSCC. Due to the
heterogeneity of HNSCC and its resistance to chemotherapy,
it is still a challenge for clinicians and pathologists to predict
high-risk HNSCC and on how to perform precise treatment.
Therefore, reliable prognostic markers are urgently needed to
guide the treatment options for patients with HNSCC. In this
study, by analysis of overall survival of patients with HNSCC
by the Kaplan-Meier curve, we noticed that the glycolysis-
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related prognostic risk markers composed of HPRTI,
STC2, PLCB3, GPR87, PYGL, and SLC5A12 can be applied
as a predictive biomarker for the prognosis of HNSCC
patients. Subsequent univariate and multivariate Cox pro-
portional hazards regression analyses indicated that the risk
score is significantly correlated with patients’ OS, suggest-
ing that the prognostic risk markers of glycolysis-related
genes predict patient prognosis and can be independent of
clinical characteristics. And then, we analyzed that HPRT1,
STC2, PLCB3, GPR87, PYGL, and SLC5A12 are highly
expressed in HNSCC tissues; besides, HPRT1, STC2,
PLCB3, GPR87, PYGL, and SLC5A12 may be related to
the poor prognosis of HNSCC. This study constructs prog-
nostic risk markers related to glycolysis as a prognostic
marker for patients with HNSCC, providing new ideas
and molecular targets for the research and individualized
treatment of HNSCC.

Our result indicates that the prediction signature com-
posed of glycolysis-related genes has shown potential in pre-
dicting prognosis and personalizing treatment of patients
with HNSCC.

5. Conclusion

In this study, there are certain limitations in our research.
Due to the retrospective characteristics, this study may lead
to selection bias. The sample size in the validation data set
is insufficient. Therefore, this prediction model needs more
prospective clinical trials for further verification. In addi-
tion, the related mechanisms by which glycolysis-related
genes regulate HNSCC need further study. We first identi-
fied and verified the prognostic risk markers composed of
six glycolysis-related genes, that is, HPRT1, STC2, PLCB3,
GPR87, PYGL, and SLC5A12. These prognostic risk
markers can predict the prognosis of patients with HNSCC,
suggesting that it can be used as a prognostic risk marker
for HNSCC. We provided new insights into the correlation
between glycolysis and HNSCC. These risk markers may be
a valuable prognostic indicator in clinical practice, helping
to identify patients with HNSCC with poor prognosis.
New ideas were provided by our results for studying the
evolution mechanism of HNSCC and its individualized
treatment.
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