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ABSTRACT 
 
A simple and non-radioactive technique based on O-cresolpthalein complexone assay was developed to study in vitro non-radioactive 
calcium (40Ca) deposition by isolated matrix vesicles. Using this technique, the effect of various phosphoester substrates including ATP, 
AMP and β-GP on in vitro MV-calcification was studied. O-cresolpthalein complexone assay with non-radioactive calcium demonstrated 
that AMP or β-GP were more effective in promoting calcium deposition by isolated MVs than ATP. The application of this non-
radioactive technique, which is highly sensitive and simple, would offer a useful alternative approach to the routinely used radiometric 
biomineralization assay which employs radioactive 45Ca.   
 

 
INTRODUCTION 

 
Matrix vesicles (MVs) are extracellular membrane invested 
entities, about 100 nm in size, located in the matrix of bone, 
cartilage and dentin (1). They serve as the initial site of 
calcification in all skeletal tissues. The mechanism of MV-
mediated mineralization is biphasic. In Phase-I, MVs initiate 
mineralization through the action of MV-associated phosphatases 
and calcium-binding phospholipids and proteins (1). MV 
phosphatases, including alkaline phosphatase (ALP), ATPase, 5’-
AMPase, and nucleoside triphosphate pyrophosphohydrolase 
(NTPPPH), play an active role in initiating MV mineralization 
(2). Phosphoester substrates such as ATP, AMP and PPi are 
hydrolyzed by MV phosphatases, thereby increasing the local 
concentration of orthophosphate and thus initiating 
mineralization (2). In Phase-II, the mineral formed inside the 

MVs penetrates the vesicular membrane and in the presence of 
physiological concentrations of extravesicular Ca2+, PO43-, and 
pyrophosphate (PPi), the MV-initiated calcium phosphate 
mineral serves as nuclei for the formation of stellate clusters of 
needle-shaped biological apatite (1). In the presence of 
physiological extracellular concentrations of Ca2+

 
and PO43-, 

crystal propagation occurs. Calcifiable MVs can be isolated from 
collagenase-digested growth plates, and are generated by rat or 
chick chondrocytes or Saos-2 osteoblastic cells in culture (3-11). 
Ultra-structural examination of matrix vesicles of growth plate 
cartilage or primary chondrocyte cultures have demonstrated the 
presence of mineral in these vesicles which morphologically 
resembles apatite of calcified cartilage and bone (Fig. 1). MV-
mediated in vitro calcification has been more routinely 
demonstrated by measuring radioactive calcium (45Calcium) 
deposition by isolated MVs. In this report, we describe a sensitive 
technique for studying in vitro calcification of isolated matrix 
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vesicles using a non-radioactive calcium-O-cresolpthalein 
complexone (O-CPC) binding assay. 
 

Fig. 1: Electron micrograph of mineralizing matrix vesicles showing radial 
clusters of hydroxyapatite like mineral (X 110,000). The dark arrows show 
needle shaped hydroxyapatite mineral while the grey arrow shows an intact MV. 
MVs isolated from growth plates of rachitic rats were calcified upon exposure to 
calcifying buffer containing physiological concentrations of Ca2+ and Pi. The 
calcified MVs were fixed in 2.5% glutaraldehyde, post fixed in 1% osmium 
tetraoxide, dehydrated, embedded in Spurr’s low viscosity epoxy resin. Thin 
sections were cut and stained with uranyl acetate and lead citrate, and 
photographed using a Zeiss EM IOA electron microscope. 
 
This assay is based on the following principle: 
 
Ca2+ + O-CPC Alkaline medium Ca-O-CPC Complex 
   
  (purple color) 

575 + 5 nm 
 
This assay, based on the micro-method of calcium determination 
using O-cresolpthalein complexone dye (12), involves the 
reaction of calcium with O-CPC to produce a purple complex at 
pH 10-12 with an absorbance maximum at 575 + 5 nm. The 
intensity of the color is directly proportional to the concentration 
of calcium in the sample. This colorimetric assay has been 
previously used in cell cultures for determination of calcium (13, 
14). This assay has also been used to determine calcium from 
trichloroacetic acid-extracted bone samples (15, 16). Here, in this 
paper we describe a novel application of this technique in 
studying MV-mediated calcification. The advantage of this 
colorimetric technique for studying MV-mediated non-
radioactive in vitro calcification over the conventional 45Ca 
radioactive procedure lies in its simple, direct, sensitive, highly 
specific and readily adaptable nature. This assay is linear from 
0.1-5mM calcium concentration. There are very few non-
radioactive methods that have been applied for determining 
calcium from mineralized matrix vesicles. Kirsch et al. (17) have 
used a fluorometric procedure for measuring Ca2+ uptake by 

matrix vesicles. This procedure is based on the determination of 
calcium by calculating the difference in fluorescence intensity of 
calcium bound Fura-2 in triton-lysed samples of matrix vesicles 
that were incubated for 24 h in synthetic cartilage lymph vs. 
fluorescence intensity of Fura-2 bound calcium in triton-lysed 
samples of freshly isolated, non-incubated matrix vesicles 
(control). Other researchers such as Wu et al. (18) have used 
Baginski’s procedure (19) for calcium analysis from acid extracted 
samples of calcified matrix vesicles. 
 

MATERIALS AND METHODS 
 
Induction of rickets   
 
Rickets was induced in male weanling Sprague Dawley rats by 
housing weanling rats in a dark room and feeding them a diet low 
in phosphorous and Vitamin D (20). After 4 weeks on 
rachitogenic diet, the rats were sacrificed according to the 
guidelines of the Institutional Animal Care and Use Committee 
(University of Kansas Medical Center), and their hypomineralized 
tibial and femoral growth plate were dissected for further 
isolation of chondrocytes and MVs. The rationale for using 
rachitic rat growth plate is that it provides an ideal model for 
studying MV initiated in vitro calcification without complication 
from propagation of pre-existing mineral.  
  
Isolation of MVs from rachitic rat growth plates 
 

Fig. 2: Flow diagram showing the isolation of rat growth plate matrix 
vesicles (as described in (3) and (21)). 
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MVs were isolated from rachitic rat growth plates by collagenase 
digestion as described previously (21). The isolation of matrix 
vesicles from rat growth plates is shown as a flow chart in Figure 
2. Briefly, epiphyseal growth plates from 30 rats were dissected 
and finely minced. The minced tissue was then digested in a 
collagenase digestion mixture containing 0.45% collagenase 
(Boehringer Mannheim), 0.12 M NaCl, 0.01 M KCl, 1000 
units/ml of penicillin, 1 mg/ml of streptomycin, and 0.05 M Tris 
buffer (pH 7.6 at 37°C). Collagenase digestion was done at 37°C 
for 3h. The collagenase digest was then centrifuged at 1100g for 
10 min to harvest cells. This pellet was used for in vitro culture of 
chondrocytes (4-7). The supernatant was subjected to a two-step 
differential ultra-centrifugation for the isolation of MVs. The first 
step involves the centrifugation of collagenase digest at 30,000X 
g for 10 min to remove nuclei, mitochondria, lysosomes and 
smaller cell fragments. The supernatant was then further 
centrifuged at 280,000X g for 45 min. to obtain a highly pure MV 
pellet. The yield of MVs was estimated by measuring the protein 
content by Bradford assay (Biorad) and alkaline phosphatase 
specific activity of the micro-vesicle fractions released from 
collagenase-digested growth plates (Alkaline phosphatase specific 
activity by Sigma Diagnostic Kit-104LS). Briefly, a small volume 
of MV suspension was added to the ALP assay mixture 
containing p-nitrophenyl phosphate as substrate in 750 mM 2 
amino, 2 methyl, 1-propanol (pH 10.25) and 4 mM MgCl2. The 
absorbance of nitrophenol, a chromogenic product produced in 
the presence of ALP, was measured with a plate reader 
(Multiskan Plus; Fisher Scientific) at 405 nm (Millimolar 
absorbtivity of p-nitrophenol at 405 nm is 18.45M-1cm-1).  
  
In vitro calcifiability of MVs   
 
Calcifiability of MVs isolated directly from growth plates (native) 
was assessed by non-radioactive calcium phosphate deposition 
assay. Briefly, this assay involves the incubation of 30 µg samples 
of MV protein in a calcifying solution containing 2.2 mM Ca2+ 
and 1.6 mM PO43- in the presence of 0 to 3 mM phosphoester 
substrate, for example, ATP, AMP or β-GP in 0.05M Tris buffer 
(pH 7.6 at 37°C) for 5.5 h at 37°C. The incubation was 
terminated after 5.5 h by centrifugation at 8800g for 30 min. to 
co-precipitate MVs and calcium phosphate mineral formed 
during incubation. The pellet containing calcium phosphate 
mineral was then solubilized with 0.6N HCl for 24 h. The 
calcium content of the HCl supernatant was then determined 
colorimetrically by the O-cresolpthalein complexone method 
(Calcium Kit, Procedure no. 587, Sigma-Aldrich Corporation, St. 
Louis, MO and Procedure No. 0150, Stanbio Laboratory, 
Boerne, TX). Briefly, 2 µl of acidified supernatant was incubated 
with 200 µl of calcium working reagent (Color Reagent + Base 
Reagent Mix) for 1 minute for microplate reader or 10 µl of 
acidified supernatant with 1ml of calcium working reagent for 
UV-VIS spectrophotometer. The absorbance of calcium standard 
and calcium were read against blank at 570 nm within 60 
minutes.  
 
The standard curve of the assay is shown Figure 3. Protein 
content was measured using Bradford protein assay kit (BioRad). 
Samples were calibrated against a calcium standard (10mg/dl, 

Calcium kit, Sigma and Procedure No. 0150, Stanbio 
Laboratory), and absorption was measured at 575 + 5 nm using a 
spectrophotometer or microplate reader. 
 

Fig. 3: Standard curve for o-cresolopthalein complexone assay. 
 
Statistical analysis  
 
Quantitative data are presented as mean + S.D. Statistical 
significance between groups was determined by analysis of 
variance (ANOVA) and paired t- test. 
 

RESULTS AND DISCUSSION 
 

We report here, a non-radioactive technique for studying MV-
mediated in vitro calcification. O-CPC assay was demonstrated 
here to be a convenient, sensitive and extremely relevant 
analytical method to study mineral initiation and mineral 
propagation by MVs. Using this assay, we report here that 
collagenase-released MVs from rachitic rat growth plates were 
able to deposit when exposed to calcifying buffer containing 
physiological concentrations of calcium and phosphate ions (Fig. 
4). 
 

Fig. 4: Comparison of in vitro calcification profile of isolated MVs in the 
presence of 1mM ATP, 3mM AMP and 3 mM β-GP using O-CPC assay. 
The calcium concentration is first obtained for each of the samples using calcium 
standard. The relative values are used to compare changes in the calcium 
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deposition ability relative to the control reference sample (MVs in the absence of 
phosphoester substrates). Values are expressed as means + S.D. from five 
different MV preparations. Double asterisks are assigned to indicate the statistical 
significance (P<0.05) with respect to control. Single asterisks are assigned to 
indicate the statistical significance (P<0.05) between groups (MV+ATP vs. 
MV+AMP, and MV+ATP vs. MV+ β-GP). 
 
Furthermore, we also show that AMP or β-GP (i.e. 
monophosphoester substrates for ALP and AMPase) were more 
effective in promoting calcium deposition by isolated MVs than 
ATP based on a comparable amount of phosphatase-releasable 
ester phosphate per one mole of ATP versus three moles of 
AMP or β-GP (Fig. 4). Our finding that monophosphoesters are 
better substrates of mineralization is consistent with the several 
reports on the role of β-GP in stimulating mineralization in 
osteoblast or chondrocyte in vitro cell cultures (22-26). This 
finding also draws further support from a kinetic study that 
demonstrated AMP and β-GP to be better substrates of alkaline 
phosphatase activity than ATP or ADP (Vmax values of β-GP 
was 76%, AMP was 62% and ATP was 15% relative to p-
nitrophenylphosphate) (27). The finding that AMP and not ATP 
was present in high concentration in the mineralized regions of 
freeze-trapped endochondral cartilage of chick (28), further 
supports our results. Electron microscopic and X-ray diffraction 
studies on isolated MVs, calcified in vitro in the presence of AMP 
reveal the formation of hydroxyapatite crystals (29). Futhermore, 
only amorphous calcium pyrophosphate mineral was deposited 
by isolated human osteoarthritic MVs and rachitic rat MVs in the 
presence of ATP in mineralization assays (30, 31). The 
mechanism of enhanced mineralization by monophosphoesters 
such as AMP and β-GP is believed to be mediated by (a) 
increasing the local concentration of Pi (22-24) and (b) inhibiting 
the activity of NTPPPH (23, 32). One possible reason for 
monophosphoesters being better substrates for MV-
mineralization than ATP might be due to the generation of PPi 
during the hydrolysis of ATP by NTPPPH. PPi at concentrations 
higher than 1mM can inhibit mineralization (33). 
 

Fig. 5: Schematic diagram showing the metabolism of ATP and AMP and 
the effect of products of their hydrolysis on mineralization. ATP is 
hydrolyzed by nucleoside triphosphate pyrophosphohydrolase (NTPPPH) to 
AMP and inorganic pyrophosphate (PPi), which get further degraded to yield 
inorganic phosphate (Pi) by alkaline phosphatase (ALP). The inorganic phosphate 
thus generated forms apatite in the presence of calcium of the extracellular fluid. 

 
Excess accumulation of PPi prevents the transformation of 
amorphous calcium phosphate to hydroxyapatite (34-36). Thus, 
the steady state concentration of PPi, maintained by concerted 
activities of NTPPPH and ALP (Fig. 5) regulates the formation 
and propagation of mature mineral. AMP, also formed during the 
hydrolysis of ATP by NTPPPH activity, is further metabolized to 
adenosine and Pi by 5’ AMPase or ALPase. The mineral formed 
when isolated MVs were exposed to calcifying buffer containing 
AMP was identified as crystalline hydroxyapatite by Fourier 
transform infrared spectroscopy (data not shown). 

 

CONCLUSIONS 
 
The non-radioactive O-CPC assay to study in vitro calcium 
deposition by isolated MVs, is simple and highly sensitive, and 
can offer a useful alternative approach to the routinely used 
radiometric biomineralization assay which employs radioactive 
45Ca. Application of this technique for studying in vitro non-
radioactive calcium deposition by isolated MVs,

 
demonstrates 

that monophosphoesters such as AMP and β-GP are better 
substrates of mineralization than ATP. 
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