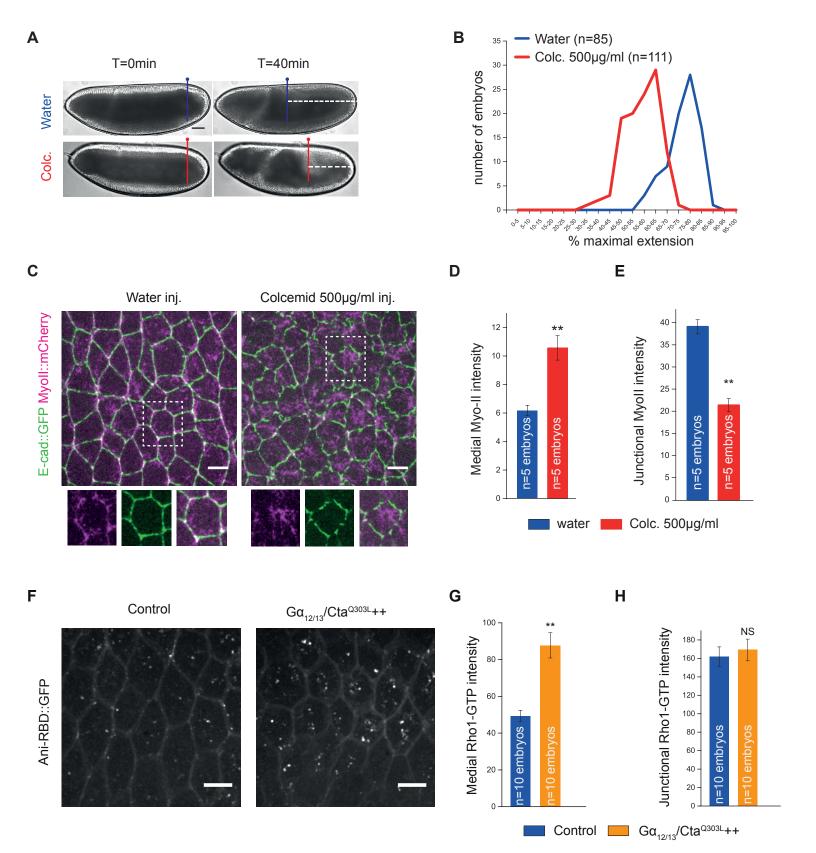

Current Biology, Volume 29

Supplemental Information


Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis

Alain Garcia De Las Bayonas, Jean-Marc Philippe, Annemarie C. Lellouch, and Thomas Lecuit

Figure S1. Rho1 protein is uniformly distributed in the ectoderm while its activity is polarized. Related to Figure 1.

(A) Apical (0µm), junctional (2µm) and lateral (4µm) confocal z-sections of ectodermal cells co-expressing Ani-RBD::GFP and Rho1::mCherry. Active Rho1 is enriched medial-apically and at junctions where it is planar-polarized. Rho1::mCherry signal is homogenous along the apico-basal axis. (B) Ani-RBD::GFP and Rho1::mCherry cortical levels normalized to the apical junctional intensities (2µm below the apical membrane) along the apico-basal axis. While Rho1::mCherry signal is uniform at cell cortex along the antero-posterior axis, active Rho1 is specifically enriched apically. (C) Quantification of Rho1::mCherry and Ani-RBD::GFP amplitude of polarity at junctions in the same embryos. A higher amplitude of polarity is measured for Ani-RBD::GFP at junctions compared to total Rho1. All the panels have the same orientation: dorsal at the top, anterior to the left. Scale bars = 5µm. Means ± SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; * p<0.05.

Figure S2. Microtubule depolymerization and $G\alpha_{12/13}/Cta^{Q303L}$ overexpression increases medial-apical Rho1 signaling. Related to Figure 2 and Videos S2 and S3.

(A) Lateral view of a water- and a colcemid-injected embryo at the onset (t=0min) of germband extension and 40min later. The dotted lines mark the distance between the pole cells and the posterior side of the embryos 40 minutes after the onset of germ-band extension. (B) Ouantification of germ-band extension 40min after the onset of the process in water and colcemid-injected embryos. n=number of embryos. (C) Confocal acquisitions of water- and colcemid-injected embryos co-expressing Myo-II::mCherry and Endocad (E-cad)::GFP. A closeup of a representative cell is shown in the bottom part for both conditions. Colcemidtreated cells display higher medial-apical Myo-II levels and increased contractility. (D) Ouantifications of mean medial-apical Myo-II intensities in both water- and colcemid-injected embryos. (E) Quantification of mean junctional Myo-II intensities in water and colcemidinjected embryos. (F) 4µm confocal z-projection of ventro-lateral ectodermal cells expressing Ani-RBD::GFP in control and $G\alpha_{12}/13/CtaQ303L++$ embryos. Active Rho1 is specifically increased in the medial-apical compartment of the cells upon $G\alpha_{12}/13/CtaQ303L$ overexpression. (G,H) Mean medial-apical and junctional Rho1-GTP intensities in control and $G\alpha_{12}/13/CtaQ303L++$ embryos. All the panels have the same orientation: dorsal at the top, anterior to the left. Scale bars = $50\mu m$ (A) and = $5\mu m$ (C and E). Means \pm SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.

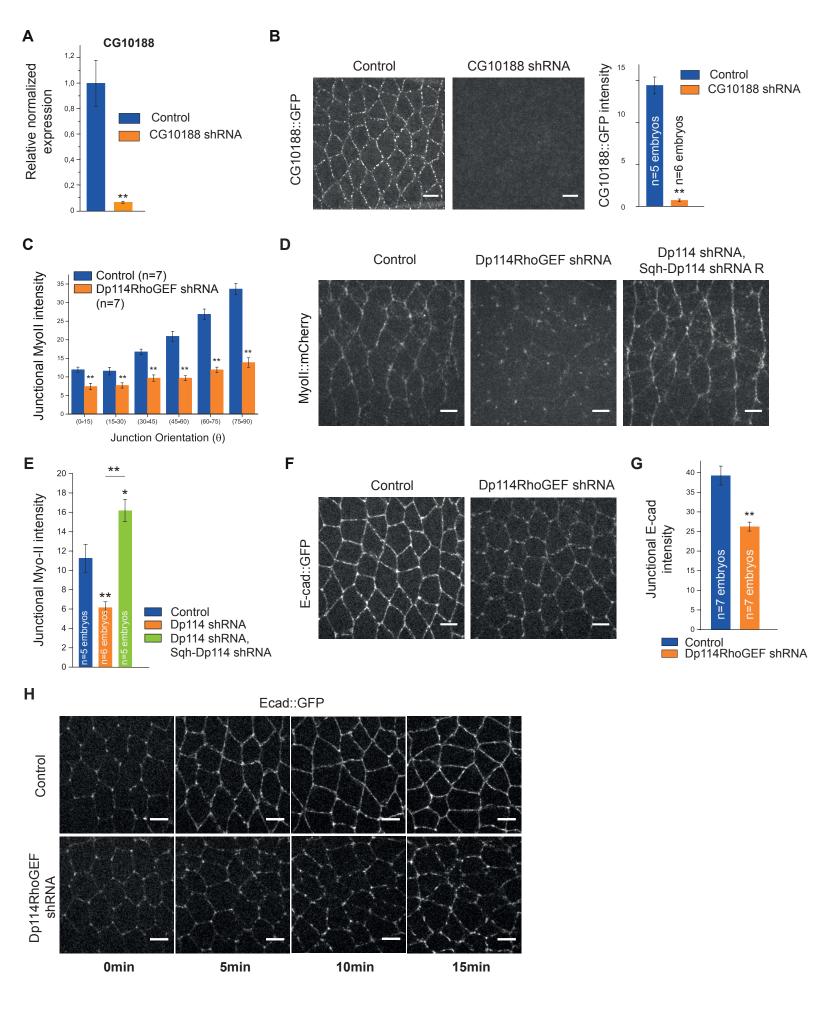
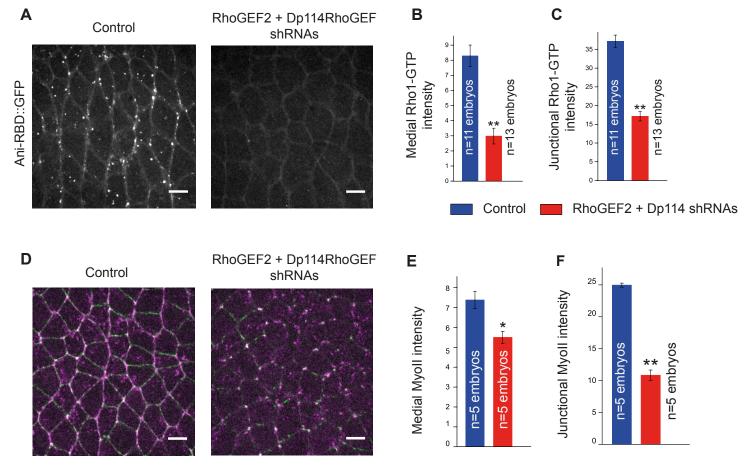
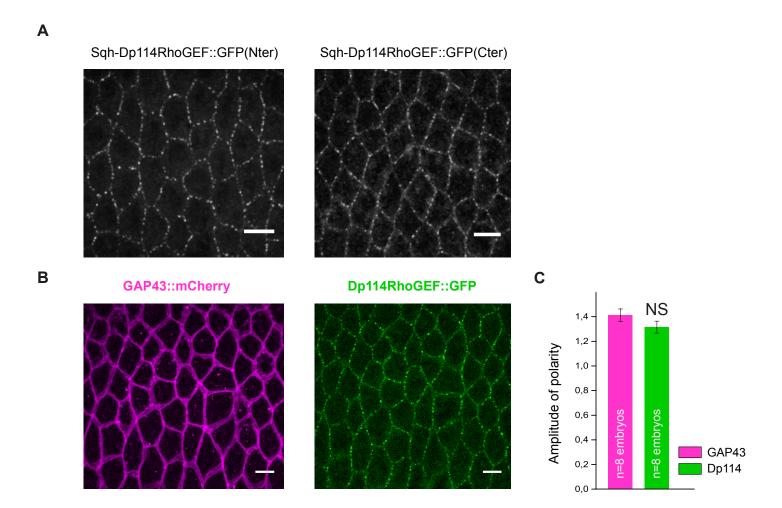
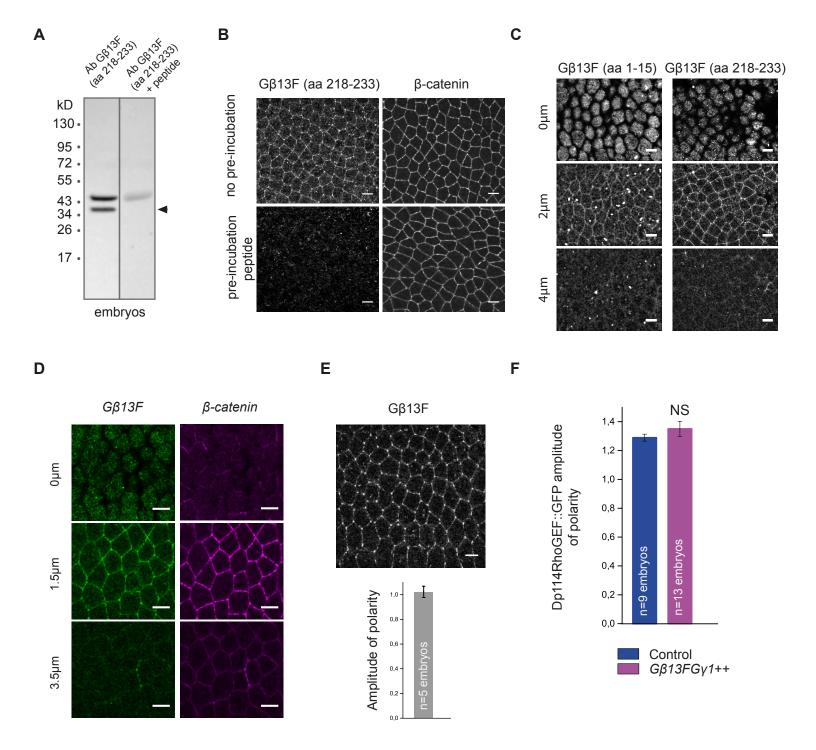



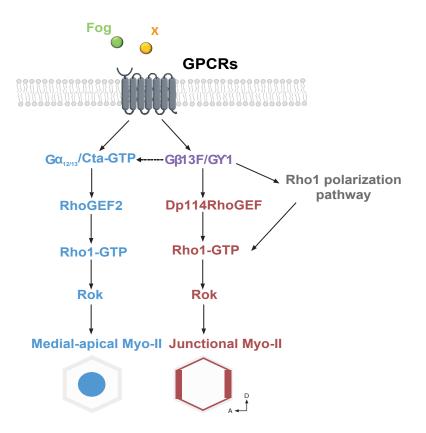
Figure S3. Myo-II and E-cadherin junctional levels are affected in Dp114RhoGEF knockdown embryos. Related to Figures 3 and 4, and Video S5.


(A) RT-qPCR showing the knock-down of CG10188 transcripts in maternally expressed CG10188 shRNA compared to control embryos. A 14-fold depletion of the CG10188 transcripts is observed. (B) Left panels: Confocal z-projection of Sqh-eGFP::CG10188 embryos (control) and Sqh-eGFP::CG10188 embryos co-expressing CG10188 shRNA. The protein is almost absent in the latter case. A quantification of eGFP::CG10188 protein signal in both conditions is depicted in the right panel. (C) Mean junctional intensity of Myo-II according to the angle of the junctions in control and Dp114RhoGEF shRNA expressing embryos. (junction angle; 0°, parallel to the antero-posterior axis; 90°, perpendicular to the antero-posterior axis). n= number of embryos. A global decrease in Myo-II is observed at both transverse and vertical interfaces. (D) Confocal projections of embryos expressing Sqh::mCherry in control background (left panel), Dp114RhoGEF shRNA background (middle panel) and in genetic background where Dp114RhoGEF shRNA is co-expressed with a modified form of the Dp114RhoGEF mRNA immune to targeting by the Dp114RhoGEF shRNA (SqhPa-Dp114RhoGEF -shRNA^R) (right panel). Note that Myo-II cables are rescued in the last condition (right panel) compared with middle panel. (E) Quantification of mean junctional Myo-II intensities in control, Dp114RhoGEF shRNA and Dp114RhoGEF shRNA, Sqh-Dp114RhoGEF shRNA^R. (F) Confocal projections of ectoderm tissues expressing E-cad::GFP in control and Dp114RhoGEF shRNA embryos. E-cadherin junctional levels are decreased upon Dp114RhoGEF depletion. (G) Mean E-cadherin junctional intensities. (H) E-cad::GFP in time lapse videos of control (top panels) and Dp114RhoGEF shRNA embryos (bottom panels) (t=0 is the end of the mesoderm pulling). Anterior is left and ventral is down. E-cadherin is enriched at cell vertices in the early germ-band and rapidly accumulates along junctions where it forms an adhesive belt in control embryos. In Dp114RhoGEF shRNA embryos, E-cadherin junctional maturation is disrupted and shows a low and discontinuous signal. Scale bars = $5\mu m$. Means ± SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.

E-cadherin::GFP MyoII::mCherry


Figure S4. RhoGEF2 and Dp114RhoGEF double knock-down decreases both medial-apical and junctional Rho1 signaling. Related to Figure 1 and 4.

(A) Confocal z-projections of control and RhoGEF2 + Dp114RhoGEF double knock-down embryos (RhoGEF2+ Dp114RhoGEF shRNAs) expressing Ani-RBD::GFP. A decrease in both medial-apical and junctional Rho1 activity is observed in the second condition. (B, C) Mean medial-apical and junctional Rho1-GTP intensities in control and RhoGEF2+ Dp114RhoGEF shRNAs embryos. (D) 5μm confocal z-projections of ventro-lateral ectodermal cells expressing E-cad::GFP and MyoII::mCherry in control and RhoGEF2+ Dp114RhoGEF shRNAs embryos. Similar to the previous observations, medial-apical and junctional Myo-II pools are decreased in mutant embryos. (E, F) Mean medial-apical and junctional Myo-II intensities. Scale bars = 5μm. Means ± SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.


Figure S5. GFP-tagged Dp114RhoGEF localizes at cell junctions with no apparent planar-polarity. Related to Figure 7.

(A) Confocal z-projections of ectodermal cells expressing Dp114RhoGEF tagged with GFP at its N-terminal (left panel) or C-terminal end (right panel). Although both fusion proteins localize at adherens junctions, a stronger cytoplasmic signal is often observed in embryos expressing the Dp114RhoGEF construct tagged in C-ter. Dp114RhoGEF tagged in N-ter has been used hereafter. (B) 4 μ m confocal z-projection of ectodermal cells co-expressing the membrane marker GAP43::mCherry and Dp114RhoGEF::GFP in the same embryo. (C) Quantification of GAP43 and Dp114RhoGEF amplitude of polarity in the same embryos. Dp114RhoGEF::GFP polarity at junctions is similar to the polarity of the membrane marker. Scale bars = 5 μ m. Means ± SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.

Figure S6. G β 13F localizes apically and at adherens junctions with no planar-polarity in the ectoderm. Related to Figure 7.

(A) G\(\text{B13F}\) (218-233) antibody specificity of binding was analyzed further in immunoblotting on yw embryos lysates. Two bands were detected: one at the expected Gβ13F molecular weight (37kDa, black arrow) and another band around 45 kDa. Importantly, the 37kDa band was abolished when the membrane was pre-treated with the blocking G\(\textit{B}\)13F (218-233) peptide. The higher molecular weight band was strongly diminished but not completely removed. (B) Ventro-lateral ectoderms stained with Gβ13F (218-233) and β-catenin antibodies. Preincubation of the G\u00ed13F (218-233) antibody with the G\u00ed13F (218-233) peptide completely abolished Gβ13F signal (left bottom panel). (C) Apical (0μm), junctional (2μm) and lateral (4µm) confocal z-sections of ectodermal cells in fixed embryos stained with two different purified antibodies against Gβ13F (see material and methods). Both antibodies showed a similar staining, with G\u00e413F being enriched apically and at adherens junctions. Because antibody against the Gβ13F (218-233) peptide gave a cleaner staining with less intracellular aggregates, we performed the next experiments using this purified antibody exclusively. (D) Apical (0µm), junctional (1.5µm) and lateral (3.5µm) confocal z-sections of ectodermal cells in fixed embryos stained with G β 13F and β -catenin antibodies. G β 13F co-localizes with β -catenin at junctions. (E) Quantification of the amplitude of polarity of Gβ13F measured on fixed embryos. Gβ13F is not planar-polarized at cell junctions. (F) Quantifications of Dp114RhoGEF::GFP amplitude of polarity in control and G β 13FG γ 1 overexpressing embryos (G β 13FG γ 1++). While GB13FGy1 overexpression increases Dp114RhoGEF::GFP levels at cell junctions (see main Figures 7 F and 7G), its amplitude of polarity is not affected. Scale bars = $5\mu m$.

Figure S7. Distinct RhoGEFs compartmentalize Rho1 signaling apically and at junctions under control of G proteins in the *Drosophila* embryonic ectoderm. Related to Figures 1 and 2 and Figures 4-7.

An overview of the medial (in blue) and junctional (in red) signaling pathways controlling Rho1 activity in the ectoderm. Following stimulation by ligand (Fog and others), GPCRs release active $G\alpha_{12/13}/C$ ta $(G\alpha_{12/13}/C$ ta -GTP) and active $G\beta13FG\gamma1$ dimers that promote RhoGEF2 and Dp114RhoGEF signaling respectively. Note that $G\beta13FG\gamma1$ favors indirectly medial-apical signaling by localizing $G\alpha_{12/13}/C$ ta at the membrane allowing it to signal downstream of GPCR activation (dotted arrow). How $G\beta13FG\gamma1$ polarize junctional Rho1 activation is unclear and could involve Toll receptors.