
“fnagi-05-00043” — 2013/8/26 — 16:50 — page 1 — #1

REVIEW ARTICLE
published: 27 August 2013

doi: 10.3389/fnagi.2013.00043

Of mice and men: neurogenesis, cognition, and Alzheimer’s
disease
Orly Lazarov1* and Robert A. Marr 2*

1 Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
2 Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA

Edited by:

Philip B. Gorelick, University of
Chicago, USA

Reviewed by:

Ashok K. Shetty, Texas A&M Health
Science Center, USA
Philip B. Gorelick, University of
Chicago, USA

*Correspondence:

Orly Lazarov, Department of Anatomy
and Cell Biology, College of Medicine,
The University of Illinois at Chicago,
808 South Wood Street, Chicago,
IL 60612, USA
e-mail: olazarov@uic.edu;
Robert A. Marr, Department of
Neuroscience, Rosalind Franklin
University of Medicine and Science,
3333 Green Bay Road, North Chicago,
IL 60064, USA
e-mail: robert.marr@rosalindfranklin.edu

Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in
the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is
continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal
state, age, and brain health. Increasing evidence supports a role for new neurons in
cognitive function in rodents. Recent evidence delineates significant similarities and
differences between adult neurogenesis in rodents and humans. Being context-dependent,
neurogenesis in the human brain might be manifested differently than in the rodent
brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the
development of progressive learning and memory disorders, such as Alzheimer’s disease.
This review discusses the different observations concerning neurogenesis in the rodent
and human brain, and their functional implications for the healthy and diseased brain.
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INTRODUCTION
In the adult rodent brain, neural stem cells (NSC) in the sub-
ventricular zone (SVZ) and the subgranular layer (SGL) of
the dentate gyrus (DG) give rise to new neurons and glia
throughout life. From the SVZ, neural progenitor cells (NPC)
migrate in chains through the rostral migratory stream (RMS),
reach the olfactory bulb (OB) and incorporate there as mature
neurons (Ihrie and Alvarez-Buylla, 2011). In the SGL, NPC
migrate a short distance to the granular cell layer (GCL) of
the DG and incorporate there as mature neurons (Yao et al.,
2012). Similar observations were reported in the primate brain
and in the fetal human brain (Kornack and Rakic, 2001;
Pencea et al., 2001; Bedard et al., 2002; Sawamoto et al., 2011;
Wang et al., 2011).

It is now established that neurogenesis takes place in the adult
human brain. This was first described in the human hippocampus
in post-mortem sections of cancer patients that were injected with
5-bromo-2′-deoxyuridine (BrdU; Eriksson et al., 1998). NSC exist
in the human brain throughout life. Similar to rodents, human
NPC, including those from hippocampus (Johansson et al., 1999;
Kukekov et al., 1999; Palmer et al., 2001), SVZ (Johansson et al.,
1999; Kukekov et al., 1999; Roy et al., 2000), OB (Pagano et al.,
2000), forebrain subcortical white matter (Nunes et al., 2003), cor-
tical and subcortical areas in the temporal lobe (Kirschenbaum
et al., 1994), give rise to new neurons and glia. However, the fate
and organization of these NPC, the extent of neurogenesis, and its
course throughout adulthood are a matter of debate.

SUBVENTRICULAR ZONE AND OLFACTORY BULB
Some studies observed neurogenesis in the OB and neuroblasts
in the RMS (Bedard and Parent, 2004) and a remarkable resem-
blance between the mouse and human RMS through which NPC
migrate from the SVZ to the OB during aging (Curtis et al., 2007).
However, Wang et al. (2011) find an RMS-like in the adult human
brain, but neuroblasts do not seem to get to the OB, and their
fate along the ventral olfactory tract is unclear. Additionally, Wang
et al. (2011) find only a small number of migratory neuroblasts in
the SVZ and RMS and they do not form chains. Instead, possess-
ing the typical migratory morphology, they move along as single
cells or as pairs. These migrating neuroblasts express the immature
neuronal markers doublecortin (DCX), polysialylated neural cell
adhesion molecule (PSA-NCAM) and class III beta-tubulin (Tuj1)
and some of them express proliferation markers (e.g., Ki67; Wang
et al., 2011). Several studies describe a ribbon of astrocytes that
lines the lateral ventricle in the adult human brain (Sanai et al.,
2004; Quinones-Hinojosa et al., 2006). Based on proliferating cell
nuclear antigen (PCNA) and Ki67 expression, some of these astro-
cytes seem to proliferate, but do not migrate in chains, and only
a small number of them express Tuj1 and exhibit migratory mor-
phology (Sanai et al., 2004; Quinones-Hinojosa et al., 2006). While
exhibiting multipotency in vitro, neuroblasts derived from astro-
cytes in the SVZ do not seem to migrate to the OB (Sanai et al.,
2004). Follow up studies suggest that active neurogenesis takes
place in the post-natal SVZ up to 6 months of age, and then
declines drastically (Sanai et al., 2011). Furthermore, in infants
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there is an additional migratory stream of DCX(+) cells ending
in the ventro-medial pre-frontal cortex (VMPFC). This medial
migratory stream (MMS) was observed in human specimens ages
4–6 months but not 8–18 months (Sanai et al., 2011). It should
be noted that both the Sanai and Wang studies did not observe
any neuroblasts in the adult human OB (Sanai et al., 2011; Wang
et al., 2011). Supporting this, examination of neurogenesis in the
adult human OB using nuclear 14C levels as a measure of cell birth
date reveals neglectable neuronal proliferation (Bergmann et al.,
2012). Taken together, it seems that while the number of NPC
in the human SVZ seems to be substantial, they do not give rise
to new olfactory neurons and their fate is unknown (Figure 1;
Table 1).

SUBGRANULAR LAYER AND DENTATE GYRUS
A similar methodology used to assess the generation of hippocam-
pal cells in humans revealed substantial neurogenesis throughout
life in the human hippocampus with an estimate of 700 new
neurons added to the granular layer of the DG a day (Spalding
et al., 2013). This suggests a comparable extent of neurogenesis in
humans and rodents and supports a major role for neurogenesis
in the human DG. Similar to other mammals, the extent of hip-
pocampal neurogenesis seems to decline exponentially with age in
humans (Ninkovic et al., 2007; Imayoshi et al., 2009; Knoth et al.,
2010; Spalding et al., 2013). However, a comparative study suggests
that long-lived animals (e.g., primates and foxes) have significantly
fewer proliferating NPC compared to rodents (Amrein et al.,

2011). Additionally, the decline in neurogenesis in early adult-
hood seems to be greater in the mouse compared to the human
hippocampus (Ninkovic et al., 2007; Imayoshi et al., 2009; Spald-
ing et al., 2013). Interestingly, while neuroblasts are detected
throughout life, the number of neuroblasts expressing prolifer-
ation markers in the human hippocampus declines dramatically
in mid-life (Knoth et al., 2010). There is a notable difference in the
exchange rate of neurons in the DG between rodents and humans.
In rodents, new neurons add to the GCL, rather than replace dying
neurons. As a result, the number of granular neurons increases
over time (Bayer et al., 1982; Ninkovic et al., 2007; Imayoshi et al.,
2009). In humans there is a preferential loss of new neurons and a
larger proportion of hippocampal neurons are subject to exchange
compared to mice (Ninkovic et al., 2007; Imayoshi et al., 2009;
Spalding et al., 2013). Similar to the SVZ, the number of NPC and
neuroblasts present in the adult human hippocampus seems to be
small compared to the number of these cells post-natally. Intrigu-
ingly, the density of neuroblasts in the SVZ is similar to that in the
DG in the human brain, and yet, SVZ-derived new neurons are not
incorporated in the OB. Taken together, this suggests that the rate
of survival of NPC, their recruitment, and neuronal maturation
must be substantial in the adult human hippocampus.

THE FUNCTIONS OF NEUROGENESIS ARE
CONTEXT-DEPENDENT
The differences between rodent and human neurogenesis are not
surprising. Phylogenetically, the extent, location, and distribution

FIGURE 1 |The pathway between the subventricular zone and the

olfactory bulb in the brains of the adult mouse, the fetal and adult

human. Schematic presentation of suggested differences between migration
of neuroblasts in the mouse and adult human brain. (A) The rostral migratory
stream in the subventricular zone of the mouse brain is composed of chains of
migrating neuroblasts ensheathed by type B astrocytes. (B) Similar migratory

chains are seen in the fetal human brain. However, the existence of such
chains in the adult human is highly controversial. An alternative observation
suggests that a low number of neuroblasts migrate toward the olfactory
bulb as single cells or in pairs. Both neurogenic niches, the subventricular
zone and the subgranular layer of the dentate gyrus are indicated in the
scheme.
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of adult neurogenesis reflects the distinct physiological provisions
of various species and different brain regions (reviewed in Grandel
and Brand, 2013). Unlike rodents, which display robust olfactory
neurogenesis, olfaction is less consequential in humans, perhaps
reflecting reduced demand. Curiously, NPC seem to be present
in the adult human SVZ in substantial numbers, suggesting that
they play a role in the adult human brain or are a vestigial popula-
tion. Hippocampal neurogenesis, on the other hand, contributes
to highly complex learning and environmental adaptation and
this might be fortified in humans. Grandel and Brand (2013) have
recently produced a comprehensive review summarizing the com-
parative aspects of adult neurogenesis among vertebrate species.
The process of adult neurogenesis is a trait present in many verte-
brate species including stingrays (Dasyatis sabina) indicating that
this is an ancient process present even before the divergence of
cartilaginous and bony vertebrates (Coggeshall et al., 1978). A
correlation can be drawn between neurogenesis and neural func-
tion from the extensive work done on songbirds. Robust seasonal
neurogenesis is seen in the high vocal center (HCV) nucleus in
which fluctuations in neural cell number correlate with seasonal
song activity, while in other species of birds, classified as food
catching species, behavioral stimulation is manifested by increased
hippocampal neurogenesis (Barnea and Pravosudov, 2011). Fluc-
tuations in HCV cell number correlating with learning new songs
is well documented in the canary (Serinus canaria) which change
their song seasonally. Variations on this theme include the song
sparrow (Melospiza melodia), which displays a fixed song reper-
toire size but shows seasonal modifications (Smith et al., 1997).
Furthermore, comparisons within a species suggest a functional
link between vocal performance and neural cell number in the
HCV. These examples support a role for enhanced neurogenesis
in maintaining or supporting complex behaviors. However, it has
been reported that zebra finches (Taeniopygia guttata) show only
a steady increase in neuronal number independent of the season
(Walton et al., 2012). It is notable that this species does not change
their song seasonally, perhaps reflecting reduced behavioral
plasticity.

One commonality between birds, rodents, and humans is the
presence of adult neurogenesis in the DG. As discussed above,
neurogenesis in this region is believed to contribute to learn-
ing/memory, adaptive behavior, and plasticity. The hippocampus
is particularly important for spatial/declarative memories which
assist all vertebrate species with environmental complexity and
complex social interactions. However, there are species of bats
that do not show hippocampal neurogenesis and are highly social
animals who live in a complex environment (Amrein et al., 2007).
Furthermore, these animals are not deficient in this process as they
retain strong olfactory neurogenesis.

Why it might be advantageous to retain neurogenesis in the
specific regions of the SGL and SVZ is one area of continued inves-
tigation. It is plausible that neurogenesis is optimal for facilitating
functions related to areas of particularly high complexity and vari-
ability, such as discrete odors and spatial/temporal memory. Based
on studies in rodents, new hippocampal neurons play a role in
several cognitive functions, such as spatial memory (reviewed in
Lazarov et al., 2010) and pattern separation (Sahay et al., 2011).
Their enhanced plasticity and distinct characteristics make them

suitable for the acquisition of pattern separation and cognitive
adaptation to novel experiences (Kempermann et al., 1997). This
function requiring the ability to store closely related experiences
as separate memories, complements the function of old neurons
in the DG in the association of closely related memories (Clelland
et al., 2009; Sahay et al., 2011). Several factors may affect and/or
reflect differences in the functional significance of neurogenesis in
the rodent and human brain. That may include the ratio of the
number of new neurons to the number of older neurons, their
rate of survival, the frequency of their use or induction, and the
recruiting stimuli (Kempermann, 2012). In that regard, recent
studies suggest that the extent of human hippocampal neurogene-
sis may be comparable to that of a middle-aged mouse, thus should
be sufficient for cognitive tasks in humans, as it is in the mouse
(Spalding et al., 2008, 2013). In the mouse brain, the NSC-progeny
ratio in the hippocampus is indicative of the animal’s activity and
experience (Dranovsky et al., 2011), suggesting that formation of
new neurons and their recruitment is context-dependent.

ALTERATIONS IN NEUROGENESIS WITH AGE: FROM
RODENTS TO HUMANS
An important debate is over the fate of neurogenesis during the
human lifespan. In rodents, adult neurogenesis is present in the
aged brain but is dramatically reduced in early adulthood in both
the SVZ (Mirich et al., 2002; Shook et al., 2012) and SGL (Kuhn
et al., 1996; Cameron and McKay, 1999; Bernal and Peterson, 2004;
Bondolfi et al., 2004; Kronenberg et al., 2006; Ben Abdallah et al.,
2010; Encinas et al., 2011; Miranda et al., 2012). There is about
80% reduction in neuroblasts during the transition from young
adult (2-months) to mid-age (7–9 months) in mice (Demars et al.,
2013), and a similar reduction from adult (4-months) to older
(12-months) age in rats (Kuhn et al., 1996; Nacher et al., 2003; Rao
et al., 2006). After this period of dramatic reductions, the rate of
decline is substantially reduced (Rao et al., 2005) though the num-
ber of new neurons continues to decline (Demars et al., 2013). This
may manifest in deficits in olfactory and hippocampal-dependent
function (Bizon et al., 2004; Enwere et al., 2004; Dupret et al.,
2008). Nevertheless, the mechanism(s) underlying age-dependent
neurogenic decline is controversial. Evidence exists suggesting that
the decline is due to reduced number of proliferating and differen-
tiating cells with age (Kuhn et al., 1996; Heine et al., 2004; Rao et al.,
2005; Morgenstern et al., 2008; Demars et al., 2013), alterations in
NPC cell cycle length in the SGL (Olariu et al.,2007), loss of NSC by
their conversion into mature hippocampal astrocytes (Bonaguidi
et al., 2011; Encinas et al., 2011), upregulation of signals suppress-
ing self-renewal of NSC (Bonaguidi et al., 2008) or trophic levels
(Hattiangady et al., 2005; Shetty et al., 2005; Bernal and Peterson,
2011), and increased NSC quiescence due to a decline in vascu-
larity (Hattiangady and Shetty, 2008; Figure 2). A quantitative
inter- and intra-species comparison among rodents, carnivores,
and primates suggest an exponential decline in NPC prolifera-
tion that is independent on life span, but is chronologically equal
(Amrein et al., 2011). Whether a decline in hippocampal neuroge-
nesis takes place at the same pace in the human brain is not clear.
An age-dependent decline in expression of proliferation factors in
the human hippocampus suggests a decline in the number of pro-
liferating NPC as a function of age (Knoth et al., 2010). Expression
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FIGURE 2 | Potential mechanisms for reduced neurogenesis with aging. This figure depicts reported age-associated deficits or suppressive factors
interfering with neurogenesis. It is unclear which is most prominent and is likely a combination of multiple factors. NSC, Neural stem cells; NPC, neural
progenitor cells; X indicates a reduction in the indicated pathway.

of neurogenic markers that are used in rodents for the detection
of NPC, such as DCX, are present in the human SGL through-
out life. However, the number of DCX decreases as a function of
age (Knoth et al., 2010). Assessment of the extent of hippocampal
neurogenesis throughout the human life span using nuclear levels
of 14C reveals that hippocampal neurogenesis declines dramati-
cally in the first year of life with only a modest decline thereafter
(Spalding et al., 2013).

COGNITIVE CONSEQUENCES OF REDUCED NEUROGENESIS
WITH AGE
Lesion studies in neurogenic areas using radiation, cyto-
static/cytotoxic agents, or transgenic approaches have produced
deficits in learning and memory (Shors et al., 2001; Winocur et al.,
2006; Dupret et al., 2008; Imayoshi et al., 2008; Kim et al., 2008).
Zhang et al. (2008) showed that suppression of neurogenesis
produced deficits in hippocampal-dependent learning while not
affecting other cognitive domains. A more recent study used both
irradiation and genetic ablation of NSC and found that acquisition
of avoidance behavior of a shock zone was unimpaired; however,
the ability to then adapt and learn the location after changing
shock location was impaired (Burghardt et al., 2012). Irradiated
mice were impaired in the rotating shock location test only if their
initial training was in a fixed shock location. Taken together, this
shows that neurogenesis plays a significant role in affecting the
ability to distinguish between multiple similar memories.

The connection of neurogenesis to cognition is also supported
by the general observation that both hippocampal-dependent

memory performance and neurogenesis decline with age. How-
ever, a clear and direct link between neurogenesis and learn-
ing/memory with aging appears to be complicated. Intra-group
comparisons show clear positive correlations between cognitive
function and neurogenesis. While performance in hippocampal-
dependent learning is clearly reduced with age, the correlation
with levels of residual neurogenesis becomes more complicated
(reviewed in Couillard-Despres et al., 2011). The extent of neurob-
last formation along with survival and differentiation is correlated
with age-dependent learning/memory in rats (Drapeau et al., 2003;
Driscoll et al., 2006). However, other studies have found that neu-
rogenesis is not correlated or is inversely correlated with memory
performance in aged rats (Bizon and Gallagher, 2003; Merrill et al.,
2003; Bizon et al., 2004). It is noteworthy that chronic reductions
in neurogenesis compromises the morphology and function of
other hippocampal areas, such as CA3 (Schloesser et al., 2013), or
other brain regions.

Importantly, neither in rodents nor in humans, it is not clear
whether the exchange rate or the ratio of new neurons to old
neurons changes as a function of age. Current available method-
ology may not allow such detection. Furthermore, it is not clear
what would be the critical neurogenic parameter to reflect age-
dependent reduction in neurogenesis that correlates with cognitive
decline. Changes have been noted in the volume of the molecu-
lar layer of the DG, with the medial layer thinning and the inner
layer showing increased volume with age (Rapp et al., 1999). This
may simply reflect fewer connections from the entorhinal cortex
(medial layer) and a greater level of connection with CA3 of
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the hippocampus. Similar reorganizations may occur in humans.
Studies in adult and elderly people with similar cognitive function
have shown reduced activity by functional magnetic resonance
imaging (fMRI) in the medial temporal regions while an increase
in activity was found in the parietal and prefrontal cortex with age
(Burgmans et al., 2010).

NEUROGENESIS AND COGNITIVE FAILURE IN ALZHEIMER’S
DISEASE
Many of the molecular players in Alzheimer’s disease (AD) are also
modulators of neurogenesis. Therefore, it is not surprising that
these sets of processes influence each other (reviewed in Lazarov
and Marr, 2010; Lazarov et al., 2010). The most prominent play-
ers are presenilin-1 (PS1) and soluble amyloid precursor protein
α (sAPPα). Mutations in PSEN1 and APP cause familial AD.
PS1 regulates NPC differentiation (Gadadhar et al., 2011) while
sAPPα regulates NPC proliferation (Caille et al., 2004; Gakhar-
Koppole et al., 2008; Rohe et al., 2008; Demars et al., 2011, 2013).
Also, PS1 is the catalytic core of the aspartyl protease γ-secretase
that cleaves numerous neurogenic substrates including Notch-1.
FAD-linked mutations in PS1 have also been found to suppress
neurogenesis. α-secretase activities [primarily the ADAM (a dis-
integrin and metalloprotease) proteases] that produce the sAPPα

product from APP also cleave important substrates like Notch-1
and components of epidermal growth factor (EGF) signaling.

Furthermore, certain ADAM family members (TACE, ADAM21)
are expressed in the SVZ (Yang et al., 2005, 2006; Katakowski et al.,
2007). Thus, mutations associated with AD that alter the pro-
duction of these metabolites or the activities of their processing
enzymes can also alter neurogenesis. There are a considerable
number of studies that have examined the association of AD
pathology with neurogenesis in transgenic mouse models of
the disease. Comprehensive summaries can be found elsewhere
(Chuang, 2010; Lazarov and Marr, 2010; Winner et al., 2011).
Nevertheless, there are a limited number of somewhat contra-
dictory studies addressing the role of neurogenesis in the human
disease using post-mortem tissue. Thus, the role of neurogenesis
in AD is still a matter of some debate mainly because of lack of evi-
dence that impairments in neurogenesis induce AD-like cognitive
deficits, and inversely, that therapy enhancing neurogenic function
can ameliorate AD. Importantly, very little information is available
about the course and fate of neurogenesis in humans, in normal
and pathological aging. In fact, studies in a large cohort of indi-
viduals and more substantial experimental tools that will enable
the detection of real-time neurogenesis, such as by live imaging,
will be required to understand the role of neurogenesis in human
cognitive deficit. Based on current observations concerning the
differences in adult neurogenesis between mouse and human,
these experiments will be instrumental for the determination of
the role of neurogenesis in AD.
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