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Abstract The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages 
that, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, 
the forewings power flight, whereas the hindwings have evolved into specialized structures called 
halteres, which provide rapid mechanosensory feedback for flight stabilization. Although actuated 
by independent muscles, wing and haltere motion is precisely phase- coordinated at high frequen-
cies. Because wingbeat frequency is a product of wing- thorax resonance, any wear- and- tear of wings 
or thorax should impair flight ability. How robust is the Dipteran flight system against such pertur-
bations? Here, we show that wings and halteres are independently driven, coupled oscillators. We 
systematically reduced the wing length in flies and observed how wing- haltere synchronization was 
affected. The wing- wing system is a strongly coupled oscillator, whereas the wing- haltere system is 
weakly coupled through mechanical linkages that synchronize phase and frequency. Wing- haltere 
link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not 
vice versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax that 
ensure wing- haltere synchrony, despite severe wing damage.

Editor's evaluation
This manuscript examines how the mechanical linkages in the thorax of flies help these animals 
maintain symmetric wing motion in the face of uni- or bilateral wing damage. In previous work, the 
authors showed that these same linkages play an important role in maintaining the proper relative 
phase relationship between the wing and the haltere, a multifunctional sensory unique to flies. 
Through delicate manipulations of the thorax, wing, and haltere, the authors' experimental results 
support a mechanical model of the thorax they previously proposed known as the coupled dual- 
oscillator hypothesis, where mechanical linkages in the thorax both enable symmetric wing motion 
as well as coordinate haltere oscillation relative to the wing.

Introduction
Flies are among the best exemplars of aerial agility. The Dipteran order encompasses a vast repertoire 
of flight types ranging from the exquisite hovering and maneuvering ability of hoverflies, to the stable 
trajectories of mosquitoes and rapid territorial chases in houseflies (Land and Collett, 1974). Such 
complex maneuvers require precise and rapid control, guided by sensory feedback from multiple 
modalities (Bender and Dickinson, 2006; Heide and Götz, 1996; Hengstenberg, 1993; Pringle, 
1997; Sherman and Dickinson, 2003; Trimarchi and Schneiderman, 1995). Of particular importance 
for flight stability is the mechanosensory feedback from halteres – the modified hindwings of flies – 
which sense gyroscopic forces during aerial maneuvers (Nalbach, 1994; Nalbach, 1993; Nalbach 
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and Hengstenberg, 1994; Pringle, 1997). During flight, the halteres oscillate in a constant plane at 
frequencies that are identical to their flapping wings, and with a constant phase difference relative 
to the wings. During an aerial turn, an externally imposed change in the plane of haltere oscillation 
is resisted due to rotational inertia, causing Coriolis torques to act on the haltere base. Mechanical 
strain in the haltere shaft due to Coriolis torques is sensed by multiple fields of campaniform sensillae 
distributed around its base. These encode the stroke- by- stroke status of aerial rotations and provide 
mechanosensory feedback to the wing muscles (Fayyazuddin and Dickinson, 1996; Yarger and Fox, 
2018). In addition to detecting body rotations, haltere plays an additional role in mediating visually 
driven maneuvers; visual feedback drives haltere- steering muscles and alters the haltere mechanosen-
sory feedback (Chan and Dickinson, 1996; Dickerson et al., 2019). Importantly, the relative phase 
difference between the feedback from wing and haltere mechanosensors determines the activity 
patterns in wing- steering muscles (Fayyazuddin and Dickinson, 1999; Fox et  al., 2010). During 
flight, the two wings of flies move exactly in- phase relative to each other, whereas halteres move at 
a constant phase offset relative to wings. This precise phase coordination is maintained at wingbeat 
frequencies that far exceed 100 Hz (Deora et al., 2015; Hall et al., 2015). Because even slight asym-
metries in the bilateral wing motions can result in significantly large torques on the body during flight 
(Fry et al., 2003), the phase and frequency synchronization of the wing- haltere kinematics is a core 
feature of Dipteran flight, any deviation from which may signal either a self- generated aerial turn or 
an unwanted perturbation.

Previous research has shed much light on the architecture of the Dipteran thorax (Boettiger and 
Furshpan, 1952; Deora et al., 2017; Ennos, 1987; Miyan and Ewing, 1997; Pringle, 1949; Walker 
et al., 2014). The wing- haltere system acts as a complex resonant box. In flies, wings are actuated 
by two sets of antagonistic indirect flight muscles aligned dorso- longitudinally and dorso- ventrally 
within the thorax (Deora et al., 2017; Dickinson and Tu, 1997; Pringle, 1949). These muscles do not 
directly articulate at the wing base, but instead attach to the thorax, thereby indirectly powering the 
wing motions. Their activation is myogenic; hence, contraction in one set of muscles triggers delayed 
contraction of the other and vice versa, setting up resonant cycles of oscillations of the entire thorax 
(e.g., Deora et al., 2017). A complex wing hinge transforms oscillatory deformations of the thorax 
into large- amplitude wing strokes. The indirect flight muscles require neural stimulation to remain 
in an active state, but the frequency of stimulation is typically an order of magnitude lower than 
resonant thoracic oscillations. The attitude of the wing is finely adjusted on a stroke- to- stroke basis 
by a set of steering muscles that are under direct neuronal control (Lindsay et al., 2017). Thus, the 
frequency characteristics of Dipteran wing movements are set by the resonance frequency, which in 
turn is determined primarily by the wing- thoracic morphology. Thus, any alteration in the wing length 
causes corresponding changes in their inertial and aerodynamic loads, and hence in the frequency of 
the wingbeat. Unlike wings, the motion of each haltere is powered by a single asynchronous muscle 
whose contractions activate its upstroke, whereas the downstroke is thought to be entirely passive 
(Chan et al., 1998; Pringle, 1949).

Although wingbeat frequency depends on the wing- thorax morphology, the precise coordination 
of wings and halteres is mediated by mechanical linkages within the thorax that ensure tight coupling 
of phase and frequency (Figure 1B, Deora et al., 2015). This suggests the hypothesis that wings and 
halteres act as independent forced oscillators, whose kinematics are both coupled and constrained 
by two separate mechanical linkages within the thorax (the coupled dual- oscillator hypothesis, 
Figure 1B). One linkage, the scutellar link (alternatively, wing- wing link, in orange in Figure 1B), is 
embedded within the scutellum and ensures that both wings are synchronized. A second linkage, 
the sub- epimeral ridge (alternatively, wing- haltere link, highlighted by green arrows in Figure 1B), 
ensures precise coordination of wings and halteres. This linkage ensures only weak coupling of the 
wing- haltere synchrony, but breaks down when wingbeat frequency exceeds a threshold value (Deora 
et al., 2015).

The resonant properties of such a system rely on the mechanical integrity of the wing- thorax 
system. However, wings of insects often undergo significant natural wear- and- tear during the lifetime 
of an adult insect (Hayes and Wall, 2002). Wing damage alters both frequency and aerodynamic 
force generation of the flapping wings (Hedenström et al., 2001; Kihlström et al., 2021; Muijres 
et al., 2017), thus posing a challenge to the overall coordination of wing motion. Such damage is typi-
cally asymmetric and can affect maneuverability. Not surprisingly, in insects such as bumblebees and 
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Figure 1. The experimental setup. (A) Schematic of a tethered fly showing the position of the three high- speed 
cameras. Insets show the three different camera views. (B) Mechanical model of the Dipteran thorax modified from 
an earlier work (left, Deora et al., 2015). This model excludes the clutch and gearbox from the previous figure 
(represented here by an open circle at the wing joint), focusing instead on the wing- wing and wing- haltere linkages 

Figure 1 continued on next page
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dragonflies, wing damage leads to decreased success in hunting and also greater mortality (Cartar, 
1992; Combes et al., 2010; Haas and Cartar, 2008).

Here, we address two related questions. First, how do flies maintain symmetric wing movement 
under conditions of wing damage? Second, in light of the coupled dual- oscillator hypothesis, how 
robust are the wing and haltere kinematics in the face of wing or thoracic damage? To address these 
questions, we conducted a series of experiments on the soldier fly, Hermetia illucens, in which we 
made specific lesions of scutellar linkages, and sub- epimeral ridge to impair the mechanical integ-
rity of the thorax. In addition, we clipped the wings or loaded the halteres to alter their oscillation 
frequencies. These experiments enabled us to systematically test the predictions of the coupled dual- 
oscillator hypothesis (Figure 1B) and outline the key mechanical properties of the Dipteran thorax that 
ensure robust wing- haltere coordination.

Results
Asymmetric wing damage influences kinematics but does not alter 
wing coordination
The left and right wings are coupled in phase by a mechanical linkage running through the scute-
llum within the thorax such that the two wings always flap at constant phase relative to each other 
(Figure 1B; Deora et al., 2015). However, mechanical coupling of the two wings also implies that their 
flapping frequencies are identical. Clipping both wings symmetrically results in identical but elevated 
wingbeat frequencies (Deora et al., 2015). However, if the wings are mechanically coupled, altering 
the frequency of one wing should correspondingly alter the frequency of the contralateral wing. Thus, 
clipping the length of just one wing should result in intermediate increase in frequency – a combi-
nation of both the intact and shortened wing. Because the wing- wing link is intact, the two wings 
should flap at identical frequencies. To test these predictions, we filmed the wing motion of tethered 
soldier flies in which the length of only one wing was sequentially reduced while leaving the other 
intact. Wingbeat frequency of one- wing clipped fly was determined by sampling 20 arbitrarily chosen 
wingbeats. Even after drastic reduction in the length of one wing by >50% of the original length, the 
frequencies of the clipped and intact wings were always identical and did not drastically reduce from 
their intact values (Figure 2A; for additional data, see Figure 2—figure supplement 1, p=0.623; 
number of flies, n = 6, one- sided, Wilcoxon signed- rank test on the maximum wing difference). Thus, 
the overall wingbeat frequency is determined by the frequency of the intact wing.

Scutellar integrity is essential for wing coordination
According to the coupled dual- oscillator hypothesis, lesioning the scutellum should decouple the 
frequencies of left and right wings. Hence, we severed the scutellar linkage and filmed the flies while 
again sequentially clipping one wing to reduce its aerodynamic resistance, thereby increasing its 
frequency. This resulted in irregular wingbeats in these flies, with frequent mid- stroke pauses and an 
overall reduction in stroke amplitude. Fourier analysis of the time series of wing motion shows that 
both wings oscillated at very different frequencies. Thus, unlike the intact scutellum case in which 
frequency synchronization was robust despite wing damage (Figure 2A), the wings of a scutellum- 
lesioned fly were decoupled from each other (Figure 2B, additional data in Figure 2—figure supple-
ment 2, p=0.022; n = 5, one- sided Wilcoxon signed- rank test on the maximum wing difference). 
For example, in the typical case of a scutellum- lesioned fly (Figure 2—figure supplement 2A), the 
clipped wing flapped at 130 Hz when cut to 50% of its original length as compared with 85 Hz in the 
intact wing. Our previous work shows that lesioning the scutellum disrupts and reattaching completely 
restores the phase coordination between both wings (Deora et al., 2015); thus, scutellar integrity is 

that are the focus of the experiments described here. (Right) SEM image of the solder fly thorax in the lateral 
view highlighting the various linkages. (C) A schematic (top) and model (bottom) illustrating the experimental 
treatments. The treatments (red) included lesioning the scutellum or wing- wing link (left panel), lesioning sub- 
epimeral ridge or wing- haltere link (middle panel) and haltere loading (right panel). The clipped wings are also 
indicated with dotted lines. The same treatments are also shown in the model schematic and used as insets in later 
figures. Figure 1B has been adapted from Figure 4G from Deora et al., 2015.

Figure 1 continued

https://doi.org/10.7554/eLife.53824


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  5 of 20

A

C

B

D

Intact

wing-wing link

Lesioned

wing-wing link

(0.3, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.9] (0.9, 1.0]

100

120

140

160

(0.3, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.9] (0.9, 1.0]

Normalized winglength

A
m

p
li

tu
d

e
 (

d
e
g

)

100

120

140

160

A
m

p
li

tu
d

e
 (

d
e
g
)

Normalized winglength

Clipped Wing

Intact Wing

Normalized winglength

(0.3, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.9) (0.9, 1.0)(0.3, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.9) (0.9, 1.0)

60

80

100

120

140

160

F
re

q
u
e
n
c
y
 (

H
z
)

60

80

100

120

140

160

F
re

q
u
e
n
c
y
 (

H
z
)

Normalized winglength

Figure 2. The frequency of the two wings is synchronized by the scutellum. Wingbeat frequency (A, B) and amplitude (C, D) of intact (gray boxes) and 
clipped (red boxes) wing as a function of clipped wing length for intact thorax (A, C) and slit scutellum (B, D). Insets show schematic for treatments. 
Each dot represents an individual fly. (A) Flies with intact thorax flap their wings at identical frequencies, whereas (B) the scutellum- lesioned flies flap at 
different frequencies. (C) In intact, tethered flies, the clipped wing moves through a smaller amplitude compared with the intact wing. (D) In scutellum- 
lesioned flies, both wings move erratically, with no consistent trend in wingbeat amplitude.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. The frequencies of the two wings are coupled in intact flies.

Figure supplement 2. Scutellum synchronizes the frequencies of the two wings.

Figure 2—video 1. Left and top views of a soldier fly with left wing clipped and right wing intact (Figure 2).

https://elifesciences.org/articles/53824/figures#fig2video1

Figure 2—video 2. Right and top views of the soldier fly whose wing- wing link (scutellum) has been severed.

https://elifesciences.org/articles/53824/figures#fig2video2

https://doi.org/10.7554/eLife.53824
https://elifesciences.org/articles/53824/figures#fig2video1
https://elifesciences.org/articles/53824/figures#fig2video2
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essential to ensure precise coupling of both phase and frequency of the two wings, and imparts robust 
synchronization even if one or both wings are slightly damaged or torn. Together, these data show 
that the two wings are strongly coupled by the scutellar link.

Amplitude control in response to wing damage
Wing damage not only alters the resonant frequency of the wing- thorax system but also reduces the 
aerodynamic force generation by the wings. Freely flying insects typically offset the effects of wing 
damage by altering their wing kinematics, particularly their wing amplitude (Fernández et al., 2012; 
Kihlström et al., 2021; Muijres et al., 2017; Vance and Roberts, 2014). To test the role of passive 
mechanics in altering wing kinematics, we quantified the amplitudes of the clipped and intact wings. 
In tethered flies with an intact thorax, the amplitude of clipped wing reduced as the wing was short-
erened, but there was no significant change in intact wing’s amplitude(p=2.1e- 4 for clipped, 0.218 for 
intact wings, Kruskal–Wallis H- test, Figure 2C). In contrast, neither the clipped nor the intact wings 
of tethered flies with a lesioned scutellum showed a significant difference in wing amplitude with 
reduction in wing length (p=0.067 and 0.184 for clipped and intact wings, respectively, Kruskal–Wallis 
H- test, Figure 2D).

Sub-epimeral ridge weakly couples the frequency of each haltere to its 
ipsilateral wing
The wing and haltere motion on each side is coupled by a separate thoracic element called the sub- 
epimeral ridge (right panel, Figure 1B; Deora et al., 2015). Slight symmetrical clipping of both wings 
resulted in a small increase in wingbeat frequency and concomitant increase in haltere frequency. 
However, with further symmetrical reduction of wing length, wingbeat frequencies exceeded ~150% 
of the initial values, but the halteres failed to keep pace with the wings. In such conditions, haltere 
frequency dropped closer to their natural frequency, suggesting that their coupling was weak 
(Figure 3, control haltere [in blue]; Deora et al., 2015).

We next lesioned the sub- epimeral ridge on the left side while keeping the right side intact as 
internal control. If the sub- epimeral ridge is the main coupling link, then lesioning it should cause the 
haltere frequency on the lesioned (left) side to be decoupled from the increase in wingbeat frequency 
due to symmetrical wing shortening. Our data were consistent with this hypothesis; the control (right) 
haltere frequency matched the wing frequency more robustly than the lesioned left haltere- wing pair 
(Figure 3A, p=0.039 for wing- treatment haltere pair and p=0.657 for wing- control haltere pair, one- 
sided Wilcoxon signed- rank test at wing length bin = [0.6, 0.7], n = 6). Not surprisingly, these data 
were more variable. In four out of the six experiments, data were consistent with our hypothesis; the 
frequency of the haltere on the lesioned (left) side either did not increase at all (representative fly in 
Figure 3B, Figure 3—figure supplement 1A and B) or was decoupled from the wing even with slight 
changes in wing length, thus displaying no robustness in the wing- haltere synchrony (Figure 3—figure 
supplement 1C). In two flies, however, wingbeat frequency remained relatively unchanged despite 
clipping the wings incrementally, and haltere frequency on the lesioned side matched halteres on the 
control side (Figure 3—figure supplement 1D and E). Together, these results suggest that the sub- 
epimeral ridge weakly couples wing and haltere oscillation. Haltere motion can accommodate small 
to moderate changes in wingbeat frequency but fails if these changes are large.

Integrity of the sub-epimeral ridge is essential for resonant oscillation 
of the thorax
In insects with an intact thorax, clipping the wings increases wingbeat frequency by as much as 90 Hz. 
In flies with unilaterally lesioned sub- epimeral ridge, the overall changes in wingbeat frequency 
(frequency of intact wing compared to the frequency at the shortest wing length) were relatively 
moderate (~60 Hz) even after shortening the wing to the smallest wing length (Figure 4, data for 
intact flies from Deora et al., 2015, p<0.05, Kruskal–Wallis ANOVA followed by the post hoc Tukey–
Kramer multi- comparison test, n; eight intact flies, six flies for the other three treatments).

How does lesioning the sub- epimeral ridge alter wingbeat frequency, in addition to decoupling 
the wings and halteres? One possibility is that a lesioned ridge disrupts the anti- phase motion of 
wings and halteres, leading to aberrant haltere feedback to wing- steering muscles, thereby affecting 

https://doi.org/10.7554/eLife.53824


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  7 of 20

60

80

100

120

140

160

0.37 0.49 0.52 0.62 0.74 1

Normalized Winglength

F
re

q
u
e
n
c
y
 (

H
z
)

Wing

Right Haltere

Left Haltere

B

Lesioned 

wing haltere

link

Intact

wing haltere

link

F
re

q
u
e
n
c
y
 (

H
z
)

80

100

120

140

160

180

(0.3, 0.4) (0.5, 0.6) (0.6, 0.7) (0.7, 0.9) (0.9, 1.0)(0.4, 0.5)

Normalized winglength

A

Figure 3. Sub- epimeral ridge couples the frequency of wings and halteres. Frequency of wing (gray), control haltere (blue), and haltere with the sub- 
epimeral ridge lesioned (red) as a function of wing length across all flies (A) and one representative fly (B). Inset shows the schematic for treatments. 
Each dot in (A) is an individual fly. Additional data for individual flies can be found in Figure 3—figure supplement 1.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure 3 continued on next page
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wingbeat frequency. Alternatively, a lesioned ridge could mechanically disrupt frequencies by acting 
as a free end that dissipates energy, thereby disrupting the overall resonant mechanics of the thorax.

To test for these possibilities, we first lesioned the ridges on both sides. In these flies, the increase 
in wingbeat frequency was even further restricted (<40 Hz). In another set of flies, we kept both the 
sub- epimeral ridges intact but ablated both halteres. Ablating halteres alters their feedback but does 
not mechanically disrupt the thoracic linkage network. Clipping wings of the haltere- ablated flies 
resulted in significantly elevated wingbeat frequency (by ~90 Hz, Figure 4) as compared with flies 
with both sub- epimeral ridges lesioned (p<0.05) but similar to flies with an intact sub- epimeral ridge. 
This suggests that mechanical integrity of these linkages most likely determines wingbeat frequency. 
Hence, the mechanical integrity of the entire thoracic linkage system, including both the scutellum 
and sub- epimeral ridge, is essential to maintain the resonant properties of the thorax.

The effect of sub-epimeral ridge is unidirectional
If the sub- epimeral ridge is bidirectional, then wing frequency should change when haltere frequency 
is experimentally altered, and vice versa. Halteres, like wings, are powered by myogenic musculature, 
and thus changing the haltere mass affects its frequency. To test the hypothesis that sub- epimeral 
linkage is bidirectional, we loaded halteres with small weights, thereby altering their frequency, and 
measured the effect on wingbeat frequency. Unlike the wing clipping, we could not reduce the haltere 
mass in discrete steps as it is mostly concentrated at the end knob. Instead, we sequentially loaded 
each haltere knob with small amounts of glue, thus reducing its frequency in discrete steps (Section 
1,2; Figure 5—figure supplement 1A–C). Small loads did not affect haltere frequency, but as the 
load increased beyond a threshold, haltere frequency decreased in discrete steps. However, wingbeat 
frequency remained constant in these experiments (Figure 5; for individual fly data, see Figure 5—
figure supplement 2A–F, p=0.014; one- sided Wilcoxon signed- rank test for left loaded haltere and 
wing pair at load2 and load3, n = 6 flies). Thus, the effect of sub- epimeral ridge is a unidirectional, 
which couples haltere motion to wing motion but not vice versa. To rule out the possibility that loading 
the haltere irreversibly damaged haltere muscles or the sub- epimeral ridge, we detached the load 
and confirmed that haltere frequency recovered and again matched wingbeat frequency (Figure 5, 
Figure 5—figure supplement 2).

In addition to disrupting the coordination between wing and halteres, a perturbation to the haltere 
motion would also alter the haltere feedback to the wing. To test for the effect of aberrant haltere 
feedback on wing kinematics, we quantified the wing amplitude for two of our treatments – flies with 
left- side sub- epimeral ridge lesioned as well as flies with loaded halteres. In the former case, the 
lesioned link disrupts the phase coordination, thereby altering the feedback at all wing lengths. In flies 
with loaded halteres, the added load on the haltere may alter its feedback even at values for which 
the wing- haltere are perfectly coordinated in phase and frequency. In both cases, we observed that 
the wing amplitude of the lesioned/loaded side was slightly reduced as compared with the intact side, 
although this effect is not consistent across the treatments (Figure 5—figure supplement 4A and B). 
For the left, sub- epimeral- lesioned flies, both the left and right wings reduce their amplitude as we 
clip the wings symmetrically (p=0.008 and 0.024 for left and right, respectively, Kruskal–Wallis H- test, 
Figure 5—figure supplement 4A) consistent with our previous finding on the effect of wing clipping 
on amplitude. However, the wing on the left lesioned side shows a greater reduction as compared 
with the right wing (p<0.05 for left- right wing pairs at all wing lengths, two- sided Wilcoxon signed- 
rank test, n = 5). Additionally, for the treatment with loaded halteres, despite a slight decrease in 
wing amplitude on the loaded side with increase in the haltere load, this effect is not significant when 
we compare the left wing across increasing loads (p>0.05, Kruskal–Wallis H- test, Figure 5—figure 

Figure supplement 1. Sub- epimeral ridge couples the frequency of wings and halteres.

Figure supplement 2. The positions of wing (blue) and haltere (red) showing their relative phase for a representative fly with intact wings (A) and wings 
cut (B).

Figure 3—video 1. Left and top views of the soldier fly with a severed left wing- haltere link (sub- epimeral ridge).

https://elifesciences.org/articles/53824/figures#fig3video1

Figure 3 continued
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supplement 4B, n = 6) or the left- right pairs at each load (p>0.05, two- sided Wilcoxon signed- rank 
sum test, n = 6). Also, the wing amplitude on the loaded side is smaller than the intact side even when 
the load is removed.

Discussion
For stable flight, bilateral wing motion must be precisely coordinated, and the halteres must maintain a 
precise phase difference relative to wings to ensure correct feedback to wing- steering muscles (Deora 
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lesioned results in a smaller increase in wingbeat frequency as compared to flies with intact sub- epimeral ridges. In contrast, reducing wing length in 
flies in which both halteres are ablated increases wingbeat frequency significantly more than in flies with lesioned sub- epimeral ridges (p- value<0.05, 
non- parametric Kruskal–Wallis ANOVA followed by a Tukey–Kramer post hoc multi- comparison test, n; eight intact flies, six flies for the other three 
treatments). Insets under each group show the schematic for the four treatments: flies with an intact thorax, flies with one lesioned sub- epimeral ridge, 
flies with both sub- epimeral ridge lesioned and flies with both halteres ablated.
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control haltere (blue), and loaded haltere (red) across all flies. Each dot represents a single individual fly. The haltere frequency drops as the haltere is 
loaded but the wingbeat frequency remains unaltered, showing that wing- haltere coupling is unidirectional. Inset shows the schematic for the treatment. 
Data for individual flies can be found in Figure 5—figure supplement 2. (B) Representative images of the haltere loaded with different amounts of load 
(also see Figure 4).

Figure 5 continued on next page
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et al., 2015; Fayyazuddin and Dickinson, 1999; Fry et al., 2003). Here, we show that the phase 
and frequency of wings and haltere motion are mechanically coupled by thoracic linkages, thereby 
imparting robustness of wing- wing and wing- haltere coordination against damage or wear- and- tear.

Mechanical linkages enable robust frequency-phase output despite 
asymmetric wing damage
Physical damage to the wings of adult insects is irreversible and potentially deleterious for their fitness. 
Wings of certain insects have flexible costal break or specific venation patterns that prevent wing 
damage (Mountcastle and Combes, 2014). However, despite such adaptations, insects incur wing 
damage in the wild due to factors such as predation and age (Cartar, 1992; Hayes and Wall, 2002). 
When one or both wings are damaged, the overall aerodynamic load reduces, thereby increasing 
the frequency of thoracic and wing oscillations (Deora et  al., 2015). The linkages described here 
ensure that the phase and frequency matching between wings and halteres is robust despite signifi-
cant changes in wingbeat frequency, and hence they may be viewed as evolutionary adaptations that 
impart robustness to wing motion in case of damage or wear- and- tear.

Natural wing damage is typically asymmetric. Although shortening both wings symmetrically 
results in elevated wingbeat frequencies (Deora et al., 2015), shortening only one wing by as much 
as 50% did not significantly alter the resonant frequency of thorax. This suggests that the resonant 
frequency is dictated primarily by the wing with greater aerodynamic load. Importantly, in flies with an 
intact scutellar linkage, asymmetric changes in wing length did not alter the overall synchrony; wings 
remained bilaterally coordinated, regardless of their length (Figure 2).

Freely flying flies and bees with damaged wings increase their wingbeat frequency to compensate 
for the reduced lift (Hedenström et al., 2001; Muijres et al., 2017; Vance and Roberts, 2014). More-
over, flies and bees with asymmetric wing damage balance the roll torque by flapping the damaged 
wing at greater amplitudes (Muijres et al., 2017; Vance and Roberts, 2014). In our experiments with 
tethered flies, however, asymmetric wing damage in flies with intact thorax did not increase wingbeat 
frequency. Instead, in these flies, the clipped wing flapped at reduced wing amplitudes. These results 
suggest that the increase in wingbeat frequency and the amplitude modulation that is observed in 
freely flying insects with damaged wings may be an active response that enables compensation for the 
loss of the lift due to wing damage. Lesioning the scutellum completely decoupled the frequencies of 
the two wings of different lengths; shortened wings oscillated at frequencies up to twice that of the 
intact wing and cause irregular wing motion. These results underscore the importance of the scutellar 
linkage in ensuring precise coordination between the two wings.

Control of bilateral kinematics by indirect flight muscles
In the experiments in which the scutellar link was lesioned, the shortened wing flapped at higher 
frequency than the intact wing. This shows that the indirect flight muscles on the two sides are, in 
principle, capable of operating at different frequencies, but are constrained to flap synchronously by 
the scutellar link. These results are consistent with the idea that indirect flight muscles aid the direct 
flight muscles in power modulation and kinematic control of wings (Gordon and Dickinson, 2006; 
Lehmann et al., 2013). In intact flies, power modulation occurs under constraints of equal bilateral 
wingbeat frequency and phase, which leaves open the possibility that amplitude or stroke plane can 
be modulated by power muscles. For instance, during turns, the two sets of dorsolongitudinal muscles 

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Increasing amounts of glue, paint, and metal shavings were added to load halteres.

Figure supplement 2. Wing haltere coupling acts unidirectionally such that changing haltere frequency does not influence wing frequency.

Figure supplement 3. The wing (blue) and haltere (red) position showing their relative phase for a representative fly with intact halteres (A), loaded 
halteres (B), and the load removed (C).

Figure supplement 4. Aberrant haltere feedback causes reduction in wingbeat amplitude, although these results are not consistent across 
experiments.

Figure 5—video 1. Top view of soldier fly with left haltere loaded.

https://elifesciences.org/articles/53824/figures#fig5video1

Figure 5 continued
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can be differentially activated by their motor neurons (Gordon and Dickinson, 2006; Lehmann et al., 
2013; Sponberg and Daniel, 2012), potentially leading to differential power output. Moreover, asym-
metric wing damage results in net torque on the body in hawkmoths (Fernández et al., 2012; also 
see, Kihlström et al., 2021). Asymmetric wing damage in hawkmoths causes activation delay in the 
dorsoventral power muscle, resulting in a voluntary yaw- like maneuver towards the undamaged side, 
perhaps to compensate for the reduced lift on the damaged side. It is important to note that although 
hawkmoths have indirect flight muscles, they are synchronous and hence under direct neural control. 
Our results suggest that, like hawkmoths, the indirect, asynchronous flight muscles of flies could also 
modulate power output of the ipsilateral wing, independent of the contralateral power muscles.

Role of sub-epimeral ridge in wing-haltere coordination
The sub- epimeral ridge synchronizes the frequency and phase difference between wings and halteres 
on each side (Figure 3, Deora et al., 2015). How would the structural diversity of the thorax and link-
ages in diverse Diptera influence wing- haltere motion? For example, as compared with the rounded 
thorax with an almost circular sub- epimeral ridge in blowflies, the thorax of mosquitoes is thinner 
with an oblong sub- epimeral ridge. Presumably, there is also variation in the material properties and 
strain transfer across the cuticle. Across flies, there are also differences in their haltere kinematics. For 
example, blowfly halteres flap exactly antiphase to the wings, whereas, for mosquitoes, this phase 
difference is closer to 0.

It is not clear how the precise phase difference is set in these flies, but these parameters are likely 
the outcome of the variation in the thoracic and linkage anatomy across Diptera and the physics of 
coupled, driven oscillator systems. Indeed, when wing and haltere frequencies are decoupled by 
loading the haltere (Figure 5), the haltere oscillates at an altered phase relative to the wing, even 
when sub- epimeral ridge is intact (Figure 3—figure supplement 2, Figure 5—figure supplement 3). 
Their frequency, on the other hand, is thought to be determined primarily by the stretch- activation 
properties of their main driving muscles – the indirect flight muscles for wings, and haltere muscles (or 
Pringle’s muscle) for halteres. Because the sub- epimeral ridge couples haltere frequency to wingbeat 
frequency, their vibration frequency is fine- tuned by this linkage and the overall thoracic geometry.

Weak coupling properties of the sub-epimeral ridge
The sub- epimeral ridge weakly couples wings and halteres. Its stiffness is limited by its material 
strength and geometry, and it can ensure coordination of wing- haltere frequency close to original 
frequency. At wingbeat frequencies greater than about 150% of the original frequency, the haltere 
frequency reverts to a value that is closer to or equal to its natural frequency. This behavior is typical 
of independently driven oscillators, coupled by a mechanical element of finite coupling strength 
(Strogatz, 2018). Moreover, the sub- epimeral ridge acts in a unidirectional manner (Figure  5); 
moderate changes in wingbeat frequency alter the haltere frequency, but not vice versa. This may be 
the outcome of the large difference between the wing and haltere loads (and therefore inertia), and 
their respective muscles. Our experiments show that the aerodynamic load on the wings determines 
flapping frequency, and the halteres merely follow the wings.

Role of haltere feedback in modulating wing amplitude
Aberrant haltere feedback due to a lesioned sub- epimeral ridge causes a reduction in the amplitude 
of the ipsilateral wings as compared to the contralateral (intact) side. For the flies with loaded halteres, 
we observe a similar although not significant trend of reduced wing amplitude on the ipsilateral- 
treated side (Figure 5—figure supplement 4B). Prima facie, this suggests that haltere feedback helps 
maintain or increase wing amplitude. However, these results must be interpreted with caution for 
several reasons. First, in all our experiments, flies are in an open- loop tether and do not need to offset 
their body weight by adjusting the lift forces generated by flapping wings. Hence, wing amplitude 
may be subject to greater variability. Second, under open- loop conditions, it is not clear how sensory 
feedback, via their role in steering muscle activation, influences wing amplitude. Third, although we 
lesion the sub- epimeral ridge or load halteres on one side, contralaterally projecting haltere interneu-
rons (cHINs) continue to provide feedback (Strausfeld and Seyan, 1985). In addition, the large varia-
tion of wing amplitude in the haltere- loaded treatments – with and without load – can also be partially 
explained by the fact that flies with loaded halteres tend to groom their halteres more frequently 

https://doi.org/10.7554/eLife.53824
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and may often block the wing motion by holding it at its the base (black arrows in Figure 5—figure 
supplement 4B). Future work is required to better understand the implications of thoracic biome-
chanics on haltere feedback and wing kinematics.

General implications for other insects with asynchronous muscles
Although our study was focused on Dipteran insects, several implications of this study extend beyond 
Diptera. Indeed, all insects that possess asynchronous flight muscles must rely on linkages for wing- 
wing coordination. These include insects of the orders Hymenoptera (e.g., wasps, honeybees, etc.) 
and Coleoptera (e.g., beetles), which are hyper- diverse. In these insects, as in Diptera (which are also 
hyper- diverse), the bilateral coordination of wings is unlikely to be achieved through direct neural 
control as they flap at very high wingbeat frequencies. We therefore predict that similar linkages also 
exist in these insect taxa. In such insects, it is also likely that relative coordination between the front 
and the hindwings is mediated by passive linkages analogous to the sub- epimeral ridge in Diptera. 
Thoracic linkages may also play a very important role in miniature insects, in which there are fewer 
muscle groups for higher- level control. Extreme miniaturization in insects of the order Diptera, Hyme-
noptera, and Coleoptera (Polilov, 2015) poses severe physiological and biomechanical constraints 
on the organism (Polilov, 2012; Sane, 2016). Because smaller wings generate reduced aerodynamic 
lift, miniature insects must flap at increased frequencies to generate enough lift to stay aloft. In such 
insects, thoracic linkages are likely to play a key role in mediating synchronization of the wings, while 
also constraining their degrees of freedom. Small body sizes are also associated with rapid wingbeat 
frequencies, often at rates much greater than possible through direct neural control (Dudley, 2000). 
The key results in this paper show that the thoracic morphology of the fly plays an important role in 
providing robust wing coordination despite wing damage. How thoracic morphology and material 
characteristics are adapted for such rapid, coordinated wing movements remains a fascinating ques-
tion for future studies.

Materials and methods
1.1 Soldier fly rearing procedure
Wild- caught black soldier flies, H. illucens, were enclosed in vials filled with a medium of corn flour 
and agar mixed with yeast powder. In most cases, we caught wild gravid females that laid eggs imme-
diately upon capture. The larvae were reared on the artificial medium. Adult soldier flies were main-
tained in mesh cages on a 12:12 hr day- night cycle. Some flies were reared on compost in which wild 
females laid eggs and the larvae fed and pupated. Pupae were collected in a separate box. Adults 
were maintained in natural day- night cycle. Animals reared in this manner were typically bigger and 
more active than lab- reared animals but showed no difference in behavior.

1.2 Surgical treatments and tethering procedure
1–4- day- old soldier flies were cold anesthetized by placing them in an ice box for 5 min. We performed 
surgical treatments (see Figure 1C) before their recovery from cold anesthesia. (a) In control flies, 
no surgeries were performed, but these insects were handled similar to experimental flies. (b) In 
scutellum- lesioned flies, we made a small cut only in the scutellum using a scalpel blade (#11, Fine 
Science Tools Inc, Foster City, CA) while leaving the rest of the thorax intact (left panel, Figure 1C). 
(c) In unilateral sub- epimeral ridge- lesioned flies, we lesioned the sub- epimeral ridge at a position 
anterior to the spiracle on the left side of the thorax (middle panel, Figure 1C). The right ridge was 
kept intact and served as internal control. To examine how sub- epimeral ridge influences wingbeat 
frequency, we compared data from unilateral sub- epimeral- lesioned group with previously published 
data on control flies (Deora et al., 2015). In both cases, procedures for rearing, handling, and teth-
ering were identical. (d) In bilateral sub- epimeral ridge- lesioned flies, we lesioned sub- epimeral ridges 
on both sides. (e) In bilateral haltere- ablated flies, we cut out the knob of halteres on both sides.

Post surgery, we tethered the insects with cyanoacrylate adhesive to the tip of a needle bent 
to ~90° while they were kept on a pre- chilled metal block. The bent tip provided the necessary surface 
area to glue a fly to the tether. The tether was lowered using a three- way micro- manipulator (Narishige 
Scientific Instrument Laboratory, Tokyo, Japan) and attached dorsally on the fly scutum (anterior region 
of dorsal thorax). Flies were given at least an hour for recovery before recording their flight.

https://doi.org/10.7554/eLife.53824
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1.3 Wing-haltere perturbations and filming procedure
We positioned flies at about 60° to the horizontal (approximately its position during free flight) and 
elicited flight by lightly touching their abdomen with a brush. We used three high- speed cameras (v7.3 
Phantom camera, Vision Research Inc, Wayne, NJ) to film the insects in flight at a resolution of 800 × 
600 pixels at 2000 frames per second (~15–20 times the wingbeat frequency) and 100 μs exposure. 
Three cameras (one top view and two side views) captured the 3D motion of both pairs of wings and 
halteres (Figure 1A). The three camera views were calibrated for each filming bout using a custom- 
made calibration object.

Flies with reduced wing length
We first filmed the flight of flies with intact wings, and then switched off the lights to inhibit their flight. 
Under a dissection microscope attached with a light source and a red- filter to cut off wavelengths 
below 610 nm, we clipped their wings with a pair of scissors (Fine Science Tools Inc) to an appropriate 
length using wing vein patterns as landmarks. To test the coupled dual- oscillator model (Figure 1B), 
we clipped one wing (either left or right) while keeping the other intact (Figure 1C). In all other exper-
iments, both wings were symmetrically reduced. After each round of wing clipping, we filmed the 
experimental fly in flight. Each series of experiments yielded 4–6 data points, including 1 intact and 
3–5 reduced wing lengths.

Flies with loaded halteres
We initially filmed flies with intact wings and halteres, which served as control. Next, we loaded the 
left haltere with varying amounts of glue and metal shavings under a dissection microscope in red 
light. Because of the small size of halteres, the amount of load could not be accurately quantified, but 
we systematically decreased the haltere frequency by incrementing an arbitrary amount of glue and 
load mixture (right panel, Figure 1C). First, we loaded the haltere with glue (Fevicol; polyvinyl acetate, 
Pidilite Industries) mixed with red poster paint using a metal insect pin. We next added increasing 
amounts of aluminum shavings mixed with glue and paint to the already loaded haltere. Following 
each load increment, we filmed the tethered fly. After three rounds of loading, we carefully removed 
the film of glue, paint, and metal shaving with a pair of forceps under the microscope and again filmed 
the flight recovery. In a few cases, flies removed the load while self- grooming. This experimental 
procedure yielded five data points for each fly – one intact, three increasing amounts of load, and one 
with the load removed.

1.4 Analysis of videos
To compute the time period and frequency of a single wing and haltere stroke, we counted the 
number of frames per wingstroke from the videos. We analyzed 20 strokes per flight bout at each 
wing length value. In the scutellum- lesioned group, the amplitude and frequency of flies often varied, 
making it difficult to ascertain the precise time duration of each wing stroke. We digitized videos of 
these animals using the DLTdv3 code (Hedrick, 2008) in MATLAB (MathWorks Inc, Natick, MA) and 
analyzed the data using custom MATLAB codes. For each wing, we calculated the azimuthal (theta) 
angle, plotted the theta position of both wings as a function of time, and obtained the average wing-
beat frequency using Fourier analysis. We calculated the change in wingbeat frequency after clipping 
wing length (∆F) as

 ∆F = Fs − Fi  (1)

where Fs is the wingbeat frequency at the shortest wing length and Fi is the wingbeat frequency at 
the intact wing length. Increment in wingbeat frequency due to reduced wing length (∆F) for all four 
groups was compared using non- parametric Kruskal–Wallis ANOVA followed by the Tukey–Kramer 
post hoc multi- comparison analysis.

Using DLTdv8 code in MATLAB (Hedrick, 2008, MathWorks), we digitized three calibrated camera 
views to track the position of tips and bases of both wings and halteres and the head- thorax joint. We 
used the deep learning module of the above software to digitize the wing tips. All other body parts 
were digitized either manually or with a cross- correlation tracker. The neural network was trained for 
525 iterations in 20 epochs until the weights converged. Errors in automated tracking were manually 
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corrected across all videos. To estimate digitizing errors, we computed the average variation in wing 
and haltere length. Across all videos, there was an average variation of 1.95 and 6.97% in wing and 
haltere length, respectively. For amplitude analysis, we first transformed all the digitized points to a fly 
coordinate frame of reference, and then computed the wing (and haltere) amplitude using the angle 
made by the projection of the wing (and haltere) vector onto the average stroke plane and the pitch 
axis for each wingbeat. We analyzed  ~20 wing/haltere stroke and computed the mean amplitude for 
each video. All data were compared using either Wilcoxon signed- rank test for comparison across 
pairs or Kruskal–Wallis H- test for comparing more than two groups. Codes used for all analysis can 
be found on GitHub, (copy archived at swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905, 
Deora, 2021).
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cut flies in Figure 3A. (B) Table of p- values for a one- sided Wilcoxon signed- rank sum test between 
haltere and wing pairs at all haltere loads in Figure 5.

•  Transparent reporting form 

Data availability
All data can be accessed on Dryad.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Deora T, Sane SS, 
Sane SP

2021 Wings and halteres act as 
coupled dual- oscillators 
in flies

https:// doi. org/ 
10. 5061/ dryad. 
hqbzkh1cc

Dryad Digital Repository, 
10.5061/dryad.hqbzkh1cc

References
Bender JA, Dickinson MH. 2006. A comparison of visual and haltere- mediated feedback in the control of body 

saccades in Drosophila melanogaster. The Journal of Experimental Biology 209: 4597–4606. DOI: https:// doi. 
org/ 10. 1242/ jeb. 02583, PMID: 17114395

Boettiger EG, Furshpan E. 1952. The mechanics of flight movements in diptera. The Biological Bulletin 102: 
200–211. DOI: https:// doi. org/ 10. 2307/ 1538368

Cartar RV. 1992. Morphological Senescence and Longevity: An Experiment Relating Wing Wear and Life Span in 
Foraging Wild Bumble Bees. The Journal of Animal Ecology 61: 225. DOI: https:// doi. org/ 10. 2307/ 5525

Chan WP, Dickinson MH. 1996. Position- specific central projections of mechanosensory neurons on the haltere 
of the blow fly, Calliphora vicina. The Journal of Comparative Neurology 369: 405–418. DOI: https:// doi. org/ 
10. 1002/( SICI) 1096- 9861( 19960603) 369:3<405::AID-CNE6>3.0.CO;2-9, PMID: 8743421

Chan WP, Prete F, Dickinson MH. 1998. Visual input to the efferent control system of a fly’s “gyroscope.” Science 
280: 289–292. DOI: https:// doi. org/ 10. 1126/ science. 280. 5361. 289, PMID: 9535659

Combes SA, Crall JD, Mukherjee S. 2010. Dynamics of animal movement in an ecological context: dragonfly 
wing damage reduces flight performance and predation success. Biology Letters 6: 426–429. DOI: https:// doi. 
org/ 10. 1098/ rsbl. 2009. 0915, PMID: 20236968

Deora T, Singh AK, Sane SP. 2015. Biomechanical basis of wing and haltere coordination in flies. PNAS 112: 
1481–1486. DOI: https:// doi. org/ 10. 1073/ pnas. 1412279112, PMID: 25605915

Deora T, Gundiah N, Sane SP. 2017. Mechanics of the thorax in flies. The Journal of Experimental Biology 220: 
1382–1395. DOI: https:// doi. org/ 10. 1242/ jeb. 128363, PMID: 28424311

Deora T. 2021. Coupleddualoscillators_DeoraSane&Sane. 
swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905. Software Heritage. https:// archive. softwareheritage. 
org/ swh: 1: dir: 6cc3 82e7 90cf 048c 1b6f 6832 4a05 a4da 89509464; origin= https:// github. com/ TanviDeora/ Coupled_ 
dual_ oscillators_ DeoraSaneSane; visit= swh: 1: snp: 118e 98ed 46bc 617d d688 73ce 993c b875 ec5cf24b; anchor= swh: 
1: rev: b63c cbcf 8571 d78e 1317 796c 9a4c 3fc8 0b466905

Dickerson BH, de Souza AM, Huda A, Dickinson MH. 2019. Flies Regulate Wing Motion via Active Control of a 
Dual- Function Gyroscope. Current Biology 29: 3517–3524. DOI: https:// doi. org/ 10. 1016/ j. cub. 2019. 08. 065, 
PMID: 31607538

Dickinson MH, Tu MS. 1997. The Function of Dipteran Flight Muscle. Comparative Biochemistry and Physiology 
Part A 116: 223–238. DOI: https:// doi. org/ 10. 1016/ S0300- 9629( 96) 00162-4

Dudley R. 2000. The Biomechanics of Insect Flight. New Jersey: Princeton University Press. DOI: https:// doi. org/ 
10. 1515/ 9780691186344

Ennos AR. 1987. A Comparative Study of the Flight Mechanism of Diptera. Journal of Experimental Biology 127: 
355–372. DOI: https:// doi. org/ 10. 1242/ jeb. 127. 1. 355

Fayyazuddin A, Dickinson MH. 1996. Haltere afferents provide direct, electrotonic input to a steering motor 
neuron in the blowfly, Calliphora. The Journal of Neuroscience 16: 5225–5232 PMID: 8756451., 

Fayyazuddin A, Dickinson MH. 1999. Convergent mechanosensory input structures the firing phase of a steering 
motor neuron in the blowfly, Calliphora. Journal of Neurophysiology 82: 1916–1926. DOI: https:// doi. org/ 10. 
1152/ jn. 1999. 82. 4. 1916, PMID: 10515981

Fernández MJ, Springthorpe D, Hedrick TL. 2012. Neuromuscular and biomechanical compensation for wing 
asymmetry in insect hovering flight. The Journal of Experimental Biology 215: 3631–3638. DOI: https:// doi. 
org/ 10. 1242/ jeb. 073627, PMID: 22771747

Fox JL, Fairhall AL, Daniel TL. 2010. Encoding properties of haltere neurons enable motion feature detection in a 
biological gyroscope. PNAS 107: 3840–3845. DOI: https:// doi. org/ 10. 1073/ pnas. 0912548107, PMID: 20133721

Fry SN, Sayaman R, Dickinson MH. 2003. The aerodynamics of free- flight maneuvers in Drosophila. Science 300: 
495–498. DOI: https:// doi. org/ 10. 1126/ science. 1081944, PMID: 12702878

Gordon S, Dickinson MH. 2006. Role of calcium in the regulation of mechanical power in insect flight. PNAS 103: 
4311–4315. DOI: https:// doi. org/ 10. 1073/ pnas. 0510109103, PMID: 16537527

https://doi.org/10.7554/eLife.53824
https://doi.org/10.5061/dryad.hqbzkh1cc
https://doi.org/10.5061/dryad.hqbzkh1cc
https://doi.org/10.5061/dryad.hqbzkh1cc
https://doi.org/10.1242/jeb.02583
https://doi.org/10.1242/jeb.02583
http://www.ncbi.nlm.nih.gov/pubmed/17114395
https://doi.org/10.2307/1538368
https://doi.org/10.2307/5525
https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<405::AID-CNE6>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<405::AID-CNE6>3.0.CO;2-9
http://www.ncbi.nlm.nih.gov/pubmed/8743421
https://doi.org/10.1126/science.280.5361.289
http://www.ncbi.nlm.nih.gov/pubmed/9535659
https://doi.org/10.1098/rsbl.2009.0915
https://doi.org/10.1098/rsbl.2009.0915
http://www.ncbi.nlm.nih.gov/pubmed/20236968
https://doi.org/10.1073/pnas.1412279112
http://www.ncbi.nlm.nih.gov/pubmed/25605915
https://doi.org/10.1242/jeb.128363
http://www.ncbi.nlm.nih.gov/pubmed/28424311
https://archive.softwareheritage.org/swh:1:dir:6cc382e790cf048c1b6f68324a05a4da89509464;origin=https://github.com/TanviDeora/Coupled_dual_oscillators_DeoraSaneSane;visit=swh:1:snp:118e98ed46bc617dd68873ce993cb875ec5cf24b;anchor=swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905
https://archive.softwareheritage.org/swh:1:dir:6cc382e790cf048c1b6f68324a05a4da89509464;origin=https://github.com/TanviDeora/Coupled_dual_oscillators_DeoraSaneSane;visit=swh:1:snp:118e98ed46bc617dd68873ce993cb875ec5cf24b;anchor=swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905
https://archive.softwareheritage.org/swh:1:dir:6cc382e790cf048c1b6f68324a05a4da89509464;origin=https://github.com/TanviDeora/Coupled_dual_oscillators_DeoraSaneSane;visit=swh:1:snp:118e98ed46bc617dd68873ce993cb875ec5cf24b;anchor=swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905
https://archive.softwareheritage.org/swh:1:dir:6cc382e790cf048c1b6f68324a05a4da89509464;origin=https://github.com/TanviDeora/Coupled_dual_oscillators_DeoraSaneSane;visit=swh:1:snp:118e98ed46bc617dd68873ce993cb875ec5cf24b;anchor=swh:1:rev:b63ccbcf8571d78e1317796c9a4c3fc80b466905
https://doi.org/10.1016/j.cub.2019.08.065
http://www.ncbi.nlm.nih.gov/pubmed/31607538
https://doi.org/10.1016/S0300-9629(96)00162-4
https://doi.org/10.1515/9780691186344
https://doi.org/10.1515/9780691186344
https://doi.org/10.1242/jeb.127.1.355
http://www.ncbi.nlm.nih.gov/pubmed/8756451
https://doi.org/10.1152/jn.1999.82.4.1916
https://doi.org/10.1152/jn.1999.82.4.1916
http://www.ncbi.nlm.nih.gov/pubmed/10515981
https://doi.org/10.1242/jeb.073627
https://doi.org/10.1242/jeb.073627
http://www.ncbi.nlm.nih.gov/pubmed/22771747
https://doi.org/10.1073/pnas.0912548107
http://www.ncbi.nlm.nih.gov/pubmed/20133721
https://doi.org/10.1126/science.1081944
http://www.ncbi.nlm.nih.gov/pubmed/12702878
https://doi.org/10.1073/pnas.0510109103
http://www.ncbi.nlm.nih.gov/pubmed/16537527


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  17 of 20

Haas CA, Cartar RV. 2008. Robust flight performance of bumble bees with artificially induced wing wear. 
Canadian Journal of Zoology 86: 668–675. DOI: https:// doi. org/ 10. 1139/ Z08- 034

Hall JM, McLoughlin DP, Kathman ND, Yarger AM, Mureli S, Fox JL. 2015. Kinematic diversity suggests 
expanded roles for fly halteres. Biology Letters 11: 20150845. DOI: https:// doi. org/ 10. 1098/ rsbl. 2015. 0845, 
PMID: 26601682

Hayes EJ, Wall R. 2002. Age‐grading adult insects: a review of techniques. Physiological Entomology 24: 1–10. 
DOI: https:// doi. org/ 10. 1046/ j. 1365- 3032. 1999. 00104.x

Hedenström A, Ellington CP, Wolf TJ. 2001. Wing wear, aerodynamics and flight energetics in bumblebees ( 
Bombus terrestris ): an experimental study. Functional Ecology 15: 417–422. DOI: https:// doi. org/ 10. 1046/ j. 
0269- 8463. 2001. 00531.x

Hedrick TL. 2008. Software techniques for two- and three- dimensional kinematic measurements of biological 
and biomimetic systems. Bioinspiration & Biomimetics 3: 034001. DOI: https:// doi. org/ 10. 1088/ 1748- 3182/ 3/ 3/ 
034001, PMID: 18591738

Heide G, Götz KG. 1996. Optomotor control of course and altitude in Drosophila melanogaster is correlated 
with distinct activities of at least three pairs of flight steering muscles. The Journal of Experimental Biology 
199: 1711–1726. DOI: https:// doi. org/ 10. 1242/ jeb. 199. 8. 1711, PMID: 8708578

Hengstenberg R. 1993. Multisensory control in insect oculomotor systems. Reviews of Oculomotor Research 5: 
285–298 PMID: 8420553., 

Kihlström K, Aiello B, Warrant E, Sponberg S, Stöckl A. 2021. Wing damage affects flight kinematics but not 
flower tracking performance in hummingbird hawkmoths. Journal of Experimental Biology 224:jeb236240. 
DOI: https:// doi. org/ 10. 1242/ jeb. 236240

Land MF, Collett TS. 1974. Chasing behaviour of houseflies (Fannia canicularis). Journal of Comparative 
Physiology 89: 331–357. DOI: https:// doi. org/ 10. 1007/ BF00695351

Lehmann FO, Skandalis DA, Berthé R. 2013. Calcium signalling indicates bilateral power balancing in the 
Drosophila flight muscle during manoeuvring flight. Journal of the Royal Society, Interface 10: 20121050. DOI: 
https:// doi. org/ 10. 1098/ rsif. 2012. 1050, PMID: 23486171

Lindsay T, Sustar A, Dickinson M. 2017. The Function and Organization of the Motor System Controlling Flight 
Maneuvers in Flies. Current Biology 27: 345–358. DOI: https:// doi. org/ 10. 1016/ j. cub. 2016. 12. 018, PMID: 
28132816

Miyan JA, Ewing AW. 1997. How Diptera move their wings: a re- examination of the wing base articulation and 
muscle systems concerned with flight. Philosophical Transactions of the Royal Society of London. B, Biological 
Sciences 311: 271–302. DOI: https:// doi. org/ 10. 1098/ rstb. 1985. 0154

Mountcastle AM, Combes SA. 2014. Biomechanical strategies for mitigating collision damage in insect wings: 
structural design versus embedded elastic materials. The Journal of Experimental Biology 217: 1108–1115. 
DOI: https:// doi. org/ 10. 1242/ jeb. 092916, PMID: 24311806

Muijres FT, Iwasaki NA, Elzinga MJ, Melis JM, Dickinson MH. 2017. Flies compensate for unilateral wing damage 
through modular adjustments of wing and body kinematics. Terface Focus 7: 20160103. DOI: https:// doi. org/ 
10. 1098/ rsfs. 2016. 0103, PMID: 28163885

Nalbach G. 1993. The Halteres of the Blowfly Calliphora.1. Kinematics and Dynamics. J Comp Physiol A- Sensory 
Neural Behav Physiol 173: 293–300. DOI: https:// doi. org/ 10. 1007/ bf00212693

Nalbach G. 1994. Extremely non- orthogonal axes in a sense organ for rotation: behavioural analysis of the 
dipteran haltere system. Neuroscience 61: 149–163. DOI: https:// doi. org/ 10. 1016/ 0306- 4522( 94) 90068- x, 
PMID: 7969890

Nalbach G, Hengstenberg R. 1994. The halteres of the blowfly Calliphora II. Three- dimensional organization of 
compensatory reactions to real and simulated rotations. Journal of Comparative Physiology 175: 695–708.

Polilov AA. 2012. The smallest insects evolve anucleate neurons. Arthropod Structure & Development 41: 
29–34. DOI: https:// doi. org/ 10. 1016/ j. asd. 2011. 09. 001, PMID: 22078364

Polilov AA. 2015. Small is beautiful: features of the smallest insects and limits to miniaturization. Annual Review 
of Entomology 60: 103–121. DOI: https:// doi. org/ 10. 1146/ annurev- ento- 010814- 020924, PMID: 25341106

Pringle JWS. 1949. The excitation and contraction of the flight muscles of insects. The Journal of Physiology 
108: 226–232. DOI: https:// doi. org/ 10. 1113/ jphysiol. 1949. sp004326, PMID: 16991854

Pringle JWS. 1997. The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal 
Society of London. Series B, Biological Sciences 233: 347–384. DOI: https:// doi. org/ 10. 1098/ rstb. 1948. 0007

Sane SP. 2016. Neurobiology and biomechanics of flight in miniature insects. Current Opinion in Neurobiology 
41: 158–166. DOI: https:// doi. org/ 10. 1016/ j. conb. 2016. 09. 008, PMID: 27716577

Sherman A, Dickinson MH. 2003. A comparison of visual and haltere- mediated equilibrium reflexes in the fruit fly 
Drosophila melanogaster. The Journal of Experimental Biology 206: 295–302. DOI: https:// doi. org/ 10. 1242/ 
jeb. 00075, PMID: 12477899

Sponberg S, Daniel TL. 2012. Abdicating power for control: a precision timing strategy to modulate function of 
flight power muscles. Proceedings. Biological Sciences 279: 3958–3966. DOI: https:// doi. org/ 10. 1098/ rspb. 
2012. 1085, PMID: 22833272

Strausfeld NJ, Seyan HS. 1985. Convergence of visual, haltere, and prosternai inputs at neck motor neurons of 
Calliphora erythrocephala. Cell and Tissue Research 240: 601–615. DOI: https:// doi. org/ 10. 1007/ BF00216350

Strogatz SH. 2018. Coupled Oscillators and Quasiperiodicity. Non- Linear Dynamics and Chaos with Applications 
to Physics Biology Chemistry and Engineering. New York: CRC Press. p. 276–281.

https://doi.org/10.7554/eLife.53824
https://doi.org/10.1139/Z08-034
https://doi.org/10.1098/rsbl.2015.0845
http://www.ncbi.nlm.nih.gov/pubmed/26601682
https://doi.org/10.1046/j.1365-3032.1999.00104.x
https://doi.org/10.1046/j.0269-8463.2001.00531.x
https://doi.org/10.1046/j.0269-8463.2001.00531.x
https://doi.org/10.1088/1748-3182/3/3/034001
https://doi.org/10.1088/1748-3182/3/3/034001
http://www.ncbi.nlm.nih.gov/pubmed/18591738
https://doi.org/10.1242/jeb.199.8.1711
http://www.ncbi.nlm.nih.gov/pubmed/8708578
http://www.ncbi.nlm.nih.gov/pubmed/8420553
https://doi.org/10.1242/jeb.236240
https://doi.org/10.1007/BF00695351
https://doi.org/10.1098/rsif.2012.1050
http://www.ncbi.nlm.nih.gov/pubmed/23486171
https://doi.org/10.1016/j.cub.2016.12.018
http://www.ncbi.nlm.nih.gov/pubmed/28132816
https://doi.org/10.1098/rstb.1985.0154
https://doi.org/10.1242/jeb.092916
http://www.ncbi.nlm.nih.gov/pubmed/24311806
https://doi.org/10.1098/rsfs.2016.0103
https://doi.org/10.1098/rsfs.2016.0103
http://www.ncbi.nlm.nih.gov/pubmed/28163885
https://doi.org/10.1007/bf00212693
https://doi.org/10.1016/0306-4522(94)90068-x
http://www.ncbi.nlm.nih.gov/pubmed/7969890
https://doi.org/10.1016/j.asd.2011.09.001
http://www.ncbi.nlm.nih.gov/pubmed/22078364
https://doi.org/10.1146/annurev-ento-010814-020924
http://www.ncbi.nlm.nih.gov/pubmed/25341106
https://doi.org/10.1113/jphysiol.1949.sp004326
http://www.ncbi.nlm.nih.gov/pubmed/16991854
https://doi.org/10.1098/rstb.1948.0007
https://doi.org/10.1016/j.conb.2016.09.008
http://www.ncbi.nlm.nih.gov/pubmed/27716577
https://doi.org/10.1242/jeb.00075
https://doi.org/10.1242/jeb.00075
http://www.ncbi.nlm.nih.gov/pubmed/12477899
https://doi.org/10.1098/rspb.2012.1085
https://doi.org/10.1098/rspb.2012.1085
http://www.ncbi.nlm.nih.gov/pubmed/22833272
https://doi.org/10.1007/BF00216350


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  18 of 20

Trimarchi JR, Schneiderman AM. 1995. Different neural pathways coordinate Drosophila flight initiations evoked 
by visual and olfactory stimuli. The Journal of Experimental Biology 198: 1099–1104. DOI: https:// doi. org/ 10. 
1242/ jeb. 198. 5. 1099, PMID: 8627145

Vance JT, Roberts SP. 2014. The effects of artificial wing wear on the flight capacity of the honey bee Apis 
mellifera. Journal of Insect Physiology 65: 27–36. DOI: https:// doi. org/ 10. 1016/ j. jinsphys. 2014. 04. 003, PMID: 
24768843

Walker SM, Schwyn DA, Mokso R, Wicklein M, Müller T, Doube M, Stampanoni M, Krapp HG, Taylor GK. 2014. 
In vivo time- resolved microtomography reveals the mechanics of the blowfly flight motor. PLOS Biology 12: 
e1001823. DOI: https:// doi. org/ 10. 1371/ journal. pbio. 1001823, PMID: 24667677

Yarger AM, Fox JL. 2018. Single mechanosensory neurons encode lateral displacements using precise spike 
timing and thresholds. Proceedings. Biological Sciences 285: 20181759. DOI: https:// doi. org/ 10. 1098/ rspb. 
2018. 1759, PMID: 30232160

https://doi.org/10.7554/eLife.53824
https://doi.org/10.1242/jeb.198.5.1099
https://doi.org/10.1242/jeb.198.5.1099
http://www.ncbi.nlm.nih.gov/pubmed/8627145
https://doi.org/10.1016/j.jinsphys.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24768843
https://doi.org/10.1371/journal.pbio.1001823
http://www.ncbi.nlm.nih.gov/pubmed/24667677
https://doi.org/10.1098/rspb.2018.1759
https://doi.org/10.1098/rspb.2018.1759
http://www.ncbi.nlm.nih.gov/pubmed/30232160


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  19 of 20

Appendix 1

Testing significance and estimating sample sizes
To estimate a minimum sample size to detect a difference between two groups, we used the 
estimated mean and SD of these two groups (measured from data) and simulated datasets 
of different sample sizes. For each simulated dataset, we calculated the p- value using the 
relevant test (Wilcoxon signed- rank test for all paired data and Kruskal–Wallis for groups). We 
used a bootstrapping method; repeating this about 10,000 times for each sample size and 
estimated the power, that is, probability of detecting a difference between these two groups 
at significance level of 0.05. Below we report the tested groups and power analysis for each 
experiment.
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Appendix 1—figure 1. Wing coordination by scutellum (Figure 2). (A) The frequency of intact and 

clipped wing (at the wing length that has the largest difference) is significantly different (Wilcoxon 

signed- rank test, p=0.0215). (B) Power analysis for different sample sizes. Our sample size of 5 is 

greater than the minimum sample size (= 4) needed to have 80% confidence level (dashed line).
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Appendix 1—figure 2. Wing- haltere coordination by sub- epimeral ridge (Figure 3). (A) The 

frequency of wing and epimeral ridge cut haltere at wing length bin of (06–0.7), which has the largest 

difference, is significantly different (Wilcoxon signed- rank test, p=0.039). (B) Power analysis for 

different sample sizes. At our current sample size of 5 at that wing length, we have a power of 0.693, 

that is, we have a 69.3% chance of picking up a significant difference.

https://doi.org/10.7554/eLife.53824


 Research article      Evolutionary Biology

Deora et al. eLife 2021;10:e53824. DOI: https:// doi. org/ 10. 7554/ eLife. 53824  20 of 20

2 4 6 8
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er

Wing Loaded haltere

40

50

60

70

80

90

100

110

Fr
eq

ue
nc

y 
(H

z)

A B

Appendix 1—figure 3. Loading haltere (Figure 5). (A) The frequency of wing and loaded haltere at 
maximum loading (‘load3’) is significantly different (Wilcoxon signed- rank test, p=0.014). (B) Power 
analysis for different sample sizes. Our sample size of 6 is greater than the minimum sample size (= 4) 
needed to have 80% confidence level (dashed line).

Appendix 1—figure 4. Integrity of sub- epimeral ridge is essential for thoracic resonance (Figure 4). 
 For one- way Kruskal–Wallis test, our sample size n = 8 for control and 6 for the three treatments 
groups each. We used a similar bootstrapping method, simulating our data based on our group mean 
and SD, and calculating the power at difference sample sizes. To detect a significant difference at 
80% chance, we require a minimum of nine samples. With our current sample size (n = 6), we have 
a substantial type II error: that is, a 42% chance of not detecting a difference if they were indeed 
different.

https://doi.org/10.7554/eLife.53824
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