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Abstract. Substantial evidence has indicated that Notch and 
bone morphogenetic protein (BMP) signaling may regulate 
odontoblastic differentiation. Hairy/enhancer‑of‑split related 
with YRPW motif 1 (Hey1), a downstream target gene of Notch 
and BMP signaling, is expressed in dental pulp tissues and has 
been demonstrated to be responsible for osteoblast mineraliza-
tion. The aim of this study was to investigate the effects of Hey1 
on odontoblast differentiation. The results of the study demon-
strated that Hey1 expression in odontoblast‑lineage cells (OLCs) 
was upregulated by stimulation of osteoblastic/odontoblastic 
differentiation medium containing ascorbic acid, β‑glycerol 
phosphate and dexamethasone. Furthermore, stable 
Hey1‑overexpressing cells expressed higher levels of dentin 
sialophosphoprotein (DSPP) and exhibited higher mineralization 
capabilities following stimulation by differentiation medium. 
Furthermore, RNA interference‑mediated knockdown of Hey1 
downregulated the expression levels of DSPP in OLCs stimu-
lated by differentiation medium. Taken together, the findings 
indicate that Hey1 may be a positive regulator of odontoblastic 

differentiation. The present study broadens the understanding of 
odontoblast differentiation and biomineralization.

Introduction

Odontoblasts are neural crest‑derived, highly differentiated 
cells aligned in a single layer at the periphery of the dental 
pulp. The main function of these cells is to form dentin, the 
largest part of the hard tissue in teeth. Following differentiation 
from dental papilla mesenchymal cells, functional odonto-
blasts synthesize and secrete collagenous and non‑collagenous 
matrix proteins that are essential for mineralized dentin 
formation (1).

The differentiation of odontoblasts is a complex process 
regulated by reciprocal epithelium‑mesenchyme interactions. 
A number of signaling factors are reported to be involved in this 
process, including Notch, bone morphogenetic protein (BMP), 
Wnt and transforming growth factor‑β (TGF‑β). Notch signaling 
is an evolutionarily conserved pathway that is responsible for 
the control of cell fate through local cell‑cell interactions (2). 
It has been well documented that during tooth development, 
Notch receptors and ligands are expressed in dental epithe-
lium, dental papilla mesenchyme, ameloblast or odontoblast at 
different stages of tooth germ development (3,4). Additionally, 
in the pulp of injured teeth, the expression of Notch receptors 
and the Delta‑1 ligand is significantly upregulated (5,6). These 
results suggest that Notch signaling is involved in primary and 
reparative dentinogenesis. Further evidence has demonstrated 
that Notch signaling has a critical role in dental pulp stem 
cell (DPSC) differentiation into odontoblasts in vitro (7,8). 
BMP signaling is also a potent regulator of odontoblast 
differentiation. As one of the strongest signals stimulating 
biomineralization, BMP‑2 has been identified to be required 
for odontoblast differentiation in  vivo and in  vitro  (9‑11). 
Additionally, in vitro studies have demonstrated that BMP‑2 
gene transfection enhances the odontogenic differentiation of 
DPSC and stem cells from apical papilla (12,13).
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Hairy/enhancer‑of‑split related with YRPW motif 1 (Hey1), 
also known as CHF2, HRT1, Herp2 or Hesr1, is a member of 
the basic helix‑loop‑helix family. Hey1 was first characterized 
as a downstream effector of canonical Notch signaling (14), 
and further investigations indicated that Hey1 was also induced 
by TGF‑β/BMP signaling independently of Notch  (15,16). 
Numerous studies have demonstrated that Hey1 is responsible 
for the development of various tissues, including bone, nerve, 
heart, muscle and vascular tissues (17‑21). Our preliminary 
study demonstrated that Hey1 was expressed in dental pulp 
tissues and may affect dentin sialophosphoprotein (DSPP) 
expression during odontogenesis (22). In addition, substantial 
evidence has demonstrated the regulatory roles of Hey1 in 
mineralization (23,24). However, it remains unclear whether 
Hey1 regulates odontoblastic differentiation.

In this study, the effects of Hey1 on the differentiation of 
odontoblasts were investigated in an odontoblast‑lineage cell 
line (OLC) (25,26). The expression of Hey1 in OLCs was first 
observed during odontogenic differentiation. Subsequently, 
a plasmid encoding the full‑length sequence of Hey1 or 
Hey1‑silencing short hairpin RNA (shRNA) were transfected 
into OLCs to compare the differentiation and mineralization 
capabilities of cells expressing different levels of Hey1. The 
findings suggested that Hey1 has an important role in odonto-
blastic differentiation.

Materials and methods

Cell culture and differentiation induction. OLC cell line was 
provided by Professor S. Arany (Department of Biochemistry, 
Akita University School of Medicine, Akita, Japan). It is a 
murine spontaneously immortalized cell line which was devel-
oped by Arany et al (25). OLCs were cultured in α‑minimum 
essential medium (α‑MEM) supplemented with 10% fetal bovine 
serum (FBS; both from Hyclone; GE Healthcare Life Sciences, 
Logan, UT, USA) at 37˚C in a humidified atmosphere of 5% CO2 
and 95% air. For differentiation induction, cells were plated at a 
density of 2x104 cells/cm2 in 6‑well plates and were cultured until 
they reached 80% confluence. Cells were in serum‑free α‑MEM 
for 24 h to be synchronized, then in osteoblastic/odontoblastic 
differentiation medium [α‑MEM supplemented with 10% FBS, 
50 µg/ml ascorbic acid (AA), 10 mM β‑glycerol phosphate 
(β-GP) and 10‑8 M dexamethasone (DEX)] (27,28).

Establishment of stable Hey1‑overexpressing cell lines. The 
plasmid encoding the full‑length sequence of mouse Hey1 
with a C-terminal His-tag, obtained from Dr  Nobuyuki 
Kawashima (Department of Endodontics and Dental Pulp 
Biology, Tokyo Medical and Dental University, Tokyo, 
Japan), was constructed using eukaryotic expression vector 
pEF‑Dest51 (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) and was named pEF‑Hey1. Following 
confirmation by DNA sequencing, pEF‑Hey1 was transfected 
into OLCs using Lipofectamine® 2000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
instructions. Following 24 h of transfection, the cells were 
subcultured at 1:12 for another 24 h and selected in growth 
medium containing 4 µg/ml blasticidin (Invitrogen; Thermo 
Fisher Scientific, Inc.). Single cell isolation was performed 
using 96‑well plates. These single cell clones were amplified in 

blasticidin selection medium and then processed for selection 
by reverse‑transcription polymerase chain reaction (RT‑PCR) 
and western blot analyses. Empty pEF‑Dest51 vector was 
transfected into OLCs as a mock negative control.

Construction and transient transfection of shRNA expression 
vectors targeting Hey1. A mouse Hey1‑targeting sequence 
(5'‑TGA​AGG​ACT​CGA​TGC​CTC​CGA‑3') was designed 
using Invitrogen's online RNAi designer and was verified 
using BLAST to avoid off‑target gene silencing. Two pairs of 
oligonucleotides coding shRNA, one pair containing mouse 
Hey1‑targeting sequence and the other containing a scrambled 
sequence (5'-GTT CTC CGA ACG TGT CAC GT‑3') with no 
significant similarity to any mouse gene sequences, were synthe-
sized. Pairs of oligonucleotides were annealed and inserted 
into the shRNA expression vector pGPU6/GFP/Neo (Shanghai 
GenePharma Co., Ltd., Shanghai, China). Transient transfec-
tions into OLCs were performed using Lipofectamine® 2000 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) to yield 
OLC/Hey1‑knockdown (KD) and OLC/pGP‑Mock.

RNA preparation and RT‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from OLCs using TRIzol reagent (Thermo 
Fisher Scientific, Inc.) and was quantified by spectrophotom-
etry using a NanoDrop 2000c spectrophotometer (Thermo 
Fisher Scientific, Inc., Wilmington, DE, USA). Total RNA 
(1 µg) was reverse transcribed into cDNA using a First Strand 
cDNA Synthesis kit (Thermo Fisher Scientific, Inc.) according 
to the manufacturer's guidelines. qPCR was performed on 
1 µl of cDNA in a 20 µl reaction with SYBR Premix Ex Taq 
(Takara Biotechnology Co., Ltd., Dalian, China) using the 
Bio‑Rad CFX96 real‑time PCR detection system (Bio-Rad 
Laboratories, Inc., Hercules, CA, USA). The sense and anti-
sense primers were as follows: 5'‑CGA​CGA​GAC​CGA​ATC​
AAT​AAC‑3' and 5'‑CAA​ACT​CCG​ATA​GTC​CAT​AGCC‑3' for 
Hey1; 5'‑AGC​ATC​AAG​AAT​AGC​ACC​AACC‑3' and 5'‑CCC​
ATC​AGT​ATC​ATC​CAA​ACCT‑3' for DSPP; 5'‑GAC​CCC​TTC​
ATT​GAC​CTCA‑3' and 5'‑GCT​CCT​GGA​AGA​TGG​TGA‑3' 
for GAPDH. The protocol for the qPCR reactions consisted 
of an initial denaturation step (95˚C for 3 min), followed by 
45 cycles of denaturation (95˚C for 10 sec), annealing (55˚C 
for 10 sec), and extension (72˚C for 20  sec). GAPDH was 
used as the housekeeping gene for template normalization. 
The relative expression level of mRNA was calculated using 
2‑ΔΔCq analysis (29). All RT‑qPCR reactions were performed 
in triplicate.

Western blot analysis. The cells were washed with cold 
phosphate‑buffered saline and lysed on ice using radioimmu-
noprecipitation assay lysis buffer (Thermo Fisher Scientific, 
Inc.) containing 1 mM phenylmethylsulfonyl fluoride. The 
cell lysates were centrifuged at 4˚C for 20 min at 13,500 x g, 
and the total protein content of the supernatant was collected. 
Protein concentration was determined using a bicinchoninic 
acid protein assay kit (Thermo Fisher Scientific, Inc.). The 
protein samples were mixed with 5X loading buffer and 
then were boiled for denaturation. Protein extracts (30 µg) 
from each sample were subjected to 8%  SDS‑PAGE and 
were transferred to polyvinylidene difluoride membranes 
(EMD Millipore, Billerica, MA, USA). The membranes were 
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blocked in 5% BSA for 2 h at 37˚C and were incubated with 
rabbit anti‑His‑probe (cat.  no.  sc‑803; 1:500), anti‑dentin 
sialoprotein (DSP; cat. no. sc‑33587; 1:200) both from Santa 
Cruz Biotechnology, Inc. (Dallas, TX, USA) or anti‑β‑actin 
(cat. no. ab8227; 1:2,000; Abcam, Cambridge, UK) primary 
antibodies overnight at 4˚C. The membranes were then rinsed 
in TBS‑Tween and incubated with an HRP-conjugated goat 
anti‑rabbit secondary antibody (cat. no. AP307P, 1:5,000; EMD 
Millipore) for 1 h, and then detected using an enhanced chemi-
luminescence system (GE ImageQuant 350; GE Healthcare, 
Piscataway, NJ, USA). Semi‑quantitative analyses of the bands 
were performed using Image‑Pro Plus 6.0 software (Media 
Cybernetics, Inc., Rockville, MD, USA).

Immunofluorescence staining. OLCs in 35 mm glass bottom 
dishes were fixed with 4% paraformaldehyde for 30 min at 
room temperature, permeabilized in 0.1% Triton X‑100 for 
5  min, and blocked with 2% goat serum (cat.  no.  C0265; 
Beyotime Biotechnology, Shanghai, China) at 37˚C for 
1  h. Cells were then incubated with rabbit anti‑Hey1 
(cat. no. ab22614; 1:50; Abcam) or anti‑DSP (cat. no. sc‑33587; 
1:50; Santa Cruz Biotechnology, Inc.) primary antibody at 
4˚C overnight. Finally, cells were incubated with Alexa Fluor 
594‑conjugated goat anti‑rabbit IgG secondary antibody 
(cat. no. A11037; 1:400; Invitrogen; Thermo Fisher Scientific, 
Inc.) at 37˚C for 1 h, and nuclei were stained with 2 µg/ml DAPI 
(cat. no. C1002; Beyotime Biotechnology) for 5 min at room 
temperature. Fluorescence was examined using a FV1000 
confocal laser scanning microscope (Olympus Corporation, 
Tokyo, Japan). Fluorescence intensity was determined with 
Image‑Pro Plus 6.0 software (Media Cybernetics, Inc.).

Minera l i za t ion  assay.  Mock OLCs a nd s t able 
Hey1‑overexpressing cells were plated in 6‑well plates and 
cultured by osteoblastic/odontoblastic differentiation medium, 
respectively. Media were collected every 4 days for determina-
tion of alkaline phosphatase (ALP) activity using an Alkaline 
Phosphatase assay kit (Jiancheng Bioengineering Institute, 
Nanjing, China) as described in a previous study (30). In brief, 
20 µl of cell culture medium mixed with 1 ml of reaction solu-
tion containing 18 mM 4‑nitrophenyl phosphate and 0.5 M 
2‑amino‑2‑methyl‑1‑propanol was incubated in the dark for 

15 min at 37˚C. ALP activity was quantified by measuring 
the absorbance values of the reaction solution at 405 nm using 
an absorbance microplate reader (BioTek Instruments, Inc., 
Winooski, VT, USA). After culture for 32 days, cells were 
rinsed with distilled water and fixed with 4% paraformalde-
hyde for 30 min at room temperature. Mineralized deposits 
were then stained with 40 mM alizarin red S (cat. no. A5533; 
Sigma-Aldrich, St.  Louis, MO, USA) for 30  min at room 
temperature. The excess dye was removed by washing 3 times 
with distilled water. Red stain of mineralized deposits was 
observed by a light microscope (Olympus Corporation).

Statistical analysis. All values presented are expressed as 
the mean ± standard deviation. One‑way analysis of variance 
was used to analyze the differences between the groups. The 
differences between groups were detected with post  hoc 
Student-Newman-Keuls tests. P<0.05 was considered to indi-
cate a statistically significant difference.

Results

Odontoblastic differentiation medium induces an increase 
in Hey1 expression. Hey1 mRNA levels in the OLCs were 
significantly increased on the day 1 and 3 of culture in osteo-
blastic/odontoblastic differentiation medium containing AA, 
β‑GP and DEX (Fig. 1A). Additionally, immunofluorescence 
staining was performed to evaluate the protein levels of Hey1 
during differentiation induction. There was almost no positive 
staining in the untreated OLCs. However, the expression of 
Hey1 protein was observed in OLCs following stimulation 
with differentiation medium for 5 days (Fig. 1B).

Stable Hey1‑overexpressing cells line was established. To 
investigate the effects of Hey1 on the differentiation of odon-
toblasts, pEF‑Hey1 and the control vector pEF‑Dest51 were 
transfected into OLCs. Following pEF‑Hey1 transfection, four 
single cell clones that were resistant to blasticidin were ampli-
fied. RT‑PCR demonstrated that Hey1 mRNA expression was 
barely detected in normal OLCs (untransfected) or mock‑trans-
fected cells (transfected with empty pEF‑Dest51), whereas the 
four single cell clones transfected with pEF‑Hey1 expressed 
much higher levels of Hey1 mRNA (Fig. 2A). Western blot 

Figure 1. Odontoblastic differentiation medium induced an increase in Hey1 expression in OLCs. (A) Hey1 mRNA levels in OLCs cultured in differentiation 
medium were evaluated by reverse transcription‑quantitative polymerase chain reaction on the 1st and 3rd days after induction. (B) Hey1 expression in 
protein levels in OLCs cultured by normal or differentiation mediums for 5 days was determined by immunofluorescence staining. Data are presented as 
the mean ± standard deviation. *P<0.05. Hey1, hairy/enhancer‑of‑split related with YRPW motif 1; OLCs, odontoblast‑lineage cells; IOD, integrated optical 
density.



YIN et al:  Hey1 FUNCTIONS AS A POSITIVE REGULATOR OF ODONTOGENIC DIFFERENTIATION334

analysis with an anti‑His‑tag antibody was performed to verify 
the effectiveness of the plasmid to induce Hey1 overexpression. 
Among the four clones, clone one synthesized the highest levels 
of Hey1 protein (Fig. 2B) and was designated as OLC/Hey1‑OP 
for further investigations. Immunofluorescence staining with an 
anti‑Hey1 antibody further confirmed that the OLC/Hey1‑OP 
cell line expressed a higher level of Hey1 protein compared 
with mock transfection cells (Fig. 2C).

Stable Hey1‑overexpressing cells line exhibit increased differen‑
tiation capabilities. The differentiation capabilities between the 
stable Hey1‑overexpressing and mock cell lines were compared. 
The results of RT‑qPCR demonstrated that overexpressing Hey1 
alone did not affect the mRNA levels of DSPP, the odontoblastic 
differentiation marker, in OLCs (P>0.1). However, following 
culture in differentiation medium for 3 days, OLC/Hey1‑OP 
expressed a significantly higher mRNA level of DSPP than 
the mock cells (Fig. 3A). Since DSPP is a large protein that 
can be specifically cleaved into two fractions, DSP and dentin 

phosphoprotein, an antibody against the DSP portion of DSPP 
was used to detect protein expression of the full‑length DSPP. 
The results of western blot analysis and immunofluorescence 
staining further revealed that Hey1 overexpression increased 
DSPP protein expression in OLCs when the cells were 
induced by differentiation medium for 7 days (Fig. 3B and C). 
Furthermore, when cultured in differentiation medium, the ALP 
activities of the OLC/Hey1‑OP cells were much higher than that 
of the mock cells (Fig. 4A). Alizarin red S staining revealed that 
the OLC/Hey1‑OP cells formed more and larger mineralized 
nodules than the mock cells (Fig. 4B).

Transient Hey1 knockdown inhibited OLC differentiation. To 
further determine whether Hey1 is critical for odontoblastic 
differentiation, a Hey1‑targeting shRNA expression vector was 
constructed, and transient transfection into OLCs was performed. 
To evaluate the efficiency of the RNA interference in silencing 
Hey1 expression, the mRNA and protein expression levels of 
Hey1 in transfected OLCs and mock cells were measured using 

Figure 2. Hey1‑overexpressing cell line OLC/Hey1‑OP was established. (A) pEF‑Hey1 and empty pEF‑Dest51 were individually transfected into OLCs, and 
four resistant cell clones were isolated. Four Hey1‑OP clones expressed much higher levels of Hey1 mRNA than the OLCs and mock cells. (B) Among the four 
clones, clone one synthesized the highest levels of Hey1 protein. (C) Immunofluorescence staining for Hey1 protein in OLC/pEF‑Mock and OLC/Hey1‑OP. 
Data are presented as the mean ± standard deviation. *P<0.05. Hey1, stable hairy/enhancer‑of‑split related with YRPW motif 1; OLC, odontoblast‑lineage cell; 
OP, overexpression.
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Figure 3. Stable Hey1‑overexpressing cell line expressed a higher level of DSPP following culture in differentiation medium. (A) mRNA levels of DSPP gene 
in OLC/pEF‑Mock and OLC/Hey1‑OP cultured by differentiation medium for 3 days. Protein levels of DSPP in OLC/pEF‑Mock and OLC/Hey1‑OP cultured 
by differentiation medium for 7 days, determined by (B) western blotting and (C) immunofluorescence staining. Data are presented as the mean ± standard 
deviation. *P<0.05 and **P>0.1. DSPP, dentin sialophosphoprotein; Hey1, hairy/enhancer‑of‑split related with YRPW motif 1; OP, overexpression; OLC, odon-
toblast‑lineage cell; IOD, integrated optical density.

Figure 4. Hey1 overexpression promoted ALP activity and OLC mineralization. (A) The ALP activities secreted into the medium by OLC/pEF‑Mock and 
OLC/Hey1‑OP during differentiation induction. (B) Alizarin red S staining of OLC/pEF‑Mock and OLC/Hey1‑OP cultured in differentiation medium for 
32 days. Hey1, hairy/enhancer‑of‑split related with YRPW motif 1; OP, overexpression; ALP, alkaline phosphatase; OLC, odontoblast‑lineage cell; OD, optical 
density.
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RT‑qPCR and immunofluorescence staining, respectively, 
following stimulation in differentiation medium. OLC/Hey1‑KD 
cells expressed lower levels of Hey1 mRNA and protein than 
OLC/pGP‑Mock cells (P<0.05; Fig. 5). Further investigations 
revealed that DSPP expression was decreased in OLC/Hey1‑KD 
cells compared with the mock cells following differentiation 
induction (Fig. 6). Following culturing in differentiation medium 
for 3 days, the mRNA level of DSPP in OLC/Hey1‑KD cells 
was significantly lower than OLC/pGP‑Mock cells (Fig. 6A). 
Furthermore, after culture in differentiation medium for 7 days, 
DSPP protein expression in OLC/Hey1‑KD cells was signifi-
cantly lower than in OLC/pGP‑Mock cells (Fig. 6B and C).

Discussion

Differentiation of the progenitor cells derived from dental pulp 
tissue into odontoblasts has a vital role in the dentinal regeneration 
process. Elucidating the underlying mechanisms will facilitate 
the development of therapeutic approaches for injured dentin‑pulp 
complex. Numerous methods have been used to induce odon-
toblast differentiation in vitro. The application of osteoblastic/
odontoblastic differentiation medium (containing AA, β‑GP 
and DEX) has been demonstrated to be an effective method 
and has been adopted in numerous studies (7,8,27,28,31‑33). 
Previous in vitro studies have demonstrated the involvement of 
Notch and BMP signaling in odontoblast differentiation induced 
by AA + β‑GP + DEX (7,8,32,33). However, the underlying 
mechanisms remain unclear. The present study revealed that 
Hey1 expression in odontoblast‑lineage cells was significantly 

upregulated by AA + β‑GP + DEX stimulation, suggesting that 
Hey1 may be involved in their differentiation. Because Hey1 
has been reported to regulate osteoblast differentiation and 
matrix mineralization (23,24,30), it is assumed that Hey1 may 
have an important role in odontoblast differentiation. To verify 
this hypothesis, Hey1 overexpression and knockdown models 
were established in vitro to investigate the effects of Hey1 on 
odontoblast differentiation.

DSPP, a non‑collagenous protein that is predominantly 
expressed in odontoblasts or dentin, was demonstrated to be 
critical for dentin mineralization. DSPP is synthesized and 
secreted by differentiated odontoblasts and is regarded as a 
marker of odontogenic differentiation (34,35). In the present 
study, OLCs cultured in differentiation medium exhibited 
increased expression of DSPP, a result is consistent with 
previous in vitro studies. Furthermore, the results revealed 
that overexpression of Hey1 did not directly upregulate DSPP 
expression in OLCs but enhanced the upregulatory effect of 
AA + β‑GP + DEX stimulation on DSPP expression. Previous 
studies have demonstrated that Hey1 not only regulated down-
stream targets as a transcriptional repressor, but also functioned 
through interaction with other transcription factors (36,37). 
Similarly, it has been shown that Hey2 overexpression alone 
is not sufficient to induce strong changes in downstream gene 
expression, but needs additional cofactors  (38). Therefore, 
according to the results of the present study, Hey1 may regulate 
DSPP expression indirectly by interacting with other cofactors 
activated in the process of odontoblastic differentiation; this 
requires further investigations.

Figure 5. Short hairpin RNA‑mediated inhibition of Hey1 expression. (A) mRNA levels of Hey1 in OLCs, OLC/pGP‑Mock and OLC/Hey1‑KD cultured in 
differentiation medium for 24 h. (B) Immunofluorescence staining for Hey1 protein in OLCs, OLC/pGP‑Mock and OLC/Hey1‑KD cultured in differentiation 
medium for 5 days. Data are presented as the mean ± standard deviation. *P<0.05 and **P>0.1. Hey1, hairy/enhancer‑of‑split related with YRPW motif 1; 
OLC, odontoblast‑lineage cells;  KD, knockdown; IOD, integrated optical density.
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OLCs in which Hey1 was exogenously overexpressed 
exhibited upregulation of ALP activity and increased nodule 
formation. These results indicate that Hey1 may be a positive 
regulator of odontoblast cell mineralization. These findings are 
consistent with previous studies showing that Hey1 enhanced 
osteogenic differentiation and mineralization of mesenchymal 
stem cells induced by BMP‑9 or BMP‑7 (23,39). However, 

Zamurovic et al (24) reported that Hey1 inhibited mineraliza-
tion of the MC3T3 cell line. This discrepancy may result from 
differences in the source of cells. Certain transcription factors, 
such as runt related transcription factor 2 and nuclear factor 
erythroid 2-related factor 1, have demonstrated different effects 
on the differentiation of odontoblasts and osteoblasts (40,41). 
The function of Hey1 may also be dependent on cell type.

Figure 6. Hey1 KD diminished DSPP expression induced by differentiation medium. (A) mRNA levels of DSPP gene in OLC/pGP‑Mock and OLC/
Hey1‑KD cultured in differentiation medium for 3 days. Protein levels of DSPP in OLC/pGP‑Mock and OLC/Hey1‑KD cultured in differentiation medium 
for 7 days as determined by (B) western blotting and (C)  immunofluorescence staining. Data are presented as the mean ± SD. *P<0.05 and **P>0.1. 
Hey1, hairy/enhancer‑of‑split related with YRPW motif 1; DSPP, dentin sialophosphoprotein; OLC, odontoblast‑lineage cell; KD knockdown; IOD, integrated 
optical density.
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An in vivo study demonstrated that Hey1 single knockout 
mice exhibited no major developmental or obvious functional 
impairments. However, the dental phenotypes of Hey1‑deficient 
mice have not been analyzed (42). The present in vitro study 
revealed that RNA interference‑mediated knockdown of Hey1 
expression led to decreased DSPP expression compared with the 
control mock cells following differentiation induction, suggesting 
that Hey1 is critical for odontoblastic differentiation. Previous in 
vitro studies demonstrated that knockdown of Hey1 promoted 
myogenesis and inhibited osteogenic differentiation  (23,43). 
Taken together, Hey1 may participate in the regulation of cell fate.

In conclusion, the present study demonstrated that Hey1 
was involved in the differentiation of odontoblast‑lineage cells. 
Hey1 overexpression increased DSPP expression during odon-
toblastic differentiation and further augmented mineralization 
of OLCs. Additionally, knockdown of Hey1 diminished DSPP 
expression induced by odontoblastic differentiation medium. 
The findings of the current study indicate that Hey1 functions 
as a positive regulator of odontogenic differentiation. This 
study broadens our understanding of odontoblast differentia-
tion and biomineralization.
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