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Abstract

Background: Identifying variants that regulate gene expression and delineating their genetic architecture is a critical
next step in our endeavors to better understand the genetic etiology of complex diseases. The appropriate genomic
tools are in place, and preliminary analytic strategies have been developed.

Methods: Here we used Genetic Analysis Workshop (GAW) 19 data to investigate the genetic complexity of expression
quantitative trait loci (eQTL), chromosomal regions likely to harbor regulatory elements responsible for gene
expression. For this investigation, we analyzed the lymphocyte expression profiles of 653 individuals in 20
pedigrees who were also genotyped by single nucleotide polymorphism (SNP) arrays, followed by sequencing
and imputation. We used these data to examine the degree of allelic heterogeneity, a contributor to genetic
complexity at eQTL, by sequentially conditioning on the most significantly associated SNPs.

Result: SOLAR (Sequential Oligogenic Linkage Analysis Routines)-MGA (measured genotype approach) and
FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) software allowed us to analyze pedigree data.
The power and Type 1 error rates for single SNP association testing and multiple SNP sequential association
testing were consistent for these programs. Sequential conditioning of the real expression data revealed substantial
levels of allelic heterogeneity at the 2 eQTL examined, illustrating this feature of genetic complexity.

Conclusions: eQTL exhibit substantial genetic complexity among and within pedigrees.
Background
Genetic complexity derives from factors that contribute
to the non-Mendelian inheritance of a trait. These con-
tributors include polygenic inheritance, locus and allelic
heterogeneity, mitochondrial inheritance, and gene–gene
and gene–environment interactions. The data provided
by Genetic Analysis Workshop (GAW) 19 [1] allowed us
to conduct a study to delineate the genetic architecture
of expression quantitative trait loci (eQTL) and assess
evidence for allelic heterogeneity. A previous manuscript
analyzing a larger sample of the data derived from the
San Antonio Family Heart Study reports that 85 % of
lymphocyte expression levels were significantly heritable,
making them appropriate candidate traits for eQTL
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analyses in the GAW19 pedigrees. In the manuscript
[2], heritability varied substantially among the transcript
levels, and the median was 22.5 %. In the published ana-
lysis, eQTL were identified by mapping the transcript levels
using the SOLAR (Sequential Oligogenic Linkage Analysis
Routines) software [3] to conduct linkage analyses. Here,
we focus on the cis transcripts that exhibited substantial
logarithm of odds (LOD) scores that were as high as
32, with a locus-specific heritability of approximately
80 %. We examined these eQTL because we thought it
would be easier to detect multiple association signals
with small effects and/or single signals with large effects
when the LOD scores are larger. However, such LOD
scores would also be observed if each pedigree had its
own transcript-driving highly penetrant allele for the
expressed gene. Other, more complex scenarios, involving
multiple independent transcript-driving alleles that are
shared by the pedigrees would also lead to such strong
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evidence for linkage of transcript levels to gene regions.
GAW19 expression and sequence data on the same
individuals within pedigrees provide an excellent oppor-
tunity to explore the genetic architecture of eQTL, and we
focused on 2 of the eQTL with the highest LOD scores,
chosen for their different gene lengths [2].
We were enthusiastic about the opportunity provided

by GAW19 to assess the genetic architecture of eQTL
using pedigrees, where the standard analytic approach of
linear regression was not directly applicable. We com-
pared 2 approaches appropriate for pedigrees, and used
the GAW19 simulated data, where the models of inherit-
ance employed to generate the data were known, in order
to assess the power and Type 1 errors to detect associations
for both single and multiple independent single-nucleotide
polymorphisms (SNPs). These were the measured genotype
approach as programmed in SOLAR [3] and the linear
mixed-model approach as programmed in FaST-LMM
(Factored Spectrally Transformed Linear Mixed Model)
[4, 5]. Both programs were also used to investigate the
genetic architecture of associated eQTL variants by
employing the real data, where the models of inher-
itance are unknown.

Methods
Testing association in pedigrees: SOLAR-MGA and
FaST-LMM
The variance component approach to gene mapping in
pedigrees involves modeling a vector of pedigree member
trait value deviations from the pedigree mean and a co-
variance matrix of kinship coefficients among the pedigree
members. Given the appropriate constellation of relatives,
the covariance matrix can be partitioned into additive
genetic effects, along with the effects of genetic domin-
ance and a common environment. In SOLAR-MGA [3],
the genotypes to be tested for association are modeled
by parameters in the individual trait values, and the
tests are conducted using nested models and likelihood
ratios. To reduce computation time and complexity,
SOLAR-MGA applies eigen simplification of the likeli-
hood function, where a vector of nonindependent obser-
vations is transformed to a vector where the observations
are independent [6]. This reduces the likelihood function
to the product of univariate normal densities, and the
decomposition of the covariance matrix is composed of
diagonal matrices of phenotypic and additive genetic ei-
genvalues. FaST-LMM is designed to perform genome-
wide association studies (GWAS) when the relationships
among the individuals in the study sample are unknown
[4]. Linear mixed models capture these relationships and
transformation of the estimated matrix of pairwise rela-
tionships is used to speed the analysis. Carefully chosen
GWAS SNPs genotyped on the study sample are used to
estimate genetic similarity. This estimation is done using
SNPs from all chromosomes except the single chromo-
some containing the locus being tested for association [5].

Estimating power and Type 1 errors for SOLAR-MGA
and FaST-LMM
To assess power and Type 1 errors for detecting the indi-
vidual associated SNPs using both analytic approaches,
SOLAR-MGA and FaST-LMM, the simulated GAW19
pedigree data [1] in 200 replicates for the 6 associated
SNPs in the MAP4 gene on chromosome 3 were ana-
lyzed. For each replicate, taken separately, those on medi-
cation were removed from the analyses, and the diastolic
blood pressure (DBP) and systolic blood pressure (SBP)
quantitative traits were adjusted for age and sex. In the
200 simulated data sets, an average of 765 people, with a
range of 742 − 783, remained in the study sample. For
DBP, the age covariate had a mean effect of 0.07 with a
range of 0.008 − 0.12 and the sex covariate had a mean
effect of -3.15 with a range of -5.2 to -1.7 over the 200
replicates. For SBP, the age covariate had a mean effect
of 0.45 with a range of 0.38 − 0.52, and the sex covariate
had an effect mean of -4.6 with a range of -7.6 to -2.0.
Power was assessed using the 0.05 and 5e-8 levels of sig-
nificance in each simulated sample of 200. The Type 1
error was estimated using the 200 replicates of simulated
trait Q1, which was not associated with the SNPs in
MAP4. Power and Type 1 errors were also estimated for
the sequential analysis approach that was subsequently ap-
plied to the real data. As with the single SNP assessments,
simulated Q1, DBP, and SBP traits were used in each of
the 200 replicates. To assess power, the analyses were con-
ditioned sequentially on the MAP4 SNPs.

Assessing the genetic architecture of TIMM10 and LR8
eQTL
Two genes were selected randomly according to length
(one shorter than the mean of the genes and one longer
than that mean) among those with the 10 highest eQTL
LOD scores in this pedigree cohort [2] for association and
genetic architecture studies. Table 1 gives the names, IDs
for the molecular probes, LOD scores, and base pair (bp)
ranges for these genes, where 5000 bps have been appended
to both sides of each gene. The genotyped SNPs, sequence
data and imputed sequence data in these pedigrees has
been used to identify the SNPs with genotypes within these
2 regions. Table 1 also provides the numbers of SNPs tested
within each region. SOLAR-MGA and FaST-LMM were
used to identify the independent signals among the 47 and
180 SNPs tested within these 2 genomic regions. Using a
p value of 5e-8 and a p value of 0.05 to view the full range
of possibilities, the conditioning options of SOLAR-MGA
and FaST-LMM were used in an iterative fashion, condi-
tioning on the single most statistically significant signal
from the set, to generate the number of independent



Table 1 Independent eQTL SNP associations by sequential conditioning using p <5e-8

Gene name Probe_id LOD Base pair range # SNPs tested # of SNPs conditioned # Significant SNPs Minimum p value

TIMM10 GI_6912707-S 37 12120 47 0
1

8
9

2e-66
9.9e-86

LR8 GI_21361500-S 43 19100 180 0
1
2

29
14
1

9e-83
2e-22
4e-12
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signals in each region, and this was done sequentially until
no significant SNPs were observed in the analysis.

Results
Table 2 provides estimates of the power of SOLAR-MGA
and FaST-LMM to detect associated SNPs with locus-
specific variances ranging between 0.028 and 0.002 in
simulated traits for 2 levels of significance. The results
generated by the 2 programs for these simulated data
are remarkably consistent. The top 2 SNPs consistently
show very strong power and the bottom 2 SNPs lack
adequate power regardless of the level of significance
used. Power for the 2 SNPs in the middle of the list
shows substantial variation, depending upon the level
of significance used. Three factors in the simulation
model, given in column 2 of Table 2, contribute to this
variation in power, which is positively correlated with
the percent of variance explained, the minor allele fre-
quency, and the absolute value of the effect. The Type
1 error was estimated to be 0.0475 for SOLAR-MGA
and 0.07 for FaST-LMM when the level of significance
Table 2 Power to detect single SNP associations using SOLAR-MGA

Simulated diastolic blood pressure

Chr–Bp Prop. of variance explained/MAF/beta SO

Alp

3 – 48040283 0.023/.03/-6.2 1

3 – 47957996 0.012/.03/-4.6 1

3 – 47956424 0.012/.37/-1.5 0.9

3 – 48040284 0.009/.01/-7.0 0.6

3 – 47913455 0.004/.005/-5.5 0.5

3 – 47957741 0.002/.002/-5.1 0.1

Simulated systolic blood pressure

Chr–Bp Proportion of variance Explained/MAF/beta SO

Alp

3 – 48040283 0.028/.03/-9.9 1

3 – 47957996 0.015/.03/-7.4 1

3 – 47956424 0.014/.37/-2.4 0.9

3 – 48040284 0.011/.01/-11.1 0.7

3 – 47913455 0.004/.005/-8.7 0.4

3 – 47957741 0.003/.002/-8.1 0.1

Chr chromosome, Bp base pair, MAF minor allele frequency
was set at 0.05 for the trait Q1 that was not associated
with any SNPs in the trait generating model.
Table 3 reports the power analysis of the simulated

DBP data, when conditioning sequentially on the MAP4
SNPs that have been modeled to be associated with SBP
and DBP. Both programs are consistent, so we only pro-
vide the information once. The first row gives the number
of MAP4 SNPs upon which the likelihood function
has been conditioned sequentially. Rows 2 and 3 give the
power to observe exactly that number of SNPs, sequen-
tially, and the power to observe that number of SNPs and
greater, sequentially, for p <0.05. The last 2 rows give the
same for p <5e-8. The power for the 0.05 level of signifi-
cance is appropriate, but the sample is substantially
underpowered to provide adequate power for the simu-
lated effect sizes. Estimated Type 1 errors for signifi-
cance thresholds of 0.05, 0.01, and 0.001 are consistent
with what is expected for both programs.
Table 1 reports the numbers of single associations and

the conditioned results using the very stringent 5e-8 level
of significance for TIMM10 and LR8. Both programs are
and FaST-LMM, for MAP4 simulated GAW19 pedigree data

LAR MGA power FaST-LMM power

ha = 0.05 Alpha = 5 × 10−8 Alpha = 0.05 Alpha = 5 × 10−8

0.99 1 0.99

0.99 1 0.98

9 0.04 0.99 0.02

9 0 0.58 0

2 0 0.58 0

3 0 0.06 0

LAR-MGA power FaST-LMM power

ha = 0.05 Alpha = 5 × 10-8 Alpha = 0.05 Alpha = 5 × 10-8

0.99 1 0.99

0.99 1 0.99

9 0.03 0.98 0.01

7 0 0.66 0

8 0 0.56 0

2 0 0.09 0



Table 3 Power to detect multiple SNP associations using
sequential analyses for MAP4 simulated GAW 19 pedigree data

# of SNPs detected 0 1 2 3 4 5 6

P <0.05 Exactly n 0 0 0 .05 0.21 0.62 0.13

≥ n 0.999 0.999 0.999 0.999 0.95 0.74

P <5e-8 Exactly n 0.01 0.01 0.945 0.035 0 0 0

≥ n 0.999 0.99 0.98 0.035 0 0
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consistent at this level of significance, and only the
SOLAR-MGA analysis is reported. Introductory infor-
mation regarding the genes is given in columns 1 to 5
and the last 3 columns report each step in the sequen-
tial analysis by giving the number of SNPs conditioned
on at that step, the number of SNPs that are significant
at that step, and the minimum p value among the signifi-
cant SNPs at that step. Table 4 reports results analogous
to those in Table 1 using a 0.05 level of significance. Once
more, results of the 2 programs are consistent. These con-
ditioned analyses support the existence of a large number
of independent association signals for these 2 eQTL. The
correct level of significance is not straightforward, as this
is a multistep process. The most salient inference one
can draw is that even at this stringent level of signifi-
cance, there is evidence of multiple, independent, strongly
Table 4 Independent eQTL SNP associations by sequential
conditioning using p <0.05

Gene Enumeration of independent signals by
association software

FaST-LMM SOLAR-MGA

# SNPs
conditioned
on

# Significant
SNPs

Minimum
p value

# Significant
SNPs

Minimum
p value

TIMM10 0 25 3e-68 24 2e-66

1 23 2e-87 23 9.9e-86

2 10 5e-07 10 2e-07

3 2 0.03 1 0.05

4 1 0.04 – –

LR8 0 67 4e-86 65 9e-83

1 39 2e-24 55 2e-22

2 47 1-11 63 4e-12

3 46 0.0001 41 0.0002

4 37 0.0001 39 0.0001

5 40 0.0003 41 0.0002

6 23 0.0004 22 0.0001

7 14 0.00002 17 0.005

8 14 0.003 8 0.01

9* 8 0.002 8 0.02

*Six additional independent signals using SOLAR-MGA (0.019 < p <0.05)
associated signals, supporting eQTL complexity resulting
from allelic heterogeneity. Additional analyses to investi-
gate the genetic complexity of eQTL within pedigrees
reveal patterns as complex as those seen in Table 4
(data not shown). Very few pedigrees only show a single
associated SNP.

Discussion
Association testing of SNPs, conditioning sequentially
with SOLAR-MGA and FaST-LMM, identified multiple
independent SNP signals within each of 2 eQTL regions
exhibiting high LOD scores in the GAW19 pedigrees.
These analyses provide clear evidence that the genetic
architecture of at least some eQTL exhibit allelic hetero-
geneity, with multiple independent signals, and, thus, are
complex. Both software packages provide consistent power
and Type 1 errors when testing for association with and
without conditioning in the simulated data. The inference
of complexity and multiple independent cis-regulatory ele-
ments is supported by a functional analysis of the F7 gene
in an independent study [7].

Conclusions
We investigated the presence of allelic association at eQTL
in the GAW19 real expression data by conducting analyses
that condition sequentially on associated SNPs in the full
sample of pedigrees and within individual families. These
analyses lead us to conclude that there are multiple inde-
pendent eQTL for individual expression levels at the same
locus. We are able to conclude that eQTL are genetically
complex both across multiple pedigrees and within individ-
ual pedigrees. In addition, when comparing software that
can be used for these analyses, statistical Type 1 error and
power assessment on the simulated data GAW19 indicates
that the results of FaST-LMM are consistent with those
of SOLAR-MGA.
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