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The crosstalk between the heart and kidney is carried out through various bidirectional

pathways. Cardiorenal syndrome (CRS) is a pathological condition in which acute or

chronic dysfunction in the heart or kidneys induces acute or chronic dysfunction of the

other organ. Complex hemodynamic factors and biochemical and hormonal pathways

contribute to the development of CRS. In addition to playing a critical role in generating

metabolic energy in eukaryotic cells and serving as signaling hubs during several vital

processes, mitochondria rapidly sense and respond to a wide range of stress stimuli in

the external environment. Impaired adaptive responses ultimately lead to mitochondrial

dysfunction, inducing cell death and tissue damage. Subsequently, these changes result

in organ failure and trigger a vicious cycle. In vitro and animal studies have identified

an important role of mitochondrial dysfunction in heart failure (HF) and chronic kidney

disease (CKD). Maintaining mitochondrial homeostasis may be a promising therapeutic

strategy to interrupt the vicious cycle between HF and acute kidney injury (AKI)/CKD. In

this review, we hypothesize that mitochondrial dysfunction may also play a central role

in the development and progression of CRS. We first focus on the role of mitochondrial

dysfunction in the pathophysiology of HF and AKI/CKD, then discuss the current research

evidence supporting that mitochondrial dysfunction is involved in various types of CRS.

Keywords: cardiorenal syndrome, mitochondrial dysfunction, heart failure, kidney failure, oxidative stress,

inflammation

INTRODUCTION

The crosstalk between the heart and kidney plays an important role in regulating fluid balance,
metabolite excretion, and neuroendocrine function to maintain homeostasis (1), and there are
common pathological risk factors between these two organs. Cardiorenal syndrome (CRS) is
broadly defined as “a disorder of the heart and kidney whereby acute or chronic dysfunction
in one organ may induce acute or chronic dysfunction of the other” (2, 3). In 2010, the
Acute Dialysis Quality Initiative (ADQI) classified CRS into five types based on the organ
leading to the syndrome and the time course of disease progression (i.e., acute or chronic)
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(2). Epidemiological studies have shown that 25–63% of patients
with heart failure (HF) suffered from a form of CRS defined by
the ADQI (4). According to the Global Burden of Disease Study,
the global prevalence of chronic kidney disease (CKD) in 2015
was estimated to be approximately 323 million, and 10–47% of
CKD patients had cardiovascular disease, which was the leading
cause of death in the CKD population (5). Furthermore, as renal
function declined, the risk of all-cause mortality increased from
20% in stage 3a to nearly 500% in stage 5. Moreover, 25–50% of
patients with HF had CKD, including an estimated 5.7 million
people in the United States. Mortality increased by 56% in HF
patients with concomitant CKD and further increased to 131%
in patients with moderate or severe renal impairment (6, 7).

Despite decades of basic and clinical research, CRS remains a
significant public health burden due to its unclear pathogenesis
and lack of effective treatment (8). Both in acute and chronic
settings, the pathophysiological pathways that exacerbate the
cardiac or renal injury, such as persistent activation of the
renin-angiotensin-aldosterone system (RAAS) and sympathetic
nervous system (SNS), chronic inflammation, oxidative stress,
and fibrosis, play a vital role in CRS (9, 10) (Figure 1). Although
the above theoretical mechanisms explain the pathological
changes in CRS, there is no single-factor hypothesis to describe
how damage to an organ triggers distal organ dysfunction
or failure.

It is widely known that the heart contains the highest amounts
of mitochondria in the human body. Given the high energy
consumption of cardiomyocytes, more than 90% of the ATP
is produced by mitochondria, which account for approximately
one-third of the cardiomyocyte volume (11). At the renal level,
owing to the high energy demands for solute reabsorption (12),
the kidney, especially the cells in proximal tubules and medullary
thick ascending limb, contains abundant mitochondria (13).
A wide range of stress stimuli, such as ischemia, hypoxia
or toxic injury, primarily target the cardiomyocytes as well
as tubular epithelial cells especially the highly metabolically
active proximal tubular segment (14, 15). In fact, mitochondria
rapidly sense and respond to the insults to maintain their
homeostasis through morphological alterations, bioenergetics
adaptations, and enhanced self-renewal/degradation (12, 16).
Impaired adaptive responses are closely associated with a decline
in cardiac/renal function through various mechanisms affecting
metabolism, oxidative stress, inflammation, calcium dynamics
and mitophagy, and it is widely recognized that mitochondrial
malfunction is an early and prominent signature of organic
depression. Therefore, disrupted mitochondrial homeostasis is
considered not only as a consequence of myocardial injury
but also as a possible cause of HF (17). Meanwhile, Plotnikov
and colleagues concluded that mitochondrial dysfunction
was an independent risk factor for CKD regardless of the
underlying etiology (18), and it was closely associated with
the progression of CKD (19). Maintaining mitochondrial
function significantly preserves the structural integrity of the left
ventricular myocardium and renal parenchyma and the function
of the heart and kidney (20, 21).

Furthermore, all the above-mentioned pathological factors
in CRS damage the mitochondria in distal organs through

circulatory effects (21–23), suggesting that mitochondria play a
connecting role in cardiorenal interaction, andmay be a core link
in CRS progression (Figure 2). However, the specific mechanism
and evidence have not been well summarized. In this article,
we first outline the unique characteristics of heart and kidney
mitochondria and their important role in organ injury, then
summarize the current evidence of mitochondrial involvement in
the pathogenesis of various types of CRS, including the potential
of mitochondria-targeted CRS therapy.

IMPAIRED MITOCHONDRIAL
METABOLISM

Under physiological conditions, mitochondria from adult
cardiomyocytes and renal proximal tubular cells (PTCs)
preferentially use fatty acyl-CoA, the primary substrate for
mitochondrial fatty acid β-oxidation (FAO), rather than pyruvate
to generate ATP (24, 25). It has been estimated that fatty
acids supply ∼60–90% of the energy used to synthesize ATP
in cardiomyocytes, whereas 10–40% of ATP is derived from
glucose metabolism (26). PTCs almost exclusively depend on
FAO and subsequent mitochondrial oxidative phosphorylation
(OXPHOS) as their sole energy source (25). When faced with
various biological stresses, such as temporary hypoxia, FAO in
most hypermetabolic cells shuts down for a period of time,
allowing the flexible conversion of metabolic substrates from
FAs to glucose (i.e., the Randle cycle, proposed in 1963) (27,
28). This switch compensates for impaired energy in a short
period and exerts a partial organ protective effect. However, the
conversion affects the activity of electron transport chain (ETC)-
related proteins, leading to impaired OXPHOS and restricted
ATP production (29, 30). The hallmarks of metabolic remodeling
are FAO downregulation and increased glucose utilization, which
are observed in both early-stage heart and kidney injury (31, 32)
(Figure 3).

Role in Cardiac Injury
As a central mechanism of energy deprivation in the failing heart,
impaired mitochondrial metabolism has inspired decades of
research to date. In vitro studies have shown that ATP is reduced
in failing cardiomyocytes, particularly in mitochondria (33, 34).
Both animal models and clinical trials have demonstrated that
ATP flux is reduced in advanced HF, and ATP supplementation
improves cardiac function and even reverses the subsequent
structural remodeling of ventricles (34–36). The utilization
of myocardial FAs, which are metabolized via non-oxidative
pathways to produce lipotoxic ceramides and diacylglycerols
in rats with severe HF, leading to mitochondrial dysfunction
and apoptosis and further aggravating the impaired energy
metabolism (37). Previous studies confirmed that a greater
dependence on glucose in the failing heart promotes glycolysis,
leading to increased lactate production and anaplerosis (38).
It also drives more glucose into collateral pathways, all of
which reduce the efficiency of ATP synthesis and exacerbate
pathological myocardial remodeling (38, 39).
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FIGURE 1 | A schematic depiction of the cardiorenal connectors in CRS. The cardiorenal connectors, including hemodynamic factors, RAAS, SNS, inflammation,

and oxidative stress are core mechanisms of CRS, all of which synergize and activate each other, leading to further deterioration of cardiac and renal function. CO,

Cardiac Output; CVP, central venous pressure.

Role in Kidney Injury
Experimental evidence indicates that FAO dysregulation
profoundly affects the fate of PTCs by promoting inflammation,
ultimately leading to mesenchymal fibrosis and epithelial-to-
mesenchymal transition (40). High levels of albumin-bound
long-chain saturated FAs promote the progression of renal
tubular damage and interstitial fibrosis through the activation of
pro-inflammatory pathways, including tumor necrosis factor-
alpha (TNF-α), CC motif chemokine 2, and interleukin (IL)-6,
and increase the production of ROS (40–42). Kang HM et al.
reported that PTCs treated with the CPT-1 inhibitor etomoxir
undergo morphologic and genomic changes, with increased
expression of mesenchymal genes, such as ACTA2 (encoding
α-smooth muscle actin),VIM (encoding vimentin), and COL1A1
and COL3A1 (encoding fibrillar collagens) (43). In addition,
Lan R et al. found that the shift from FAO to glycolysis in PTCs
undergoing renal ischemia/reperfusion (I/R) injury promoted
the development of tubular atrophy and transition from AKI to
CKD (44). This may be related to the increased expression of the
key glycolytic enzyme glycolysis pyruvate kinase M2 and levels of
lactate metabolites, cooperatively leading to hypoxic and acidic
environments and eventually inhibiting the proliferation and
differentiation of podocytes and aggravating fibrosis (45, 46).

MITOCHONDRIAL ANTIOXIDANT
DEFENSE IMBALANCE

ROS were initially thought to be by-products of mitochondrial
OXPHOS. Electrons that leak out of the major site of complex

I and complex III in the ETC and react with O2 generate
superoxide anions (47), which are then converted to H2O2 by
superoxide dismutase (48). Mitochondrial antioxidant systems,
including catalase, glutathione peroxidases, and peroxiredoxin,
further reduce H2O2 to water. Under physiological conditions,
the mitochondrial antioxidant defense system maintains low
levels of ROS in the organelle (49, 50). Under stress conditions,
ROS accumulate when mitochondrial ROS (mtROS) production
exceeds the mitochondrial antioxidant defense capacity or when
the antioxidant defense system is impaired (51). Subsequently,
mtROS react rapidly with nitric oxide to form a potent oxidant
and nitrifying agent. As a result of mtROS accumulation,
H2O2 release from mitochondria to the cytoplasm increases,
exacerbating oxidative damage outside the mitochondria (52,
53). Therefore, the balance between mtROS production and
scavenging is critical for maintainingmitochondrial function and
cell viability (Figure 3).

Role in Cardiac Injury
In the failing heart, damage caused by excessive mtROS and
innate antioxidant defense exhaustion are evident in human
patients and animal models (54–56). The overproduction of
mtROS is primarily due to increased expression and activity
of NADPH oxidase through a variety of pathological stimuli,
including mechanical stretch, angiotensin II, endothelin
1, and TNF-α (52). Moreover, experimental evidence
suggests the activities of superoxide dismutase, catalase,
and glutathione peroxidases are significantly reduced during
HF (17). Mitochondria-targeted ROS scavenging (e.g., MitoQ,
MitoTEMPO, or SS-31) has demonstrated benefit in animal
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FIGURE 2 | Diagrammatic representation shows the relationship between pathological alterations in CRS and mitochondrial dysfunction mechanisms. Intrinsic and

extrinsic stress signals, such as hemodynamic alteration, RAAS overactivation, SNS dysfunction, inflammation or oxidative stress, can activate mitochondrial

responses, including mitochondrial metabolism, antioxidant defense imbalance, abnormal dynamics, mitophagy and biogenesis. Impaired adaptive responses

ultimately lead to mitochondrial dysfunction, include ATP synthesis reduction, excessive ROS, aberrant calcium signaling, (de) differentiation or cell death (apoptosis or

necrosis). These changes in cardiomyocytes or renal tubular epithelial cells induce energy deprivation, oxidative stress, inflammation and fibrosis.

models of HF (57–59). Interestingly, NAD+, a precursor for
the phosphorylated dinucleotide pair NADP+/NADPH (plays a
major role in the detoxification of ROS), was also significantly
reduced in the myocardium of some HF mice (60). In addition,
nicotinamide mononucleotide adenosyltransferase, an enzyme
responsible for NAD+ production, was found to be substantially
inhibited in both mouse HF models and patients (61, 62).
Further studies indicate that increasing intracellular NAD+

levels by pharmacological or genetic approaches restore protein
acetylation and improve cardiac function in mouse models of
HF (63).

Role in Kidney Injury
Experimental evidence suggests that kidney injury is
accompanied by an impaired mitochondrial antioxidant defense
system. Increased production of mtROS is a common feature
of AKI and CKD (64, 65). Enhanced mitochondrial antioxidant
defenses by supplementation with mitochondria-targeted
antioxidants have been shown to attenuate mitochondrial
dysfunction and reduce kidney injury in animal models of
IR-induced renal fibrosis, diabetic nephropathy, and unilateral
ureteral obstruction (UUO)-induced CKD (66–68). Notably, a
moderate increase in mtROS may regulate signaling pathways

involved in renal injury and incomplete renal repair (69).
For example, mtROS have been shown to activate hypoxia-
inducible factor 1α in response to hypoxia; the NLRP3 pathway,
which induces inflammation, cytokine production, and innate
immune responses; and the transforming growth factor-β
(TGFβ) pathway, which has a pro-fibrotic effect in disease
conditions (70–72).

Noteworthily, excessive mtROS have been shown to
affect a wide range of cellular functions in the context of
HF and AKI/CKD. Mitochondrial damage caused by an
initial increase in oxidative stress leads to a further increase
in ROS production and more severe damage. This results
in so-called ROS-induced ROS release in mitochondria,
creating a vicious cycle and increasing the tendency for cell
death (73). High levels of ROS damage mtDNA and induce
mtDNA leakage, which can bind to Toll-like receptors or
nucleotide-binding oligomerization domain-containing protein
(NOD)-like receptors, leading to inflammation (74). Moreover,
increased ROS also induce mitochondrial permeability transition
pore opening, lead to cell death, and impair mitochondrial
biogenesis (25, 75, 76). However, the specific role of these
mechanisms in the development of damage remains to be
fully elucidated.
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FIGURE 3 | Mitochondrial Dysfunction Plays a Central and Multifaceted Role in HF and AKI/CKD. Mitochondria from cardiomyocytes and renal proximal tubular cells

preferentially use fatty acyl-CoA, the primary substrate for mitochondrial FAO, rather than pyruvate to generate ATP. The hallmarks of metabolic remodeling are FAO

downregulation and increased glucose utilization, which are observed in both early-stage heart and kidney injury. ROS were initially thought to be by-products of

mitochondrial OXPHOS, the balance between mtROS production and scavenging is critical for maintaining mitochondrial function and cell viability. Mitochondrial

dynamics contribute to the functional integrity of mitochondria. Fusion allows mixing of contents within the mitochondrial network and protects the mitochondria from

stress. Damaged mitochondria undergo selective mitochondrial autophagy via Parkin, Fundc1, through autophagosome formation and lysosome-mediated

degradation. Upregulation of PGC1α and activation of NRF1/2 initiate mitochondrial biogenesis, followed by mtDNA amplification and synthesis of nuclear-encoded

mitochondrial proteins. After severe mitochondrial damage, increased fission leads to mitochondrial fragmentation, depolarization of the mitochondrial membrane

potential inhibits fusion, and frequent abnormal fission events will affect mitochondrial autophagy, leading to abnormal degradation of damaged mitochondria, along

with a decrease in the number and quality of nascent mitochondria mediated by mitochondrial biosynthesis. NRFs, nuclear respiratory factors, PGC1α, PPARγ

coactivator-1α. FAO, fatty acid β-oxidation, OXPHOS, oxidative phosphorylation.

ABNORMAL MITOCHONDRIAL DYNAMICS

Mitochondria are not static organelles. In fact, they continuously
undergo fusion and fission, two processes that define
mitochondrial dynamics (77). Through fission and fusion,

mitochondrial size, distribution, shape, position, and mass are
fine-tuned in response to changes in the metabolic state of
the cell (77). Mitochondrial fission is a multistep process that
allows a mitochondrion to split in two daughter mitochondria,
and primarily mediated by dynamin-related protein 1 (Drp1),
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a large dynamin-related guanosine triphosphate hydrolase
(GTPase) (78, 79). During the process, Drp1 is recruited to
the outer mitochondrial membrane, and then GTP hydrolysis
enhances membrane contraction, leading to the recruitment
of dynamin 2 to terminate membrane cut-off (80). In contrast,
mitochondrial fusion is driven by a two-step process induced
by several GTPases, including mitofusin 1 (Mfn1) and Mfn2
involved in outer mitochondrial membrane fusion and optic
atrophy 1 (Opa1) involved in inner membrane fusion (81, 82).
The continuous alternation between fission and fusion maintains
mitochondrial homeostasis and cellular function in response
to physiological changes (83). However, the disruption of
dynamic balance alters mitochondrial morphology and impairs
mitochondrial function, leading to cell viability, which is closely
associated with heart and kidney diseases (78, 84) (Figure 3).

Role in Cardiac Injury
Impaired mitochondrial fission may cause dilated
cardiomyopathy, whereas impaired mitochondrial fusion
leads to hypertrophy (85–87). Genetic ablation of genes
associated with fission/fusion can lead to significant myocardial
structural abnormalities, such as enlarged left ventricles, reduced
cardiac output, and abnormal myocardial fibrosis (88, 89).
Mice with a cardiomyocyte-specific conditional knockout of
Drp1 die after 8–13 weeks and develop evidence of HF. At
the cellular level, these hearts contain elevated mitochondrial
counts, elongated mitochondria, and increased apoptosis (86).
Similarly, myocardial Drp1 levels are elevated in HF patients
through a mechanism potentially regulated by neurohormone
norepinephrine-mediated myocardial hypertrophy. In contrast
to mitochondrial fission, the mRNA transcription and protein
expression of Mfn1/2 or Opa1 were enhanced in mouse
cardiomyocytes (90), suggesting that under physiological
conditions, mitochondrial fusion activity in cardiomyocytes is
restricted by inhibitory mechanisms. Because of the redundant
expression of Mfn1 and Mfn2 in cardiomyocytes, the ablation
of either gene fails to significantly inhibit mitochondrial fusion
in normal cardiomyocytes (91). At the subcellular level, most
mitochondria in Mfn1/Mfn2 double-knockout cardiomyocytes
are spherical and lack an elongated morphology, suggesting
an imbalance between fission and fusion (92). Interestingly, in
Drosophila and mice, Opa1 gene ablation induces mitochondrial
fragmentation with mtROS production and respiratory
dysfunction, which produces a cardiac phenotype different
from that induced by Mfn1/Mfn2 ablation (93). Moreover,
heart tube-specific Opa1 knockdown induces dilation of the
heart tube, with severe contractile impairment (94). Conversely,
Opa1 overexpression in vivo refines myocardial injury, and the
underlying mechanism may be dependent on the stabilization
of the mitochondrial cristae structure of Opa1, which increases
mitochondrial respiratory function and prevents cytochrome c
release, ROS production, and apoptosis (95).

Role in Kidney Injury
Mitochondrial fragmentation due to excessive fission and/or
fusion inhibition is thought to be a key event in mitochondrial
damage and renal tubular injury during AKI (12). In murine

models of AKI induced by renal IR or cisplatin toxicity,
mitochondrial fragmentation precedes tubular cell apoptosis,
and the inhibition of fission attenuates tubular cell death and
renal injury (96, 97). Consistent with this finding, proximal
tubule-specific deletion of Drp1 protects mice from renal IR-
induced tubular cell death, inflammation, and renal injury and
accelerates renal recovery (98). In vitro studies have shown that
Mfn2 deficiency enhances ATP depletion-induced cell injury and
death (99). However, proximal tubule-specific Mfn2 knockout
mice exhibit milder renal injury and higher survival rates
compared with wild-type mice. After AKI in these mice, Mfn2
deficiency stimulates mitogen-activated protein kinase signaling
pathway-dependent renal tubular cell proliferation, which may
accelerate renal repair and thus overcome the detrimental effects
of inhibiting mitochondrial fusion, leading to renal protection
(99). Enhanced mitochondrial fragmentation in renal tubular
cells and podocytes has been reported in experimental models
of diabetic kidney disease (DKD) and renal biopsy samples from
patients with DKD (100, 101). In addition, the knockdown of
podocyte Drp1 blocked mitochondrial fragmentation, improved
mitochondrial fitness, and protectedmice fromDKDprogression
(102). Consistent with these findings, pharmacological inhibition
of Drp1 protected mice from DKD progression (101, 103). As
mentioned above, mitochondrial fragmentation in renal tubular
cells may reduce energymetabolism and increase ROS formation,
thereby promoting tissue injury, inflammation, and maladaptive
renal repair. The specific mechanisms underlying the deleterious
role of mitochondrial fragmentation in renal repair need to be
investigated in depth.

ABNORMAL MITOPHAGY

Mitophagy is a mechanism that selectively degrades excess and
defective mitochondria (104, 105). Two major mechanisms for
labelingmitochondria and transporting them to autophagosomes
have been identified: one regulated by the serine/threonine-
protein kinase PTEN-induced kinase 1 (PINK1), mitochondrial
E3 ubiquitin-protein ligase parkin pathway and the other
mediated by mitophagy receptors, including BCL-2/adenovirus
E1B 19 kDa protein-interacting protein 3 (BNIP3), BCL-
2/adenovirus E1B 19 kDa protein-interacting protein 3-like
(BNIP3L), FUN14 domain-containing 1 (FUNDC1), and
E3 ubiquitin-protein ligase SMURF1 (106, 107). Among
them, Parkin and Fundc1 appear to be inducers of protective
mitophagy, whereas lethal mitophagy is more likely triggered by
the upregulation of Bnip3 and Nix (106, 108). Specifically,
although autophagy/mitophagy is considered by most
researchers to be the “guardian” of mitochondrial function
and cardiomyocyte homeostasis, different adaptors trigger
mitophagy to varying degrees, promoting cell survival or
cell death. Moderate mitophagy selectively removes impaired
mitochondrial subsets, thereby increasing ATP production. In
contrast, excessive mitophagy induces cell death by depleting
cellular ATP reserves (109). It is worth noting that the degree
of mitophagy activation also depends on the level and duration
of cellular stress. However, the extent to which mitophagy
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activation contributes to mitochondrial dysfunction and cellular
energy deficiency in HF or AKI/CKD remains unclear (Figure 3).

Role in Cardiac Injury
Impaired mitophagy in cardiomyocytes has been reported
in experimental models of HF and cardiac biopsy samples
from patients with HF. In a mouse model of HF induced by
transverse aortic coarctation, PINK1 phosphorylation was
reduced, accompanied by inhibited mitophagy and impaired
mitochondrial function (110). Genetic ablation of Parkin disrupts
the mitochondrial network, reduces ATP synthesis, and causes
ROS overload in cardiomyocytes (111). AMPKα2 phosphorylates
Ser495 of PINK1 to enhance pink/parkin pathway signaling,
activate mitophagy, promote the elimination of damaged
mitochondria, and improve mitochondrial function, thereby
preventing the early progression of HF (110). Interestingly,
the role of parkin-mediated mitophagy in the regulation of
mitochondrial dynamics has also been reported. In parkin-
deficient hearts and cardiomyocytes, mitochondria show
fragmentation, which may be related to parkin-mediated
inhibition of Mfn1/2 ubiquitination, leading to reduced
mitochondrial fusion (110, 112). Furthermore, hearts with
baseline genetic ablation of Fundc1 exhibit reduced early
to late ventricular filling velocities, prolonged isovolumetric
relaxation times, reduced ejection fractions, and decreased
fractional shortening, suggesting that Fundc1 knockout mice
have impaired cardiac function and are susceptible to HF (113).
As a cardiomyocyte death factor, Nix regulates mitochondrial
death and acts as a downstream effector of the stress-related
hormone norepinephrine, which promotes cardiac fibrosis
during ventricular remodeling. In addition, Nix overexpression
promotes collagen and fibronectin expression (114).

Role in Kidney Injury
Increasing evidence indicates that mitophagy plays an essential
role in kidney injury. In a mouse model of septic AKI
induced by cecum ligation and puncture, renal tubular cells
exhibited increased mitophagy in the early stages of septic
AKI, followed by decreased mitophagy in the late stages of
AKI (115). Increased mitochondrial loss and autophagosome
formation have been reported in the regeneration of PTCs
after renal IRI, and these abnormalities resolved in normally
repaired tubules but persisted and progressively worsened in
undifferentiated tubular cells, suggesting a role for mitophagy in
renal repair after AKI (44). Furthermore, in the renal tubules
of DKD mice, reduced expression of PINK1 and parkin in
PTCs, decreased autophagosome formation, and optineurin
overexpression enhancedmitophagy, thereby attenuating cellular
senescence, mtROS accumulation, and NLRP3 inflammasome
activation (116, 117). In addition to DKD, mitophagy has
been associated with the development of non-diabetic CKD,
with increased mitochondrial PINK1 and parkin formation and
increased levels of autophagy in renal tubules and hypoxia-
exposed PTCs in UUO mice, suggesting that mitophagy is
activated in these settings. In contrast, another study reported
reduced parkin expression and autophagy levels in kidney tissue
from UUO mice (118, 119). These conflicting findings suggest

the presence of context- and cell-type-specific alterations in
mitophagy in CKD. However, both studies suggest that the
deletion of PINK1 or Parkin exacerbates renal injury in UUO
mice, supporting a protective role for mitophagy in CKD.

ABNORMAL MITOCHONDRIAL
BIOGENESIS

In response to changing energy demands triggered by
developmental signals and environmental pressures, cells
initiate mitochondrial biogenesis, the process of generating
new mitochondrial mass and mtDNA replication through
the proliferation of existing mitochondria (120). PGC1α
is considered to be a master regulator of mitochondrial
biogenesis, and its expression is upregulated upon increased
energy demands (eg, fasting or exercise) or stress conditions
(eg, cold or hypoxia) (121, 122). Mechanistically, PGC-1a is
activated by phosphorylation or deacetylation, which then
stimulates the expression of a series of nuclear transcription
factors, including nuclear respiratory factor 1, 2 (NRF1/2),
and subsequently, the initiation of NRF binding to ETC genes
and mitochondrial transcription factor family (Tfam) genes,
which are responsible for mtDNA transcription and translation
(122).The current data acknowledge that mitochondrial
biosynthesis results in an increase in OXPHOS capacity, a
decrease in pathological oxidative stress and the repair of
mitochondria-related dysfunction (Figure 3).

Role in Cardiac Injury
Previous studies showed the essential role of mitochondrial
biogenesis during adulthood, which involve conferring
protection against long-term cardiac dysfunction, and in
early embryonic cardiac development (123). Subepicardial
biopsies from patients with HF exhibit decreased PGC1α
expression (124). Consistent with the clinical finding, PGC1α
ablation impairs mitochondrial energy metabolism and induces
the development of HF in mice (125). Likewise, in vitro, dramatic
reduction in mtDNA copy number in ischemic cardiomyocytes,
which leads to reduced mitochondrial mass and increased
mitochondrial fragmentation, while PGC1α overexpression
attenuates these abnormalities (126). These findings suggest
that downregulation of PGC1α facilitates the pathogenesis and
progression of HF. However, the results of other studies sound
a different tone. Hu’s study showed no significant changes in
PGC-1α gene expression in myocardial tissue of patients with
congestive HF (127). Addition, in a transgenic mouse model,
myocardial-specific PGC1α overexpression resulted in excessive
mitochondrial proliferation and disruption of sarcoplasmic
reticulum structure in cardiomyocytes, leading to cardiac
enlargement with reduced myocardial contractile function (128),
which indicate the overexpression of PGC1α does not improve
mitochondrial function (129).This may be explained by the
fact that the outcome of PGC1α overexpression and its effects
on HF are tightly related to the activity and the interaction
of mitochondrial biogenesis with other intracellular events.
Altogether, the role of PGC1α in HF remains controversial,
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while the role of PGC1α in different types of HF needs to be
further investigated.

Role in Kidney Injury
Mounting evidence supports a beneficial effect of mitochondrial
biogenesis in kidney injury and repair after AKI. PGC1α
was highly expressed in proximal tubules with abundant
mitochondria (130). Decreased expression of PGC1α in the
kidney was observed in both renal IRI- or cisplatin-induced AKI
animal models and in renal biopsy samples from AKI patients
compared with controls (65, 130). Further studies demonstrated
that in mice models of septic AKI, the levels of PGC1α and
downstream OXPHOS genes in the kidney were suppressed
proportionally to the degree of kidney injury and were restored to
normal levels during kidney recovery (131), suggesting a negative
correlation between PGC1α expression in kidney and AKI
severity. The pharmacological activation of PGC1α accelerated
the recovery of renal function after IRI in mice supporting
the mentioned findings. Notably, mouse podocyte-specific
overexpression of PGC-1 resulted in altered mitochondrial
properties, including formation of giant mitochondria, increased
expression of ETC and mitochondrial fusion genes, and
enhanced podocyte proliferation and dedifferentiation, leading to
proteinuria and glomerulosclerosis (132).

EVIDENCE FOR THE PARTICIPATION OF
MITOCHONDRIAL DYSFUNCTION IN THE
PATHOGENESIS OF CRS

As previously mentioned, hemodynamic factors, RAAS, SNS,
inflammation, and oxidative stress are core mechanisms of
CRS, all of which synergize and activate each other, leading to
further deterioration of cardiac and renal function (133, 134).
In fact, all of the above factors cause mitochondrial damage
in distal organs. First, mitochondria are the main consumers
of oxygen in cells, and hypoxia directly or indirectly impairs
mitochondrial dynamics, autophagy, and OXPHOS through the
hypoxia-inducible factor pathway (56, 135). And one of the
most deleterious effects of RAAS stimulation is the activation
of NADPH oxidase, which results in increased mtROS in
endothelial cells, renal tubular cells (136), and cardiomyocytes
(137). Long-term SNS hyperactivity, on the one hand, promotes
the growth of renal vascular wall and cultured cardiomyocytes
through the production of mtROS (138, 139), on the other hand,
it also promotes the activation of RAAS by directly stimulating
the release of renin and plays a synergistic role in mitochondrial
damage. In addition, as a hub of proinflammatory signaling,
mitochondria are affected by elevated levels of multiple factors
(such as C-reactive protein, IL-1β, IL-6, and TNF-a) in the
chronic inflammatory environment of CRS (140, 141), further
releasing inflammatory activators represented by mtDNA and
ROS, triggering a vicious cycle of more severe inflammatory
responses that predispose to fibrosis (142, 143) (Figure 4). Thus,
mitochondrial dysfunction appears to play a key role in CRS. The
role of mitochondrial dysfunction in different subtypes of CRS
was summarized based on the available evidence (Table 1).

Mitochondrial Dysfunction in CRS1
CRS1 is defined as a sudden deterioration of cardiac function,
leading to AKI and/or dysfunction (2). It usually follows
acute ischemic or non-ischemic heart disease (152, 153),
most commonly acute decompensated heart failure (ADHF)
(154). Although the above mechanisms are risk factors for
renal mitochondrial, there are limited studies on the direct
relationship between CRS1 and mitochondrial dysfunction.
Levosimendan is an effective drug for the clinical treatment
of ADHF. A recent study showed that it decreased the
risk of AKI after cardiopulmonary resuscitation in rats by
enhancing mitochondrial respiratory enzyme activity, promoting
mitochondrial energy metabolism, regulating mitochondrial
dynamics-related protein expression, improving mitochondrial
dysfunction, and reducing the number of apoptotic cells caused
by mitochondrial pathways (144).

Mitochondrial Dysfunction in CRS2
CRS2 is defined as chronic cardiac insufficiency, leading to
progressive manifestations of kidney damage, which contributes
to the progression of CKD (155, 156). Morphological studies
in rat models of congestive HF-induced renal injury revealed
mitochondrial swelling in renal tubular epithelial cells, possibly
due to the release of Cyt-c, which mediated caspase 3 activation
and nuclear transfer and triggered apoptosis, supporting the
role of mitochondria-mediated apoptosis in CRS2 (145). Early
empagliflozin treatment protects cardiac and renal function
in CRS rats by reducing apoptin (mitochondrial-Bax/cleaved-
caspase-3/cleaved-parp) and fibrosin (TGF-β/Smad3), reducing
DNA/mitochondrial damage (γ-H2AX/cytoplasmic-Cyt-c), and
maintaining mitochondrial function and integrity (146).

Mitochondrial Dysfunction in CRS3
CRS3 refers to a CRS subtype in which the onset of AKI
leads to the progression of acute cardiac injury or dysfunction
(9). Proteomic analysis of CRS3 rats showed alterations in
myocardial pyruvate metabolism, glyoxylate and dicarboxylic
acid metabolism, starch and sucrose metabolism, and amino
acid biosynthesis, with 23 proteins enriched in signaling
pathways related to mitochondrial function, suggesting that
AKI may affect cardiomyocyte metabolism or mitochondrial
bioenergy (23). Growth factor receptor-binding protein 2
(Grb2) is a regulator of AKI-related myocardial injury, and
Grb2 activation promotes mitochondrial metabolic disorders in
cardiomyocytes by inhibiting the Akt/mTOR signaling pathway.
Additionally, the administration of Grb2-specific inhibitors
reverses myocardial pathological changes in the context of AKI
(23). Furthermore, the dysregulation of mitochondrial dynamics
caused by increased Drp1 expression and cardiac apoptosis
plays an important role in AKI-induced myocardial injury (147,
148). Renal ischemia-reperfusion injury induces mitochondrial
calcium overload in cardiomyocytes through the inositol 1,4,5-
trisphosphate receptor (IP3R)-mitochondrial calcium uniporter
(MCU) signaling pathway, decreasing mitochondrial membrane
potential and increasing pathological mitochondrial fission. In
addition, melatonin attenuates myocardial injury caused by
cytoplasmic and mitochondrial calcium overload by inhibiting
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FIGURE 4 | Mitochondrial functions and the effects of mitochondrial damage. Mitochondria play a key role in producing energy in the form of ATP. NADPH are formed

by the oxidation of fatty acids and the cycle of TCA in the mitochondrial matrix, and their electrons are transferred to O2 through the electron transport chain (including

COX I and IV). This results in the generation of a proton gradient across the IMM to produce ATP. Cyto C exists in free form in the IMS, or is anchored in the IMM by

interaction with cardiolipin, acting as an electron carrier COX III and COX IV. Mitochondria are the main source of ROS. Mitochondria also play an important role in

maintaining calcium balance in cells. Mitochondrial damage reduces ATP production and can result in the energetic failure of cells. An increase in mitochondrial ROS

production by damaged mitochondria may also induce other forms of cell death, including necroptosis, pyroptosis and ferroptosis, as well as inflammation. NADH,

nicotinamide adenine dinucleotides; TCA, tricarboxylic acids; IMM, mitochondrial intima; Cyto C, Cytochrome C; IMS, intermembrane space; IMM, intermembrane

space; COX I, mitochondrial respiratory complex I; NLRs, nucleotide-binding and oligomerization domain-like receptors.

IP3R phosphorylation andMCU expression (23). Thus, Doi K et
al. proposed that CRS3-related studies should center on the new
concept of “mitochondrial hormesis” (149).

Mitochondrial Dysfunction in CRS4
CRS4 is characterized by cardiovascular damage in patients
with CKD in all stages (25). Pressure and fluid overload
in CKD patients often lead to hypertrophy with histological
changes, such as fibrosis (26). These changes are associated
with inflammation and other cardiovascular factors, including
hypertension, RAAS activation, or fluid overload, and are often
accompanied by a decrease in GFR (157). Ang II is involved in
CKD-induced myocardial interstitial fibrosis and cardiomyocyte
hypertrophy by inducing mitochondrial structural damage and
mitochondrial apoptosis. Ang II receptor blockers merely
upregulate mitochondrial fusion-related protein levels, reduce
mitochondrial swelling, and improve the spatial organization
of cardiac mitochondria, suggesting that further identification
of molecular pathways contributing to mitochondrial damage

and appropriate intervention are essential in CRS4 (150). The
drug Entresto protects cardiomyocytes and cardiac function in
high-protein diet-fed CRS4 rats by regulating oxidative stress
and Mfn2-mediated mitochondrial functional integrity (140).
Hyperphosphatemia (HP) is a known serum hallmark of CKD.
The transcription factor interferon regulatory factor 1 (IRF1)
is a key molecule upregulated by HP through histone H3K9
acetylation, and it directly binds to the promoter region of HP-
mediated PGC1α to play a role in its transcriptional repression.
In contrast, the restoration of PGC1α expression or gene
knockdown of IRF1 significantly attenuates HP-induced changes
in vitro and in vivo. These findings suggest that IRF1-PGC1α
axis-mediated myocardial mitochondrial biosynthesis plays a
crucial role in the pathogenesis of CRS4 (22).

Mitochondrial Dysfunction in CRS5
CRS5 refers to systemic diseases (sepsis, drug toxicity, lupus,
liver cirrhosis, or amyloidosis) resulting in simultaneous cardiac
and renal damage and/or dysfunction (158). In sepsis-induced
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TABLE 1 | Mechanisms and effects of mitochondrial dysfunction in different types of CRS.

CRS types Model Mechanism(s) of action Mitochondrial characteristics Therapies References

CRS1 Asphyxia-induced

cardiac arrest and CPR

Mitochondrial structure damage

in renal tissue. ATP, SOD, CAT,

CSH-Px, Opa1↓,

Ca2+, MDA, Drp1↑

Suppressed mitochondrial

fusion, enhanced fission

Levosimendan (144)

CRS2 Modified approach of

ACF

Swollen mitochondria and

degenerated nuclei in RTCs,

proapoptotic Bax, Cyt-c,

c-casp3↑

Enhanced

mitochondria-mediated

apoptosis

— (145)

5/6 nephrectomy, DCM

by DOX treatment

TGF-α, NF-κB, IL-1β, MMP-9,

mitochondrial-Bax, c-casp3,

cleaved-PARP, Smad3, γ-H2AX↑

Enhanced

mitochondria-mediated

inflammatory /oxidative

stress/apoptosis

Empagliflozin (146)

CRS3 Renal IRI Myocardium ATP, 1Ψm, p-Akt,

p-mTOR↓

ROS, fragmented mitochondria,

IL-6, Grb2↑

Impairs cardiomyocyte

mitochondrial bioenergetic

— (23)

Renal IRI Fragmented mitochondria, Drp1,

c-casp3↑

Enhanced mitochondrial fission

and apoptosis

Mdivi-1 (147, 148)

Renal IRI Fragmented mitochondria in

myocardium,

ATP, 1Ψm, COXI, COXII,

COXIV↓,

p-Drp1, Mff, Fis1, Ca2+, MCU,

IP3R, Cyt-c↑

Impairs cardiomyocyte

mitochondrial bioenergetics and

enhanced fission

Melatonin (149)

CRS4 5/6 nephrectomy Swollen-damaged cardiac

mitochondria

Cyt-B↓

Cyt-c, cleaved-PARP↑

Mitochondrial structure damage Losartan

(partially

reversed)

(150)

5/6 nephrectomy, DCM

by DOX treatment

1Ψm, PGC-1α, COXI, COXII,

COXIV↓,

ROS, p-Drp1, Mfn-2, Bax,

c-casp3, LC3B1↑

Suppressed mitochondrial

fusion, biogenesis and

mitophagy

Entresto (20)

5/6 nephrectomy Mitochondrial derangements,

swelling, and vacuolation with

disrupted cristae in

cardiomyocytes,

ATP, mtDNA, PGC-1α, 1Ψm,

FAO, OXPHO↓,

ROS, Glycolysis, Pit1, Pit2 IFR1↑

Suppressed mitochondrial

biogenesis and OXPHOS

— (22)

CRS5 Sepsis (intraperitoneal

fibrin clots embedded

with S. aureus)

mtDNA, NRF-1, NRF-2, TFAM↓,

ROS, IL-6, IL-10, TNF↑

Suppressed mitochondrial

biogenesis

— (151)

CPR, cardiopulmonary resuscitation; ATP, adenosine triphosphate; SOD, superoxide dismutase; CAT, catalase; CSH-Px, glutathione peroxidase; Opa1, mitochondrial optic atrophy

1; MDA, malondialdehyde; Drp1, dynamin-related protein 1; ACF, infrarenal aortocaval fistula; RTCs, renal tubular cells; Cyt-c, cytochrome C; c-casp3, caspase 3 activation;

DCM, cardiomyopathy; DOX, doxorubicin TGF-α, tumor-necrosis factor-α; NF-κB, nuclear-factor-κB; IL-1ß, interleukin-1ß; MMP-9, matrix-metalloprotianse-9; PARP, poly-ADP-ribose

polymerase; IRI, ischemia reperfusion injury; 1Ψm, mitochondrial membrane potential; COXI, mitochondrial respiratory complex I; COXII, mitochondrial respiratory complex II; COXIV,

mitochondrial respiratory complex IV; Mff, mitochondrial fission factor; MCU, mitochondrial calcium uniporter; IP3R, Inositol 1,4,5-trisphosphate receptor; Mfn-2, Mitofusin-2; FAO, fatty

acid oxidation; OXPHO, oxidative phosphorylation; IRF1, interferon regulatory factor 1; mtDNA, mitochondrial DNA; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription

factor A; TNF, tumor necrosis factor.

CRS5, the key pathway found to be altered is primary
metabolism, which may affect local cycling through decreased
ATP levels and mitochondrial dysfunction (151, 159). Tran et
al. demonstrated that mitochondrial dysfunction, cell swelling,
and marked acylglycerol accumulation in tubules led to reduced
prostaglandin E2 and promoted medullary vasoconstriction in
ischemic AKI (160). There is a clear correlation between the stage
of mitochondrial dysfunction, disease severity, and prognosis of
patients with septic myocardial injury (161). However, no studies

have directly assessed cardiac and renal mitochondrial function
in patients with sepsis.

CONCLUDING REMARKS AND
PERSPECTIVES

This article reviewed the pathophysiological mechanisms of
CRS from the perspective of mitochondrial dysfunction.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 February 2022 | Volume 9 | Article 837270

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Shi et al. Mitochondrial Dysfunction in CRS

The elucidation of the mechanisms by which two organs
are interconnected is an unmet medical need. Given that
mitochondria play a vital role in renal and cardiovascular
disease (Figure 2), this organelle may be an excellent candidate
therapeutic target to disrupt the vicious cycle between HF and
AKI/CKD. Accordingly, we propose a three-step mechanism
that may explain the pathophysiology of CRS. First, damaged
renal tissue (heart) releases pro-inflammatory factors and
oxidative metabolites into the circulation, and changes in the
neuroendocrine system lead to the secretion of several hormones
into the blood. Second, kidney (cardiac)-derived biomolecules
interact directly with receptors or adaptors on the surface of
cardiomyocytes (renal tubular epithelial cells) and have the
potential to exert indirect effects on cardiomyocytes (renal
tubular epithelial cells) through other mechanisms. Finally, as
one of the most sensitive intracellular organelles, mitochondria
sense a wide range of stimuli in the extracellular environment
and respond to cardiac (renal)-derived biomolecules by changing
their morphology. Impaired mitochondrial adaptation leads
to insufficient ATP synthesis, which further triggers oxidative
stress, inflammation, apoptosis, and fibrosis, possibly due to
the transition from adaptive organ dysfunction to maladaptive
organ dysfunction (Figure 2). However, this assumption has
several limitations. First, receptors or adaptors expressed on
the surface of cardiomyocytes and renal tubular epithelial
cells have not been demonstrated. Second, mitochondria
are not the only determinant of cytopathological changes.
Cardiomyocyte injury can also be caused by mechanical stress
due to intracellular acidosis, disturbed calcium metabolism,
and fluid overload. Third, as discussed above, despite exciting
preclinical data, translation of mitochondria-targeted agents
into clinical use in HF and AKI /CKD remains a big
challenge, for example, the results obtained in antioxidants
in patients with heart or kidney diseases have been very
diverse, and not all therapies as effective as preclinical studies
have shown. Therefore, further studies on the relationship
between mitochondria and other intracellular stress responses

are needed to understand the sequence of events contributing to
organ damage.

Given the key role of mitochondrial dysfunction in CRS,
specific interventions targeting mitochondrial homeostasis to
prevent and treat CRS have emerged as promising therapeutic
strategies. A variety of compounds targeting mitochondria
have been shown to prevent kidney injury and/or accelerate
kidney repair in patients with AKI and CKD. Additionally,
“mitotherapy” is considered a potential strategy for HF treatment
and should help assess the use of these compounds in
CRS. Emerging evidence suggests that mitochondria-targeted
therapies acting upstream of cellular damage may have
advantages over therapies targeting downstream processes
(inflammation and fibrosis). Therefore, from this point of view,
mitochondrial dysfunction may be one of the molecular links
between cardiac and renal in CRS and is an emerging link in the
pathophysiology of the diseases.
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