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Knowledge of multi-stressor interactions and the potential for tradeoffs
among tolerance traits is essential for developing intervention strategies
for the conservation and restoration of reef ecosystems in a changing climate.
Thermal extremes and acidification are two major co-occurring stresses pre-
dicted to limit the recovery of vital Caribbean reef-building corals. Here, we
conducted an aquarium-based experiment to quantify the effects of
increased water temperatures and pCO2 individually and in concert on 12
genotypes of the endangered branching coral Acropora cervicornis, currently
being reared and outplanted for large-scale coral restoration. Quantification
of 12 host, symbiont and holobiont traits throughout the two-month-long
experiment showed several synergistic negative effects, where the combined
stress treatment often caused a greater reduction in physiological function
than the individual stressors alone. However, we found significant genetic
variation for most traits and positive trait correlations among treatments
indicating an apparent lack of tradeoffs, suggesting that adaptive evolution
will not be constrained. Our results suggest that it may be possible to incor-
porate climate-resistant coral genotypes into restoration and selective
breeding programmes, potentially accelerating adaptation.
1. Introduction
Climate change poses myriad threats to planetary life. Reef-building coral and
the ecosystems they support face some of the most immediate challenges as ther-
mal stress-induced bleaching and subsequent mass mortality events are
increasing in frequency and severity worldwide [1]. Although thermal stress
poses the greatest threat to the long-term persistence of reefs, additional direct
and indirect effects of climate change and other anthropogenic processes have
also influenced the global decline of reefs [2,3]. An ever-increasing body of litera-
ture shows that coral are capable of adapting to thermal stress [4–6]. However,
less is known about adaptive capacity in response to these other stressors (but
see [7,8]), and the costs and/or tradeoffs of such adaptation also remains largely
unresolved [9]. Understanding multi-stressor interactions and the potential for
tradeoffs among tolerance traits will be essential for undertaking management
interventions aimed at conserving and restoring reef ecosystems in the face of
climate change.

Florida’s Coral Reef (FCR) exemplifies the multi-stressor environment and
patterns of reef decline predicted to occur on many reefs around the world as
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climate change progresses. Over the last 50 years, the state of
FCR has changed drastically. In the 1970s and 1980s, many
reefs were documented with 30–50% living coral cover, high
fish diversity and significant structural integrity [10]. How-
ever, recent surveys indicate living coral cover has declined
to only 5% of the benthic substrate [11], and further declines
have occurred as a result of the most recent disease outbreak
[12,13]. These significant losses are attributed to a combination
of disease outbreaks in the dominant reef-builders, Acropora
spp. [14,15], and increasing water temperatures, which have
led to regional bleaching events [16,17]. FCR also experiences
a combination of ocean and coastal acidification processes
[18–20], which can impair coral growth and skeletal integrity
[21–25]. Ocean acidification is the global decrease in oceanic
pH as a result of the exponential increase of atmospheric
carbon dioxide since the Industrial Revolution, which in
turn leads to increases in dissolved CO2 within the oceans
[26,27]. Studies have shown reefs of the Florida Keys have a
net dissolution rate [18], are a net sink for CO2 [28] and have
decreased aragonite saturation states [29], suggesting acidifi-
cation may already be affecting coral reefs in this region [18].

The precipitous decline of the dominant reef-building
species, Acropora palmata and Acropora cervicornis, has resulted
in large-scale efforts to restore these species throughout FCR
[30–32]. These efforts represent a significant investment of
both monetary and human capital [33], and work in this area
is only increasing. In fact, one of the largest coordinated coral
restoration efforts planned in the world is being implemented
throughout several ‘iconic’ reefs within the Florida Keys
region. However, evidence suggests that current coral restor-
ation efforts may not provide the solution for long-term
recovery as high mortality rates occur within just a few years
after outplanting, precluding ecosystem recovery [32,34].
Addressing the major threats that caused reef decline in the
first place will be essential for the long-term success of these
efforts. Moreover, additional interventions aimed at increasing
the adaptive capacity of restored populations will probably
also be key [35] as these novel approaches can provide critical
stopgaps to allow species and ecosystems to persist while
societal changes are enacted to curb global emissions.

The adaptive capacity of a population depends on geneti-
cally based variation in traits, or phenotypes, that selection
can act upon [36]. The heritability of a trait is the proportion
of phenotypic variation explained by genetic variation
among individuals, which largely determines the magnitude
and speed of phenotypes upon which selection can act [37].
Many studies have examined mean responses of corals to cli-
mate change stressors, yet comparatively few have measured
individual-level variation and heritability of these responses
in coral hosts [6,38–40], symbionts [41] or holobionts [41,42],
and to date, these studies have largely focused on single phe-
notypic traits. In addition, traits are not independent and
selection for one trait may result in unintended changes in
other, correlated traits [43,44]. For example, a prior study
showed that genotypes of A. cervicornis with higher initial
growth rates ultimately lost more live tissue, reinforcing the
potential for tradeoffs [45]. To date, the most comprehensive
attempt to quantify tradeoffs among coral phenotypes
remains a short-term laboratory experiment involving
A. millepora where only positive correlations were detected
[9]. Understanding potential tradeoffs associated with climate
resistance will be essential to implement selective propagation
and breeding as an intervention strategy.
With the loss of A. cervicornis throughout much of its
range and the recent focus on outplanting tens of thousands
of these corals each year to FCR, it is critical to understand
phenotypic response and resistance of corals to major threats
facing the reefs of Florida; threats that will probably persist
for decades to come. In addition, there have been no studies
to date quantifying potential broad-spectrum resistance or
tradeoffs between heat tolerance and resistance to ocean acid-
ification. Therefore, the objectives of the present study were
to quantify: (i) the physiological response of A. cervicornis
to chronically elevated temperature, ocean acidification con-
ditions or the combination of the two; (ii) variation among
genotypes in response to these threats; (iii) heritability of
these phenotypic traits; and (iv) potential tradeoffs or
conferred resistance to heat tolerance and ocean acidification.
2. Methods
(a) Coral collections
On 11 July 2016, a total of 240 A. cervicornis fragments, each 5 cm
long, were collected from Mote Marine Laboratory’s offshore, in
situ, coral nursery, located in the lower Florida Keys (24.56257°
N, 81.40009° W). Twenty fragments with one apical polyp were
collected haphazardly throughout the nursery from each of the
12 genotypes and transported back to Mote’s Elizabeth Moore
International Center for Coral Reef Research and Restoration in
Summerland Key, Florida. Upon arrival, each coral fragment
was glued onto a PVC cap using cyanoacrylate gel and placed
within an 18.9 l aquarium tank. Tanks were held within two
raceway tables at Mote’s Climate and Acidification Ocean
Simulator (CAOS) system. Each raceway held 10 tanks that were
supplied with flowing seawater from individual spigots. Each
tank held a single replicate of each genotype (i.e. 12 corals
per tank).

(b) Experimental design
The experimental design consisted of four treatment conditions
referred to as follows. (i) Control: 704 ± 62 µatm pCO2, 27.1 ±
0.05°C; (ii) high temperature: 798 ± 62 µatm pCO2, 31.0 ± 0.04°C;
(iii) high pCO2: 1225 ± 98 µatm pCO2, 27.0 ± 0.02°C; and (iv) com-
bined: 1412 ± 90 µatm pCO2, 31.1 ± 0.05°C (electronic
supplementary material, tables S1–S3). There were five replicates
of each coral genotype per treatment. The goal was to cause sig-
nificant sublethal stress to assess physiological responses after
prolonged exposure to the four different environmental scenarios.
All corals were initially maintained under normal, ambient temp-
eratures at 30.35 ± 0.2°C to mimic conditions at the time of
sampling. After the corals were acclimated to the CAOS system
for a week, the treatment temperature and pCO2 conditions
were reached by incremental changes to the parameters through
time. To achieve treatment values, the temperature of the approxi-
mately 27°C temperature treatments were decreased −0.5°C d−1

(over the span of 7 days) and held at approximately 27°C. Simul-
taneously, the temperature of the high-temperature treatments
was increased at 0.75°C d−1 (over the span of 2 days) and held
at approximately 31°C. The high pCO2 treatments were decreased
by 0.1 pH units per day (over the span of 4 days) by bubbling CO2

within the source water header tank. Although the target goal for
pCO2 was approximately 450 µatm (average open ocean con-
ditions), the low pH of the near-shore water source and the
challenges associated with off-gassing CO2 prevented reaching
this goal. As such, pCO2 was maintained at approximately
750 µatm within the control and high-temperature treatment
(see electronic supplementary material, table S3 for treatment
metrics). After reaching the treatment conditions, the corals
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remained within these conditions for two months. Temperature,
salinity, dissolved oxygen, water turnover rate, photosynthetically
active radiation, total pH, total alkalinity, pCO2, HCO3, CO3

2 and
the aragonite saturation state were measured to characterize the
water quality throughout the experiment (see electronic sup-
plementary material for detailed methodologies).
blishing.org/journal/rspb
Proc.R.Soc.B

288:20210923
(c) Phenotype measurements
We measured 12 phenotype traits throughout the experiment to
assess differences in physiological responses among treatments
and genotypes. Detailed methodologies for each metric are pro-
vided within the electronic supplementary material’s phenotype
measurements. Buoyant weight [46] was measured at the begin-
ning and end of the experiment to quantify growth. To determine
the status of the photochemical efficiency [47] of the algal sym-
bionts, parameters including maximal quantum yield of PS II
(Δ yield) and maximum electron transport rate (ΔETRm) were
quantified by taking measurements prior to treatments and
after two months of exposure. At the completion of the exper-
iment, photosynthesis : respiration rate ratios were measured as
a proxy for metabolic activity of the coral holobiont, and calcifi-
cation rates were assessed using the alkalinity anomaly method
as a secondary metric to quantify growth. Upon completion of
these metrics, all coral samples were snap-frozen using liquid
nitrogen until further processing at University of Southern Cali-
fornia. Here, corals were processed for total soluble protein,
prophenoloxidase (PPO), phenoloxidase (PO) and peroxidase
(POX) as well as total chlorophyll (chlTotal) concentrations and
algal symbiont densities. The melanin synthesis cascade, a key
component of innate immunity in invertebrates, is activated by
the proteolysis of PPO to form active PO [48]. Reactive oxygen
intermediates are generated as part of this cascade, which can
be cytotoxic to pathogens as well as to the coral host, conse-
quently, antioxidants such as POX are formed, presumably as a
means of minimizing cytotoxicity to host cells [48]. Acropora
cervicornis genets are known to vary in disease susceptibility
[49] and immune competence; therefore, the activity of these
three enzymes was quantified as a proxy of host immune func-
tion. Chlorophylls a and c2 (chlTotal) are major components of
the Symbiodiniaceae light-harvesting system and their loss,
either through a reduction in the content per symbiont cell or
the overall reduction of symbiont density is the manifestation
of bleaching [50] while protein content is a proxy for host
tissue biomass [51]. In all cases, corals within the control treat-
ment were considered at a standard level of performance.
Because potentially ‘beneficial’ metrics, such as significant
growth or higher immune function under treatment scenarios
were not observed, deviations from the control metrics were
assumed to be physiological negative responses.
(d) Statistical analyses
(i) Treatment effects
All statistical analyses were completed using R v. 4.0.3 [52].
A permutation multivariate analysis of variance (PERMANOVA)
was used to determine whether the suite of physiological
response variables significantly differed among treatments
using the vegan package [53]. Data were log-transformed prior
to analysis for standardization purposes. Pairwise PERMAVO-
VAs with a Bonferroni correction was used to identify which
treatments differed from others. Linear mixed-effects models
within the lmerTest package [54] were used for each dependent
variable to determine whether there were differences among
treatments, genotypes or interactions between the two fixed fac-
tors. Tank was included as a random variable within the model
framework. Post hoc Tukey HSD tests were applied to determine
which treatment was significantly different from others when
differences were detected in the linear mixed-effects model.

(ii) Heritability
To assess broad-sense heritability (H2), we used a Bayesian
modelling approach similar to Kenkel et al. [39]. The heritability
models were fitted using the package MCMCglmm [48]. The
model included temperature and pCO2 treatment and their inter-
action as fixed effects, and scalar random effects of tank and
genotype (to capture broad-sense heritability). To assess the
proportion of the variance associated with broad-sense heritabil-
ity, we divided the variance due to genotype effects by the sum
of the variance from all random factors. All MCMC chains were
run for 50 000 iterations, discarding the first 10 000 as a burn-in
period, after which the chain was sampled every 20 iterations
resulting in 2000 samples of each parameter value. The mean
and quantiles of the broad-sense heritability were then calculated
for the sampled values of the random genotype effect.

(iii) Tradeoffs/broad-spectrum resistance
To determine whether there were correlations among traits
measured, we conducted a correlation matrix analysis among
traits for each treatment. Although some traits indeed correlated,
the treatment responses were often unique to each metric. There-
fore, the average value for each trait of every genotype was
calculated under the four different treatment conditions. The
average genotypic response was then processed through a corre-
lation matrix for each variable to assess whether there were
tradeoffs with (significant negative correlation values) or broad-
spectrum resistance to (significant positive correlation values)
exposure to prolonged high temperature or ocean acidification
conditions or the combination of these two stressors. The function
corrplot [55] was used to create the correlation matrix plots and
the function rcorr within the package ‘Hmisc’ [56] was used to cal-
culate the correlative p-values for genotypes among treatments.
This process was used to test for correlations among traits
measured and to explore explicit tradeoffs.
3. Results
(a) Population-level response to individual and

combined stressors
Out of the 240 fragments within the experiment, only
two died (one in the control and one in the high pCO2 treat-
ment), providing a robust dataset of physiological traits. The
PERMANOVA, which included all phenotypes for each
genotype, showed significant differences among treatments
(F3,47 = 36.13, R2 = 0.711, p = 0.001; figure 1). Post hoc analyses
showed the combined treatment was significantly different
from all other treatment conditions (control versus combi-
ned: p = 0.006, high temperature versus combined: p = 0.006,
high pCO2 versus combined: p = 0.006). Additionally, the con-
trol treatment was significantly different from the high-
temperature treatment ( p = 0.006) and the high-temperature
treatment was also significantly different from the high
pCO2 treatment ( p = 0.006). Interestingly, the high pCO2 treat-
ment was not significantly different from the control
treatment ( p = 0.060).

The vectors associated with the significant parameters
that contributed to the prediction of ordination among treat-
ments orient in two main directions along NMDS2 (y-axis).
There is a cluster of responses including total soluble protein,
algal symbiont concentrations and chlTotal, which are all
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similar in magnitude and appear to characterize the high
pCO2 treatment. The second cluster characterizes the control
treatments with vectors including calcification metrics,
buoyant weight and the photochemical parameters. NMDS1
(x-axis) shows that corals within the combined conditions
were the farthest away from the correlative vectors,
suggesting reductions in all parameters measured character-
izes this treatment condition. Furthermore, P : R as well as
the full suite of host immune proteins (PPO, PO and POX)
were not significant indicators for ordination.
(b) Holobiont response
(i) Buoyant weight
There were significant differences in buoyant weight among
treatments (F3,16 = 5.94, p = 0.006; figure 2a). However, post
hoc comparison showed the individual stressors were not
statistically different from controls (control versus high
pCO2: p = 0.066, control versus high temperature: p = 0.107).
When high temperature and high pCO2 conditions were com-
bined (i.e. combined conditions) buoyant weight significantly
differed from all others ( p < 0.001 for all comparisons). In fact,
the buoyant weight within the combined treatment showed
negative synergistic effects, where the additive effects of
both high water temperature and high pCO2 (horizontal line
in figure 2b) were far exceeded. Interestingly, therewere no sig-
nificant differences in buoyant weight among genotypes
(F11,172 = 1.39, p = 0.18), and no significant interaction between
treatment and genotype (F33,172 = 1.12, p = 0.42).
(ii) Calcification
Both calcification rates in the light and the dark declined
significantly for corals within the high pCO2, high tempera-
ture and combined treatment scenarios (light: F3,16 = 30.36,
p < 0.001, figure 2c; dark: F3,16 = 20.67, p < 0.001, figure 2e).
All three treatment conditions showed significantly reduced
calcification rates by over 50% when compared with controls
( p < 0.001 for all comparisons). There were significant differ-
ences detected among genotypes for the light calcification
metric (F11,173 = 1.94, p = 0.04) and a significant interaction
between treatments and genotypes were detected (F33,172 =
1.65, p = 0.02) suggesting that genotypes differed in response
to the four environmental conditions. However, there were no
differences among genotypes for dark calcification rates
(F11,173 = 1.77, p = 0.06) and there was no significant inter-
action between treatment conditions and genotypes
(F33,173 = 0.63, p = 0.94). Interestingly, there was an antagon-
istic interaction between high temperature and high pCO2

conditions where the combined treatment had less of an
effect compared with the additive response of the other two
treatments independently (figure 2d,f ).

(iii) Photosynthesis/respiration
There were no significant treatment effects on the P : R
ratio (F3,16 = 1.002, p = 0.417); however, there was a significant
difference among genotypes (F11,170 = 2.60, p = 0.004,
figure 2g). There was no interaction detected between treat-
ment conditions and genotypes (F11,170 = 1.331, p = 0.124).
Similar to the calcification rate metrics, there was an antagon-
istic response within the combined treatment where the
decreasing P : R ratio under high temperatures and the increas-
ing P : R ratio under high pCO2 had opposing effects when
combined (figure 2h).

(iv) Symbiodiniaceae concentrations
There were significant differences in algal symbiont con-
centrations (Symbiodiniaceae cm−2) within corals among
treatments (F3,19 = 4.94, p = 0.01) with all treatments signifi-
cantly differing from each other (p < 0.001 for all comparisons)
except the high pCO2 and the control treatments (p = 0.99,
figure 2i). There were also significant differences detected
among genotypes (F11,171 = 3.02, p = 0.001), but significant
interactions were not detected (F33,171 = 1.27, p = 0.163).
Symbiodiniaceae concentrations showed a high level of synergy
under combined treatment conditions with a large reduction in
the number of algal cells compared with either treatment inde-
pendently or the additive response (figure 2j).

(c) Host response
(i) Soluble host protein
The concentration of soluble protein (mg cm−2) of the coral
host significantly differed among treatments (F3,17 = 8.71,
p < 0.001, figure 3a) and by genotype (F11,171 = 2.36, p =
0.009), but there was no significant interaction between the
two variables (F33,171 = 0.59, p = 0.96). The post hoc analysis
showed that all treatments differed from each other ( p <
0.001) except the high pCO2 treatment compared with the
control treatment ( p = 0.35). There was a synergistic response
with a greater reduction in host protein concentration under
combined treatment conditions than the additive null expec-
tation for these responses (figure 3b).

(ii) Prophenoloxidase, phenoloxidase, peroxidase
There were no significant differences detected among treat-
ments for prophenoloxidase (PPO), phenoloxidase (PO), or
peroxidase (POX) (PPO: F3,22 = 0.531, p = 0.67, PO: F3,20 =
1.69, p = 0.20, POX: F3,18 = 2.62, p = 0.08, figure 3c,e,g). There
were lower concentrations of these immune proteins in
corals within the high-temperature treatment and the high
pCO2 treatments alone, although these were not significan-
tly different from controls after accounting for genotype
variation and tank effects. Interestingly, corals within the
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combined conditions showed immune proteins comparable
to corals within the control treatment conditions, suggesting
that the combined variables of high pCO2 with high tempera-
ture had slight antagonistic effects on the immune protein
response. There were significant differences among geno-
types for all of the immune protein parameters (PPO:
F11,175 = 5.21, p < 0.001, PO: F11,177 = 4.32, p < 0.001, POX:
F11,177 = 4.69, p < 0.001), but no significant interactions were
detected (POX: F33,177 = 1.50, p = 0.05; PO: F33,177 = 1.24,
p = 0.187) except for PPO (F(33,177) = 0.1.61, p = 0.03).
(d) Symbiont response
(i) Maximum photochemical yield
There were significant differences in yield among treatments
(F(3,16) = 16.07, p < 0.001; figure 4a) with all three treatment
conditions showing a significant reduction in yield compared
with control conditions ( p < 0.001 for all comparisons). The
high pCO2 and the high-temperature treatments did not
differ ( p = 0.43). There was a significant difference in yield
among genotypes (F(11,174) = 4.08, p < 0.001) as well as an
interaction between treatments and genotypes (F(33,174) =
2.44, p < 0.001). There was a slight antagonistic, or potentially
simply an additive, response of yield when corals were
exposed to the combined treatment conditions, where the
reduction closely approximated the additive response of the
high temperature and high pCO2 conditions (figure 4b).

(ii) Electron transport rate
The maximum electron transport rate (ETRm) significantly
differed among treatments (F3,16 = 24.55, p < 0.001; figure 4c)
with all treatments showing a significant reduction in
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ETRm compared with the corals in the control treatments
( p < 0.001). The corals in the combined treatment showed
a sevenfold reduction in ETRm compared with controls
while high pCO2 and high-temperature treatments showed
a threefold reduction. The ETRm of corals within the high
pCO2 and high-temperature treatments did not significantly
differ from each other ( p = 0.99). There were significant differ-
ences among genotypes (F3,175 = 3.95, p < 0.001), but the
interaction between treatments and genotypes was not sig-
nificant (F33,175 = 1.20, p = 0.22). A large synergistic response
was quantified for ETRm under the combined treatment con-
ditions compared with the high temperature and high pCO2

treatment conditions (figure 4d ).
(iii) Total chlorophyll concentrations
There were significant differences in chlTotal concentrations
within corals among treatments (chlTotal: F3,16 = 14.38, p <
0.001; figure 4e), with all treatments significantly differing
from each other ( p < 0.03 for all comparisons) except the
high pCO2 compared with the control treatment ( p = 0.99).
There were also significant differences detected among geno-
types (F11,120 = 5.69, p < 0.001), but significant interactions
were not detected (F33,120 = 0.97, p = 0.53). The chlTotal concen-
trations showed a synergistic response under the combined
treatment conditions with the reduction in chlTotal far exceed-
ing the high-temperature treatment reductions (figure 4f ).
Interestingly, there was no effect of the high pCO2 conditions
alone, but this treatment combined with high temperatures
caused much greater reductions in chlTotal.
(iv) Broad-sense heritability
The heritability analysis showed that approximately 57% of
the variance of the major immune protein concentrations
within the corals tested (PPO, PO and POX) was explained
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by genotype (figure 5). A similar level of heritability was
quantified for buoyant weight (approx. 57% of the variance).
All other parameters showed approximately 20% or less of
the variance was explained by the coral genotype. Separat-
ing the heritability model by treatment conditions overall
reduced the ability to explain traits due to shared inheritance
(electronic supplementary material, figure S1).
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Figure 5. Average variance of each phenotype explained by genotype effects
after integrating the treatment responses within the model. Error bars rep-
resent the 95% confidence interval of the mean.
(v) Tradeoffs versus broad-spectrum resistance
The correlation analyses among traits measured showed
some correlations (electronic supplementary material, figure
S2). Particularly, PPO, PO and POX positively correlated with
each other within each treatment group. Additionally, the
two metrics of calcification (light and dark) were positively
correlated. Finally, algal symbiont concentrations positively cor-
related with chlTotal and host protein concentrations (all but the
control treatment); chlTotal positively correlated with host
protein concentrations aswell (all but the high-pCO2 treatment).
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The majority of correlations among response variables showed
positive associations, suggesting that responses of individual
genotypes followed a similar pattern among treatments (i.e.
when values increased under one treatment they also increased
under the comparative treatment, or values similarly declined;
figure 6). Statistically significant associations were always posi-
tive andweredetected for P : R,ETRm, chlTotal, protein,PPO,PO
and POX concentrations (figure 6). Significant positive associ-
ations between three key comparisons essential for detecting
tradeoffs or conferred broad-spectrum resistance within future
ocean conditions (high temperature versus high pCO2, high
temperature versus combined and high pCO2 versus combined)
were not consistentlyobserved for any particular traitmeasured
but were observed at least once for ETRm, chlTotal, host protein,
PPO, PO and POX. Interestingly, themost commonlymeasured
phenotypes used for assessing responses to threats such as ther-
mal stress and ocean acidification showed no significant
correlations (BW, calcification and yield). Although BW, calcifi-
cation and yield all showed some negative associations, the
correlations were weak and not significant.
4. Discussion
(a) Synergistic response to climate change stressors
Climate change is negatively impacting reef-building corals
[57], but the relative importance of individual stressors and
the potential for non-additive interactions among them
remains unclear [58]. We adopt the definition of synergy as
an interaction in which the physiological response to the
combined stress treatment is greater than the threshold calcu-
lated from each stressor in isolation [59]. In A. cervicornis,
several of the physiological responses to combined high
temperature and pCO2 treatment appeared synergistic
(figures 2–4), which is largely in contrast with results from
other studies on tropical corals [22,60–63]. Treatments
within the present study, although constantly maintained,
differed from target values due to the complexity associated
with the experimental design and system limitations.
Additionally, the interplay between water temperature and
dissolved gases (negative association with dissolved oxygen
and positive association with pCO2) prevented maintaining
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the same water conditions within the four treatment
scenarios. These methodological limitations may have influ-
enced phenotypic responses associated with treatment
exposure within the present study.

Another factor potentially contributing to the synergistic
responses detected in our study may be the choice of pheno-
typic traits measured. Buoyant weight and algal symbiont
cell density, which reflect cumulative change over the entire
two-month exposure, show synergistic negative impacts,
whereas endpoint measures of calcification and P : R ratios
exhibited multiplicative or additive effects. This finding is
in contrast with a similar study where combined high temp-
erature and pCO2 treatment resulted in additive declines
on growth rate and symbiont density of A. cervicornis [60].
Other studies have also shown negative responses from
elevated temperatures and pCO2, but no synergistic effects
[61,62,64]. Synergistic negative impacts on calcification were
observed in Stylophora pistillata following exposure to elev-
ated pCO2 and temperature in combination, but symbiont
cell densities actually increased [65]; calcification rate (µmol
CaCO3 cm

−2 h−1), on the other hand, was reduced by greater
than 50% within all treatment conditions.

Host-specific traits also varied in their responses, with
protein content showing a synergistic negative impact, whereas
the activity of immune enzymes showed antagonistic effects.
Although protein content is an endpointmeasure, other studies
have shown that protein content tracks holobiont growth over
longer experimental durations [39] suggesting that this trait
may be reflective of cumulative stress.

Cumulative measurements of the symbiotic algaewere also
assessed.While an antagonistic effect, closely approximating an
additive response, was observed for yield, synergistic effects
were observed for both ETRm and chlTotal. Yield is an indicator
of photosynthetic performance as it quantifies photons from
photosynthetically active radiation used for photosynthesis
within PSII of the chloroplasts within the Symbiodiniaceae
[66]. However, ETRm, which represents electron flow beyond
photosystem II, can be even more sensitive to thermal stress
compared with yield [67]. The effect of combined conditions
on ETRm and chlTotal showed synergistic effects with an
approximate threefold reductionwhen stressorswere combined
compared with coral exposed to each stressor in isolation.
(b) Heritable trait variation
We found significant differences in the phenotypic trait
response to climate change stressors indicating high physio-
logical variability among the genotypes tested, consistent
with prior studies in A. cervicornis and other acroporids
[9,42,68]. Importantly, a significant portion of this variation
could be explained by coral genotype, reflective of broad-
sense heritability (H2) for one trait (BW) specific to the
holobiont. Although it is important to note that variance
attributable to additive genetic effects, or narrow-sense herit-
ability, is what determines the response to selection, H2 is a
reasonable approximation of adaptive potential in long-
lived, clonal organisms, such as corals [41] as it reflects the
summed contribution of genetic, epigenetic and maternal
effects in generating phenotypic variation [37]. Similar to
Császár et al. [41], our results show high heritability of buoy-
ant weight suggesting evolutionary potential for this trait
across species. Kenkel et al. [39] report H2 for buoyant
weight and total linear extension of A. cervicornis from in
situ nursery range from 0.25 to 0.28 [42]. Our comparatively
higher H2 estimate could be the result of a different sample
population or different experimental conditions [69]. Impor-
tantly, our result reinforces the conclusion that growth is
heritable in A. cervicornis. As growth rate is key for restoring
the ecological function of reefs, this finding suggests that the
propagation of high-growth rate genets in restoration popu-
lations will not alter growth rate in future temperature and
acidification conditions, although additional H2 estimates for
growth in response to other local and global stressors are
needed. Moreover, these coral genets were reared in a
common garden nursery for a minimum of 5 years and are
dominated by a common symbiont, Symbiodinium fitti [49],
reducing potential variation among genets due to origin effects
and symbiont type that can confound heritability estimates.

Unlike the findings of Császár et al. [41] who report low
H2 estimates for coral antioxidant expression, three of our
highest H2 estimates were detected for the activity of an anti-
oxidant (POX) and a key component of the innate immune
response (PPO and PO). It is possible that a difference in
selective regime can explain this pattern, as heritability
can increase in unfavourable conditions [70], although the
opposite pattern is possible [71], and Caribbean coral reefs
experience higher prevalence of disease than Indo-Pacific
reefs [72]. Prior work has shown that there is natural vari-
ation in disease resistance among A. cervicornis genets
[49,73], with proportionally more disease-resistant genets in
Florida compared with Panama [49]. Decades of disease out-
breaks and high heritability of immune activity could
underpin this observation of evolutionary potential.

(c) Lack of tradeoffs suggests broad-spectrum resistance
Heritable variation in climate resistance traits is essential
for adaptive evolution; however, the rate of evolution will
also be determined by tradeoffs in the response to individual
stressors. Similar to the findings of Wright et al. [9], we failed
to find significant tradeoffs in the response to temperature
and acidification, in spite of several synergistic negative
responses to combined stressors. Importantly, we find no
significant negative correlations for any of the measured
metrics. P : R, ETRm, chlTotal, total soluble protein and
immune protein (PPO, PO, POX) concentrations all showed
significantly positive correlated responses to at least some of
the treatment exposures, indicating that genets that perform
well under one stressor will also likely perform well under
another. Although this finding is trait-dependent, as calci-
fication metrics (light and dark, BW) and photochemical
parameters (yield and ETRm) showed no significant negative
correlations, particularly under combined treatment conditions,
these results are highly encouraging for practitioners aiming to
increase the adaptive capacity of their restoration stock.
5. Conclusion
Development of intervention strategies for the conservation
and restoration of reef ecosystems under climate change
necessitates an understanding of multi-stressor interactions
and the potential for tradeoffs among tolerance traits. This
information is imperative for coral species already undergoing
captive rearing and restoration, like A. cervicornis in the
Caribbean. Our results suggest that this species will suffer
significant negative effects from increasing thermal stress
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and ocean acidification, and that these two threats occurring
together will often have synergistic effects on organismal
physiology. However, significant variation in phenotypic
responses among genotypes and positive trait heritability
indicates that adaptive diversity is already present within
restoration coral stock. In addition, our results also suggest
that there is some level of broad-scale and conferred resistance
to major global threats among genotypes as no significant
tradeoffs were detected among a suite of holobiont, host
and symbiont traits in response to our treatments. While
reduction of carbon emissions is of paramount importance
given the synergistic negative impacts observed here, taken
together, our findings support the potential for captive
rearing programmes to increase the resistance of restored
populations of this key Caribbean reef-builder to temperature
and acidification stress.
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