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Abstract
In Colombia, identification of entomopathogenic nematodes (EPN’s)  
native species is of great importance for pest management 
programs. The aim of this study was to isolate and identify EPNs 
and their bacterial symbiont in the department of Cauca-Colombia 
and then evaluate the susceptibility of two Hass avocado (Persea 
americana) pests to the EPNs isolated. EPNs were isolated from soil 
samples by the insect baiting technique. Their bacterial symbiont 
was isolated from hemolymph of infected Galleria mellonella larvae. 
Both organisms were molecularly identified. Morphological, and 
biochemical characterization was done for the bacteria. Susceptibility 
of Epitrix cucumeris and Pandeleteius cinereus adults was evaluated 
by individually exposing adults to 50 infective juveniles. EPNs were 
allegedly detected at two sampled sites (natural forest and coffee 
cultivation) in 5.8% of the samples analyzed. However, only natural 
forest EPN’s could be isolated and multiplied. The isolate was identified 
as Steinernema carpocapsae BPS and its bacterial symbiont as 
Xenorhabus nematophila BPS. Adults of both pests were susceptible 
to S. carpocapsae indicating this EPN potential for its management. 
The results of this study constitute the first record of S. carpocapsae in 
Colombia and the susceptibility of P. cinereus to this EPN.
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Entomopathogenic nematodes (EPNs) of the Steiner
nematidae and Heterorhabditidae families are widely 
used as biological control agents that represent a 
promising alternative to replace pesticides (Labaude 
and Griffin, 2018), because of their ability to parasitize 
insects, being able to identify, locate, and infect 
a host and to kill it within 48 hr, as well as they are 
safe to vertebrates, plants, and other non-target 
organisms. Moreover, they can be applied by means 
of standard spraying equipment (Poinar, 1972; Hazir 
et al., 2003; Van Zyl and Malan, 2014), and can be 
propagated in mass either in vivo using host insects 
such as Galleria mellonella (Lepidoptera: Pyralidae) 
or in vitro in bioreactors using artificial culture media 
(Shapiro-Ilan et al., 2014).

EPNs life cycle has six states: egg, four juvenile 
stages, and adults: males, females, or hermaphrodites 
(Shapiro-Ilan et al., 2014). EPNs of the Steinernematidae 
family are characterized by symbiotic associations with 
bacteria of the genus Xenorhabdus, while EPNs of the 
Heterorhabditidae family have symbiotic associations 
with bacteria of the genus Photorhabdus. In these 
relationships, the nematode acts as a vector allowing 
the bacteria to reach and enter the host insect where 
they produce metabolites that kill it within 24 to 48 hr, 
degrade it and transform it into an optimal environment 
for the development of EPNs. Almost every stage of 
EPNs development takes place inside the insect. 
The exception is the infective juvenile (IJ) which is 
a modification of the J3 stage that does not feed or 
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develop, responsible for actively mobilizing in the soil in 
search of potential hosts and for carrying the bacterial 
symbionts in the intestinal lumen (Heterorhabditis sp.), 
or in a specialized structure called the receptacle; a 
modification of the two most anterior intestinal cells 
(Steinernema sp.) (Griffin et al., 2005; Stock, 2015).

Because various environmental conditions can 
affect survival, reproductive potential, and virulence 
of EPNs, the use of native species for pest control is 
of great importance since they are better adapted to 
local environmental conditions than are foreign species 
(Campos-Herrera and Gutiérrez, 2009). Nevertheless, 
in a number of countries information on EPNs and 
their bacterial symbionts is scarce (De Brida et al., 
2017). Colombia’s records of native EPNs, a tropical 
country with a large agricultural population and 
sector, do include Steinernema websteri, S. kraussei, 
S. colombiense, and Heterorhabditis bacteriophora 
(López-Núñez et al., 2007, 2008; Melo et al., 2009). 
The municipality of Toribío, in the Department of 
Cauca, Colombia, is a place where EPNs had never 
been registered before. It is characterized by small-
scale family and community agriculture with varied 
subsistence and pasture crops. The aim of this study 
was to isolate and identify EPNs and their bacterial 
symbiont from crops and natural habitats at this 
municipality for later in vitro evaluation of susceptibility 
of two insect pests of economic interest for Hass 
avocado crops (Persea americana), the potato flea 
beetle (Epitrix cucumeris [Coleoptera: Chrysomelidae]), 
and a broad-nosed weevil (Pandeleteius cinereus 
[Coleoptera: Curculionidae]), to the EPNs isolated 
and the reference isolate Steinernema carpocapsae 
FA2015.

Materials and methods

Isolation and identification of  
entomopathogenic nematodes

Soil sampling

Soil samples were taken in the Toribío and Tacueyó 
reserves of the municipality of Toribío, in the De
partment of Cauca, Colombia, where EPNs have 
never been applied. These rural areas are located 
between 1,757 and 2,963 meters above sea level 
(m.a.s.l) where temperatures range between 
13.9° and 20°C. Following the sampling method 
developed by Varón de Agudelo and Castillo (2001), 
10 sampling sites in eight types of vegetation cover 
were selected: natural grassland (NG), pasture 
bordering annual crops (PBAC), natural forest (NF), 
first-growth American bamboo (Guadua sp.) (FGAB), 

coffee cultivation (Coffea arabica) (CC), horticultural 
cultivation (HC), strawberry cultivation (Fragaria sp.) 
(SC), and combined lulo (Solanum quitoense) and 
papaya cultivation (Carica sp.) (CLPC). At each site, 
two composite soil samples (10 subsamples, ~1 kg) 
were taken at depths between 20 and 30 cm, after 
removing soil cover to avoid cross contamination. 
Each independent composite sample was taken in 
an area measuring approximately 16 m2 with a zigzag 
distribution of 10 subsampling points. Samples were 
packed in plastic bags, labeled, and stored in a 
cooler (~15°C) (Orozco et al., 2014) in dark conditions 
for less than 24 hr until they arrived at the Biological 
Control laboratory of Pontificia Universidad Javeriana 
in Bogotá, Colombia to be immediately processed.

Isolation of EPNs

Composite soil samples taken from each site were 
mixed and stored at room temperature for 24 hr prior 
to testing for IJs using the insect baiting technique 
(Bedding and Akhurst, 1975). For this, six samples of 
150 g of mixed soil were deposited in 200 cm3 plastic 
boxes. Then, five G. mellonella larvae and five Tenebrio 
molitor (Colepotera: Tenebrionidae) larvae were 
added per box at the soil surface. The boxes were 
labeled, inverted, and kept in darkness at 20°C. Four 
days later, the boxes were evaluated for dead larvae 
killed by EPNs. Sagging bodies and color changes 
were noted. Subsequently, dead larvae were placed 
individually in White traps (White, 1927) to obtain 
IJs. The IJs recovered were then multiplicated in G. 
mellonella larvae and maintained for later identification. 
To corroborate whether EPNs were absent or present 
in soil samples, samples were processed twice by 
repeating the process described above.

The IJs isolated were stored in polyurethane 
foams at 10°C in the Biological Control laboratory 
and deposited in the Entomology collection of the 
Javeriana Museum of Natural History of the Pontificia 
Universidad Javeriana in Bogotá, Colombia.

Abundance of EPNs at sampled sites (positive 
sites for EPNs/total sites) and the recovery frequency 
of EPNs (positive samples for EPNs/total samples 
analyzed) were determined according to the type of 
vegetation cover (Liu and Berry, 1995) and expressed 
as a percentage.

Molecular identification

DNA extraction

Genomic DNA was extracted individually from females 
following the protocol described by Çimen et al.  
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(2016). After lysis of the nematodes, protein content 
was separated using NaCl at a final concentration of 
1.7 M and centrifuging at 3,000 g for 15 min at room 
temperature. Finally, the supernatant was transferred 
to another tube for alcohol precipitation of DNA.

Amplification and sequencing of  
taxonomic markers

Sequences of the following three taxonomic markers 
commonly used for nematodes were amplified by 
PCR and used for molecular identification: a fragment 
of the 18S rRNA sequence using primers SSU18A-
4F: 5′-GCTTGTCTCAAAGATTAAGCCATGCATG-3′ 
and SSU26Rplus4: 5′-AAGACATTCTTGGCAAATGC 
TTTCG-3′ (Morise et al., 2012); a fragment that 
contained the sequences ITS1, 5.8S, and ITS2 using 
primers 18S: 5′-TTGATTACGTCCCTGCCCTTT-3′ and 
26S: 5′-TTTCACTCGCCGTTACTAAGG-3′ (Vrain et al.,  
1992); and a rRNA 28S fragment that contained the 
D2/D3 expansion sequence using D2F: 5′-CCTT 
AGTAACGGCGAGTGAAA-3′ (Nguyen et al., 2006) 
and 536: 5′-CAGCTATCCTGAGGAAAC-3′ as primers 
(Stock et al., 2001).

For fragment amplification, 50 µl of PCR mixture 
was prepared using 1X NH4 Buffer (Bioline, England), 
3 mM MgCl2, 0.2 mM dNTPs, and 0.5 µg/µl Bovine 
Serum Albumin (New England Biolabs, United 
States), 0.5 µM forward primer, 0.5 µM reverse primer, 
Taq DNA polymerase 2U (Bioline, England), and 100 
to 200 ng of template DNA (Hominick et al., 1997; 
Stock et al., 2001).

The PCR protocol for the 18S fragment consisted 
of one initial denaturation cycle at 94°C for 2 min 
followed by 35 cycles at 94°C for 10 sec, 55°C for 
30 sec, 68°C for 1 min (Morise et al., 2012), and a final 
extension at 68°C for 7 min. For the ITS and D2/D3 
fragments, the PCR protocol consisted of one cycle 
of initial denaturation at 94°C for 7 min followed by 
35 cycles at 94°C for 1 min, 1 min at the annealing 
temperature (ITS: 50°C and D2/D3: 55°C), 72°C for 
1 min and a final extension at 72°C for 7 min (Çimen 
et al., 2016).

Amplification of all PCR products and their re
spective negative amplification controls were verified 
by 1% (w/v) agarose gel electrophoresis in 1X TBE 
buffer stained with 0.5 X Hydragreen (ACTGene, 
United States). PCR products were purified for 
sequencing with Wizard SV Gel and PCR clean-up 
system (Promega, United States). Three purified 
amplicons obtained from three independent DNA 
extractions were sequenced for each molecular 
marker. Sequencing of each amplicon was performed 
in both directions.

Processing of the obtained sequences

The six sequences obtained for each marker were 
visualized, aligned, and edited manually using MEGA 
X software (Kumar et al., 2018) in order to obtain a 
consensus sequence. Its identity was initially verified 
by means of the Basic Local Alignment Search Tool 
(BLAST) (Altschul et al., 1990) on the basis of the 
non-redundant (nr) database of the NCBI. Consensus 
sequences of all markers were deposited in GenBank 
(NCBI) under the accession numbers listed in Table 1.

Phylogenetic analysis

The consensus sequences of all markers were sub
sequently aligned with sequences of various species 
of EPNs deposited in GenBank (Table 1) using 
MUSCLE (Edgar, 2004) in MEGA X software (Kumar 
et al., 2018). The alignment obtained was edited so 
that all sequences used for analysis were of the same 
length and same genetic region.

Then, phylogenetic trees were independently 
constructed for each marker. The Tamura–Nei model 
of maximum likelihood estimation (Tamura and Nei, 
1993) with gamma distribution and 1,000 bootstraps 
was used for the 18S fragment, and the General Time 
Reversible model of maximum likelihood estimation 
(Nei and Kumar, 2000) with gamma distribution and 
1,000 bootstraps was used for the ITS fragment. 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA) (Sneath and Sokal, 1973) with gamma 
distribution and 1,000 bootstraps was used for the 
D2/D3 fragment of rRNA 28S.

Because of the small number of sequences 
available for the 18S marker in GenBank, the addi
tional phylogenetic analysis of concatenated seq
uences was made only with ITS (601 nts) and D2/
D3 (754 nts) fragments. This phylogenetic tree was 
constructed using UPGMA (Sneath and Sokal, 1973) 
(Tamura–Nei model of maximum likelihood estimation 
(Tamura and Nei, 1993) with gamma distribution and 
1,000 bootstraps).

Susceptibility of Epitrix cucumeris and 
Pandeleteius cinereus adults to EPNs

The susceptibility of E. cucumeris and P. cinereus 
adults (Hass avocado [P. americana] pests) to the 
EPNs isolated, and S. carpocapsae FA2015 as 
reference (commercially obtained), was evaluated and 
compared in vitro. Adults of both insect species were 
collected from a P. americana crop. In vitro bioassays 
were performed in multicell culture plates containing 
sterile Whatman No. 1 filter paper (GE Healthcare, 
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Table 1. Accession numbers of sequences used for phylogenetic analysis of the EPN 
isolated and its bacterial symbiont.

Gen

Species 18S ITS 28S

Steinernema carpocapsae BPS MK558002 ■ MK558041 ■ MK558056 ■
Steinernema carpocapsae KJ636405 AF121049 KJ950293

Steinernema arenarium KJ636393 KU194614 KU194619

Steinernema feltiae KJ636413 AF121050 JF920963

Steinernema glaseri KU180674 AF122015 GU177831

Steinernema bicornutum KT878311 AF121048 GU569045

Steinernema poinari KT878314 KF241753 KF241750

Steinernema akhursti KT878310 DQ375757 KF289902

Steinernema karii AJ417021 AY230173 AF331902

Steinernema beitlechemi KT878316 KT373856 KT580949

Steinernema kushidai LC157426 GQ497741 AF331897

Steinernema affine FJ040425 AY230159 AF331899

Steinernema websteri – FJ381666 AY841762

Steinernema scarabaei – FJ263673 AY172023

Steinernema khuongi – GU174002 GU177835

Steinernema diaprepesi – AF122021 GU177828

Steinernema hermaphroditum – MF663703 MF693228

Steinernema rarum – DQ221115 AY253296

Steinernema intermedium – AF122016 AF331909

Steinernema unicornum – GQ497167 GU191462

Steinernema scapterisci – AF122020 AF331898

Steinernema neocurtillae – AF122018 FJ263674

Steinernema monticolum – AF122017 AF331895

Steinernema nguyeni – KP325084 KR815816

Steinernema sacchari – KC633095 KC633096

Steinernema phyllophagae – FJ410327 FJ666054

Steinernema pakistanense – MF289981 JX068823

Steinernema australe – FJ235125 FJ235126

Steinernema brazilense – FJ410325 FJ410326

Steinernema riobrave – AY230182 GU177834

Steinernema cubanum – AY230166 AF331889

Steinernema ceratophorum – AY230165 AF331888

Steinernema texanum – EF152568 EF152569

Steinernema cholashanense – MF039642 EF520284

Steinernema apuliae – HQ416968 KU194621

Steinernema khoisanae – DQ314287 DQ314289

Steinernema aciari – AY787660 GU395637
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Steinernema citrae – FJ235074 MF540678

Steinernema silvaticum – MG543848 MG547579

Steinernema surkhetense – MF919614 KU187262

Steinernema litorale – JF892546 JQ795723

Steinernema anatoliense – EU200356 AY841761

Caenorhabditis elegans X03680 X03680 X03680

Panagrellus redivivus – – AF331910

16S dnaN recA gltX rplB

Xenorhabdus nematophila BPS MK558196 ■ MK570079 ■ MK570081 ■ MK570080 ■ MK570082 ■

Xenorhabdus nematophila 
ATCC19061

D78009 NC_014228 AF127333 NC_014228 CBJ88402

Xenorhabdus beddingii AY278675 FJ831460 FJ823415 FJ840506 FJ808999

Xenorhabdus bovienii X82252 FJ831466 FJ823426 FJ840514 FJ809005

Xenorhabdus japonica DQ202310 FJ831453 FJ823400 FJ840503 FJ808989

Xenorhabdus poinarii D78010 FJ831454 FJ823409 FJ840499 FJ808995

Xenorhabdus szentirmaii AJ810295 FJ831458 FJ823416 FJ840508 FJ809002

Xenorhabdus ehlersii AJ810294 FJ831448 FJ823398 FJ840495 FJ808992

Xenorhabdus innexi AJ810292 FJ831476 FJ823424 FJ840522 FJ809018

Xenorhabdus budapestensis AJ810293 FJ831474 FJ823418 FJ840518 FJ809017

Xenorhabdus indica AM040494 FJ831470 FJ823421 FJ840520 FJ809013

Xenorhabdus cabanillasii AY521244 FJ831472 FJ823422 FJ840521 FJ809015

Xenorhabdus doucetiae DQ211709 FJ831450 FJ823402 FJ840497 FJ809001

Xenorhabdus griffiniae DQ211710 FJ831449 FJ823399 FJ840496 FJ808991

Xenorhabdus hominickii DQ211719 FJ831461 FJ823410 FJ840510 FJ809010

Xenorhabdus koppenhoeferi DQ205450 FJ831457 FJ823413 FJ840504 FJ809004

Xenorhabdus kozodoii DQ211716 FJ831446 FJ823404 FJ840493 FJ808994

Xenorhabdus mauleonii DQ211715 FJ831464 FJ823417 FJ840507 FJ809003

Xenorhabdus miraniensis DQ211713 FJ831459 FJ823414 FJ840505 FJ808990

Xenorhabdus romanii DQ211717 FJ831451 FJ823403 FJ840498 FJ809000

Xenorhabdus stockiae DQ202309 FJ831477 FJ823425 FJ840524 FJ809020

Xenorhabdus vietnamensis DQ205447 FJ831452 FJ823401 FJ840502 FJ808998

Xenorhabdus ishibashii GQ149086 JQ348908 JQ348906 JQ348909 PHM62307

Xenorhabdus magdalenensis HQ877464 JF798399 JF798401 JF798400 -

Xenorhabdus khoisanae HQ142625 AB685733 AB685736 AB685734 KMJ46808

Xenorhabdus thuongxuanensis KX602193 KX602195 KX602194 KX602196 OKP02162

Xenorhabdus eapokensis KX602187 KX602189 KX602188 KX602190 OKP00696

Morganella morganii subsp. 
morganii

AJ301681 – – – –

Photorhabdus luminescens subsp. 
laumondii

– FJ831497 KT963835 KT963845 FJ817457

Proteus mirabilis – NC_010554 X14870 CAR43779 CAR46384

Note: ■ sequences obtained in this study.
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United States). In total, 10 adults of each insect 
species were exposed individually to 0 IJs (sterile 
distilled water) and 50 IJs of each EPN. Viability of IJs 
was checked during the count before adding them to 
the plates. Plates were incubated at 26°C for 8 days, 
and adult survival was recorded every 24 hr.

To corroborate whether mortality was due to 
EPNs and check for EPNs reproduction inside the 
insects, adults were dissected in Ringer solution (9 g/
liter NaCl, 0.4 g/liter KCl, 0.4 g/liter CaCl2, 0.2 g/liter 
NaHCO3) (Merck, United States). Each bioassay was 
repeated three times over time.

Statistical analysis

Survival analysis of insects exposed to the EPNs 
was performed using Graphpad Prism 6.01 software 
(GraphPad Software, United States) using the Kaplan–
Meier method (Kaplan and Meier, 1958). To identify 
any significant differences between treatments, we 
used analysis of variance (ANOVA) testing and multiple 
comparisons with the Tukey test using the area under 
the curve.

Isolation and identification of bacterial 
symbiont

Isolation

Bacterial symbiont was isolated from hemolymph of 
G. mellonella larvae infected with the EPNs recovered, 
following the procedure described by Kazimierczak 
et al. (2017). After isolation, bacterial symbionts 
were stored at −80°C in LB Broth (Scharlab, Spain) 
with 20% (v/v) glycerol (Merck, United States) and 
deposited in the Microorganisms Collection of 
Pontificia Universidad Javeriana – CMPUJ.

Confirmation of bacterial symbiont’s 
isolate

The correspondence of bacterial isolates to what 
is expected for EPNs bacterial symbionts of the 
Xenorhabdus or Photorhabdus genus (Akhurst and 
Boemare, 2015; Boemare and Akhurst, 2015) was 
initially confirmed through microscopic and macro
scopic morphological characteristics by Gram 
staining and, on NBTA (13 g/liter nutrient broth, 
0.025 g/liter bromothymol blue, 0.04 g/liter chloride 
2, 3,5-triphenyltetrazolium, and 15 g/liter agar), Mac
Conkey (Scharlab, Spain) and blood agar (Becton, 
Dickinson and Company, United States). Samples 
were incubated at 26°C for 48 hr. To corroborate 

symptoms of G. mellonella larvae infected with the 
bacterial isolates, a colony was removed from NBTA 
medium after 48 hr growth at 26°C, and resuspended 
in saline solution (0.85% (w/v) NaCl [Merck, United 
States]). The suspension was serially diluted to 
10−4. Then, 10 µl of the last dilution was injected into 
five larvae of G. mellonella with a syringe (Hamilton 
Company, United States). The surface of the larvae 
was disinfected with 1% NaClO (BNS S.A, Colombia) 
for 1 min, followed by three washes with sterile distilled 
water. As a negative control, 10 µl of sterile saline 
solution was injected into five larvae of G. mellonella.

Following injection, larvae were incubated at 26°C 
for 48 hr, after then, their coloration, mortality, and 
consistency were all checked.

Biochemical characterization

To identify metabolic characteristics of the bacterial 
isolate, a colony of the bacteria was exposed to a 3% 
hydrogen peroxide solution (Sigma-Aldrich, United 
States) using sterile wooden sticks. Subsequently, a 
colony was taken from nutrient agar (Scharlab, Spain) 
after 48 hr growth at 26°C and then resuspended in 
0.85% API NaCl medium (BioMérieux, France). The 
API 20E fast identification system (BioMérieux, France) 
was then used according to the manufacturer’s 
instructions and incubated at 26°C for 48 hr. After 
incubation, results were read and interpreted following 
the manufacturer’s instructions.

Molecular identification

Bacterial genomic DNA was extracted following the 
CTAB-based DNA extraction protocol described by 
Feil et al. (2004). From the extracted DNA, a Multilocus 
Sequence Typing (MLST) analysis was performed 
with the partial sequences of five genes used as 
taxonomic markers. The following five sequences 
and primers were used: 16S rRNA using 16SP1 
5′-GAAGAGTTTGATCATGGCTC-3′ and 16SP2 5′-AA 
GGAGGTGATCCAGCCGCA-3′ (Tailliez et al., 2006);  
dnaN (DNA polymerase III beta chain) using dnaN1 
5′-GAAATTYATCATTGAACGWG-3′ and dnaN2 5′-C 
GCATWGGCATMACRAC-3′; recA (DNA recombin
ase) using recA1 5′-GCTATTGATGAAAATAAACA-3′ 
and recA2 5′-RATTTTRTCWCCRTTRTAGCT-3′; gltX 
(glutamyl-tRNA synthetase) using gltX1 5′-GCACCA 
AGTCCTACTGGCTA-3′ and gltX2 5′- GGCATRCCSAC 
TTTACCCATA-3′; and rplB (50S subunit of ribosomal  
protein L2) using rplB1 5′-GGCAATTGTTAAATGTA 
AACC-3′ and rpblBXeno2 5′-GCGGCGTACGATGTA 
TTGAT-3′ (Tailliez et al., 2010).
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For molecular markers amplification, 25 µl of PCR 
mixture was prepared using 1X NH4 Buffer, 3 mM 
MgCl2, 0.2 mM dNTPs (Bioline, England), 0.5 µg/µl 
Bovine Serum Albumin (New England Biolabs, United 
States), forward primer and reverse primer for each 
0.5 µM of taxonomic marker, Taq DNApolimerase 2U 
(Bioline, England) and 20 to 100 ng of bacterial DNA 
(Hominick et al., 1997; Tailliez et al., 2006).

The PCR protocol consisted of an initial denaturation 
at 94°C for 5 min, 30 cycles at 94°C for 30 sec, 30 sec 
at the annealing temperature of each pair of primers 
(16S: 64.9°C, dnaN: 45°C, recA: 45°C, gltx: 64.9°C and 
rplB: 58.3°C), extension at 72°C for 1 min, and a final 
extension at 72°C for 7 min. The specific amplification 
of all PCR products was verified by electrophoresis in 
1% (w/v) agarose gel in 1X TBE buffer stained with 0.5 
X Hydragreen (ACTGene, United States).

PCR products were purified for sequencing with 
Wizard SV Gel and PCR clean-up system (Promega, 
United States). Three independent amplicons were 
sequenced in both directions for each molecular 
marker.

Sequence processing

The six sequences obtained for each marker were 
visualized, aligned, and edited manually using the 
MUSCLE tool (Edgar, 2004) in the MEGA X software 
(Kumar et al., 2018) in order to obtain the respective 
consensus sequence. The consensus sequence 
for 16S marker was initially identified by means of 
EzBioCloud (Yoon et al., 2017), while BLAST (Altschul 
et al., 1990) was used for initial identification of other 
markers. The consensus sequences of all markers 
were deposited in GenBank (NCBI) under the 
accession numbers registered in Table 1.

Phylogenetic analysis

The consensus sequences of each marker were 
aligned with sequences of species deposited in 
GenBank (NCBI) using MUSCLE (Edgar, 2004) in 
MEGA X software (Kumar et al., 2018). The alignment 
obtained was edited so that all the sequences used 
in the analysis were of the same length and genetic 
region, and phylogenetic trees were constructed 
independently for each marker. Maximum likelihood 
estimation (Tamura–Nei model [Tamura and Nei, 
1993] with gamma distribution, invariant sites (G + I), 
and 100 bootstraps) was used for the 16S fragment; 
maximum likelihood estimation (Kimura 2 model 
[Kimura, 1980] with gamma distribution, invariant 
sites (G + I), and 100 bootstraps) was used for the 
dnaN and rplB fragments; and maximum likelihood 

estimation (Tamura 3 model [Tamura, 1992] with 
gamma distribution, invariant sites (G + I), and 100 
bootstraps) was used for the gltX and recA fragments.

In addition, the dnaN (815 nts), gltX (654 nts), recA 
(592 nts), and rplB (678 nts) markers were manually 
concatenated for construction of the phylogenetic 
tree using maximum likelihood estimation (General 
Time Reversible model (Nei and Kumar, 2000) with 
gamma distribution, invariant sites [G + I], and 100 
bootstraps). The accession numbers of all the 
sequences used are found in Table 1.

Results

Isolation and identification of  
entomopathogenic nematodes

Only 14 out of 240 soil samples (5.8% recovery 
frequency) were found to contain EPNs. They were 
all from two of the 10 sites sampled (20% abundance) 
(site 1: CC and site 2: NF) (Table 2). However, it was 
only possible to multiply and maintain the isolate that 
was found in the soils of site 2. Only dead IJs were 
found when larvae with symptons of NEPs from site 1 
were dissected.

In total, 1,200 larvae of each host insect were exposed 
to all soil samples, but only 2.5% of G. mellonella and 
0.33% of T. molitor larvae were affected by EPNs. Brown 
and flaccid larvae affected by nematodes exhibited the 
typical signs of Steinernematidae infection. On the other 
hand, the first IJs were recovered eight days after White 
traps settlement.

Table 2 shows EPNs isolation data in relation 
to types of vegetation cover and host insects. 
Nematodes were recovered only at sites whose soil 
temperatures were close to 16.5°C. Also, in both 
sites where EPNs were found, more G. mellonella 
larvae than T. molitor larvae were found dead with 
symptoms indicating EPNs infection. The greatest 
recovery frequency of EPNs was obtained from the 
natural forest plant cover site.

After initial BLAST identification of the 18S, ITS, and 
28S markers from the isolate recovered, 100% identity 
and coverage were obtained with S. carpocapsae. 
This is consistent with the phylogenetic analysis of the 
concatenated 18S and ITS-28S markers (Fig. 1A, B) 
and confirms the specific identity of the isolate named 
S. carpocapsae BPS.

Susceptibility of Epitrix cucumeris and 
Pandeleteius cinereus to EPNs

Between 0 and 6.7% of E. cucumeris adults survived 
exposure to S. carpocapsae (BPS and FA2015, 
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respectively), while this result was between 0 and 
10% for P. cinereus adults, on the other hand, 100% 
of both pests survived to the sterile distilled water 
control. This indicates susceptibility of both pests to 
the EPNs evaluated (Fig. 2). Analysis using the area 
under the curve found significant differences only in 
the survival of E. cucumeris when exposed to the two 
isolates (df = 2; F = 89.32; P = <0.0001). Exposure to 
S. carpocapsae BPS resulted in less survival for this 
pest than did the reference isolate S. carpocapsae 
FA2015, which represents a higher mortality in less 
time.

Adults and IJs of both S. carpocapsae isolates 
were present in 100% of the dead insects of both 
pests. In total, 37.1% of the nematodes found in dead 

E. cucumeris infected with S. carpocapsae BPS were 
adults, 41.1% were adults in individuals of this pest 
infected with S. carpocapsae FA2015, and the rest were 
IJs in both cases. In contrast, 49.8% of the nematodes 
found in dead P. cinereus insects infected with 
S. carpocapsae BPS were adults, 41.1% were adults 
in insects of this pest infected with S. carpocapsae 
FA2015, and the rest were IJs in both cases.

Isolation and confirmation of bacterial 
symbiont

The bacterial symbionts of S. carpocapsae BPS 
were Gram-negative bacilli of various sizes with 

Figure 1: Phylogenetic tree of S. carpocapsae BPS. A. Phylogenetic relationships from the 18S 
marker. B. Phylogenetic relationships from concatenated ITS and 28S markers. The relationships 
were inferred by maximum likelihood estimation for the 18S marker while UPGMA was used for 
the concatenated markers. Caenorhabditis. elegans was used as an outgroup. The numbers on 
the nodes indicate the bootstrap values (1,000 replications).
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irregular borders and with inclusion proteins that 
varied in quantity and size (Fig. 3A). Macroscopically, 
they grew in bright, granular, convex colonies with 
slightly irregular borders. They were blue on NBTA 

agar (Fig. 3B), pink with translucent margins on 
MacConkey agar (Fig. 3C), and yellowish-green with 
total hydrolysis of red blood cells (α -hemolysis) on 
blood agar (Fig. 3D). In addition, G. mellonella larvae 
infected with bacterial isolate reached 100% mortality 
at 48 hr as evidenced by their brown color and 
sagging.

Biochemical characterization

As observed in the API biochemical gallery and under 
incubation conditions, the bacterial symbiont was 
negative for β -galactosidase, arginine-dihydrolase, 
lysine decarboxylase, ornithine decarboxylase, citrate 
assimilation, H2S production, urease, tryptophan 
deaminase, production of indole, acetoin production 
(Voges – Proskauer test), gelatinase, production of acid 
from glucose, mannitol, inositol, sorbitol, rhamnose, 
sucrose, melibiose, amygdalin, and arabinose.

Molecular identification

The initial identification, using EzBioCloud for the 
16S marker and BLAST searches of the nr database 
of the NCBI for other markers, showed greatest 
similarity to the respective Xenorhabdus nematophila 
markers: 99.47% identity and 63.9% coverage 
were obtained for the 16S marker; 99% identity 
and 100% coverage were obtained for dnaN; 100% 
identity and coverage were obtained for recA; 99% 
identity and 100% coverage were obtained for gltX; 
and 100% identity and coverage were obtained for 
rplB. The phylogenetic analysis showed that the 
bacterial isolate was grouped at the same level with 
X. nematophila for the 16S marker as well as for the 

Figure 2: Susceptibility of two 
Hass avocado (P. americana) pest 
insects to S. carpocapsae BPS 
and S. carpocapsae FA2015. A. 
E. cucumeris. B. P. cinereus.

Figure 3: Microscopic and macroscopic morphological characteristics of the bacterial symbiont, 
Xenorhabdus nematophila BPS. A. Gram stain, 100X. B. Colonies on NBTA agar. C. Colony on 
MacConkey agar. D. Isolate of bacterial symbiont on blood agar, view from the back of the box. 
The bar measures 0.5 cm.
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concatenated markers, thus confirming its taxonomic 
identity (Fig. 4A, B).

Discussion

The recovery frequency gives an estimated of EPNs 
distribution between sampling points. This study 
found a low or uneven distribution of EPNs in the 
rural region evaluated in the municipality of Toribío 
in the department of Cauca, Colombia, which was 
evidenced in a low recovery frequency. Despite 
differences in habitats sampled and methodologies 
used for soil sampling and EPNs isolation, the 
recovery frequency obtained in this study was similar 
to that reported from soils of other Latin American 
countries such as México (6.6%, 4 positive samples 
out of 60) (Delgado-Gamboa et al., 2015) and Chile 
(7%, 97 positive samples out of 1,382) (Edgington et 
al., 2010), but different from others like Brazil (23.2%, 
73 positive samples out of 315) (Foelkel et al., 2017).

In contrast, in this study only one isolate of 
S. carpocapsae was recovered and multiplied from 
soils of both natural habitats (natural forest) and crops 
(coffee cultivation) between 1,757 and 2,963 m.a.s.l, 

while in México Delgado-Gamboa et al. (2015) 
recovered four EPN isolates (three S. carpocapsae 
and one S. websteri) from soils of agricultural areas 
planted to agave (Agave angustifolia Haw) between 
1,400 and 1,600 m.a.s.l, in Chile Edgington et al. 
(2010) recovered 101 EPN isolates, 94 Steinernema 
sp. (S. australe, S. unicornum, and S. feltiae) and 7 
Heterorhabditis sp.( H. cf. safricana), from soils of 
natural habitats and agricultural areas between 0 
and 2,499 m.a.s.l, while in Brazil Foelkel et al. (2017) 
recovered five EPN isolates which were closely 
related to Oscheius sp. from soil samples of an apple 
orchard (cultivar Eva) at 865 m.a.s.l., which points the 
variable and cosmopolitan distribution of EPNs (Rizvi 
et al., 2012). However, in this study both G. mellonella 
and T. molitor were used in combination as baits 
for EPNs recovery, in México and Chile studies only 
last-instar larvae of G. mellonella were used, while in 
Brazil T. molitor and Anastrepha fraterculus (Diptera: 
Tephritidae) were used independently as baits for 
EPNs recovery.

Regarding studies in Colombia, in terms of 
recovery frequency our result is similar to that reported 
by López-Núñez et al. (2007) who, in departments 

Figure 4: Phylogenetic tree of the bacterial symbiont Xenorhabdus nematophila BPS.  
A. Phylogenetic relationships from the 16S marker. B. Phylogenetic relationships from 
concatenation of dnaN, recA, gltX, and rplB markers. The relationships were inferred by 
maximum likelihood estimation. Morganella morganii subsp. morganii was used as an outgroup 
for 16S, while Proteus mirabilis and Photorhabdus luminescens subsp. laumondii were used for 
concatenated markers. The numbers on the nodes indicate the bootstrap values (≥ 50%) (100 
replicates).
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of Caldas, Quindío, Risaralda and Cundinamarca, 
found 3% of samples positive for EPNs (28 out of 
945) corresponding to 26 isolates of Steinernema sp. 
(S. websteri and four undescribed Steinernema sp. 
taxa) and two of Heterorhabditis sp. (both undescribed) 
from soils of coffee crops and natural habitats 
between 1,203 and 1,478 m.a.s.l using only last-instar 
G. mellonella larvae for EPNs recovery. However, 
analyzing only positive sites for EPNs, López-Núñez 
et al. (2007) obtained 2 and 6% of recovery frequency 
in forests, which is lower than that obtained in this 
study for natural forest (50%), and indicates a higher 
distribution of EPNs between sampling points of this 
habitat in this study. In contrast, they found recovery 
frequencies for EPNs from 4 to 18% for areas 
cultivated in coffee (C. arabica), which was similar to 
the results obtained in this study for coffee cultivation 
(8.3%).

The differences between the recovery frequencies 
found in this study compared to the results of the 
other studies referenced from Latin America and 
Colombia could be due to that factors such as soil 
type, distribution of suitable hosts, physiological 
and behavioral adaptations are key factors affecting 
the distribution of EPN species (Adams et al., 
2006; Stuart et al., 2006). However, some of these 
resources have heterogeneous distribution, therefore, 
nematode populations are highly aggregated (Ettema 
and Lal, 2006).

Despite EPNs were isolated at two kind of habitats; 
one cultivated site (CC) and at one natural habitat 
(NF), the greater recovery frequency of the second 
one indicates that, despite the fact that natural 
habitats contain greater diversity of insects controlled 
by one or another natural enemy, it is likely that at 
NF there is an ecological imbalance which favors the 
incidence of EPNs in this habitat where they were 
widely distributed in the soil (Campos-Herrera et al., 
2007; Jaffuel et al., 2018). By the other hand, while 
monocultures may have greater availability of hosts 
susceptible to attack by EPNs, the continuous use of 
pesticides can limit availability and negatively affect 
presence of biocontrol agents, which could be the 
reason for a low recovery frequency of EPNs at CC 
or even the no recovery of EPNs in other crop sites 
evaluated in this study.

In terms of abundance, which gives an estimated 
about the distribution of EPNs between sampling 
sites, in this study the EPNs abundance, was lower 
than registered by López-Llano and Soto-Giraldo 
(2016) whom obtained 88.2% of abundance (15 
positive sites for EPNs out of 17) from sugarcane 
crops (Saccharum officinarum) in the department 
of Caldas, in which were recovered 15 isolates of 

Steinernema sp. and 6 of Heterorhabditis sp, while 
Melo et al. (2009) obtained 74% of abundance (17 
positive sites for EPNs out of 23) from crops between 
990 and 1,660 m.a.s.l. in departments of Quindío, 
Risaralda, Caldas and Cauca. However, in contrast 
for what was done in this study, both other ones 
mentioned above used only last-instar larvae of 
G. mellonella for EPNs recovery.

Although we allegedly detect EPNs at two sites, it 
was only possible to multiply and maintain the isolate 
from NF. This may have been due to ignorance of 
biological, ecological, and temperature conditions 
required for these nematodes to infect susceptible 
hosts and indicate a need for additional studies in the 
area using other detection/extraction methods and/or 
host insects.

Even though EPNs were allegedly detected at both 
sites through using the two host insects evaluated, 
it was evident that G. mellonella was generally more 
efficient at detecting EPNs than was T. molitor. This 
indicates that G. mellonella is more susceptible to the 
EPNs potentially present at both sites. Nevertheless, 
there were more G. mellonella larvae affected by 
EPNs at the NF site than at the CC site, while the same 
number of affected T. molitor larvae was obtained at 
both sites. This can be attributed to the abundance 
and nature of the EPNs potentially present at the CC 
site.

EPNs of the genera Heterorhabditis and Stein­
ernema have been found on all continents: in South 
America they have been recovered in eight countries 
(Stock, 2015; Stuart et al., 2015). In Colombia, 
Steinernema species reported include S. websteri 
(López-Núñez et al., 2007), a new species named 
S. colombiense (López-Núñez et al., 2008), and 
S. kraussei (Melo et al., 2009). The isolate obtained 
in this study was identified as S. carpocapsae, a 
nematode that in South America had previously only 
been reported in Argentina, Brazil, and Perú (Cabi.org, 
2018; San-Blas et al., 2019).

Steinernema carpocapsae is found throughout 
the world (Hominick, 2002), but this species is not 
frequently isolated (Yan et al., 2016). This is probably 
due to the species’ ambush behavior. When 
G. mellonella is used as a target insect to isolate 
S. carpocapsae, its field frequency is underestimated 
(Mráček et al., 2005). Despite this, S. carpocapsae has 
been recovered in grassland areas (602-677 m.a.s.l, 
average soil temperature of 11°C) (Campos-Herrera et 
al., 2007) and in forests (1,700 m.a.s.l, soil temperature 
of 19°C) (Yan et al., 2016). These factors are similar to 
those in the areas sampled in this study.

Although it has been reported that S. carpocapsae 
can infect about 95% of the larvae of T. molitor  
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(San-Blas et al., 2012), this study found that a greater 
number of G. mellonella larvae were affected. 
This could be attributable to the poor mobility of 
T. molitor in soil combined with the ambush behavior 
of S. carpocapsae. This EPN attacks high-mobile 
insects more efficiently (Banu et al., 2017). Our 
findings are consistent with those obtained in a study 
by Yan et al. (2016) in which S. carpocapsae isolate 
was exposed to the same two insect larvae, but 
nematodes were only recovered from G. mellonella.

Steinernema carpocapsae has been shown to 
establish a specific and exclusive symbiosis with 
X. nematophila (Cowles and Goodrich-Blair, 2008) 
as its only bacterial symbiont, so its identification as 
the bacterial isolate of this study was expected. The 
isolate showed morphological characteristics typical 
of X. nematophila in phase 1 (Akhurst and Boemare, 
2015), while most of its biochemical characteristics 
obtained. Our results agree with what has been 
reported for this species elsewhere, except for our 
negative results for assimilation of citrate, gelatinase 
activity and acid production from glucose. These 
differences may be attributable to the fact that 
metabolic specialization can be found even within 
the same species (Ponomarova and Patil, 2015) 
caused by factors such as temperature that affect 
enzymatic activity (Peterson et al., 2007). Therefore, 
the conditions in which the biochemical tests were 
carried out can give rise to different results to what is 
reported for bacteria of the same species.

Steinernema carpocapsae is the EPN species 
most commonly used to control insect pests 
associated with the soil surface and leaf area (Lacey 
and Georgis, 2012). Although its potential as a control 
agent has been demonstrated in other insects of 
the Curculionidae family such as the red weevil, 
Rhynchophorus ferrugineus (Manachini et al., 2013) 
and the coffee borer beetle, Hypothenemus hampei 
(Manton et al., 2012), there had been no previous 
reports of its efficacy for controlling P. cinereus. 
Therefore, this is the first report of its susceptibility 
to S. carpocapsae. On the other hand, the efficacy 
of S. carpocapsae for controlling two members of 
the Chrysomelidae family, western corn rootworms, 
Diabrotica virgifera (Journey and Ostlie, 2000), and 
potato flea beetles, Epitrix spp. (Parker et al., 2012), 
has already been demonstrated. This study has 
shown that P. cinereus and E. cucumeris adults which 
damage Hass avocado crops are susceptible to both 
isolates of S. carpocapsae, and that S. carpocapsae 
BPS has greater capacity to cause less survival of 
E. cucumeris adults.

The results obtained for susceptibility of both 
pests to S. carpocapsae are important because these 

pests affect Hass avocado crops (P. americana) in 
Colombia. They eat the leaves of the plants causing 
cuts that decrease leaf area thereby reducing the 
rate of photosynthesis which in turn reduces the yield 
of the plant. Similarly, P. cinereus causes damage 
to the ovary, petals, and newly formed fruit causing 
them to fall from the trees (Londoño et al., 2014). 
Consequently, our findings of in vitro susceptibility 
of both pests to S. carpocaosae now need to be 
corroborated by field studies that can determine the 
potential of these EPNs for controlling these two pests 
of economic interest to Hass avocado cultivation 
(P. americana) in Colombia.

Conclusions

These results are the first record of S. carpocapase 
and its bacterial symbiont in Cauca, Colombia. They 
establish its potential for controlling two pests that 
affect Hass avocado crops (adults of P. cinereus 
and E. cucumeris). Additional studies are needed to 
complement and confirm these results, especially 
field trials to determine the possibility of using these 
nematodes in integrated pest management programs 
for these pests.
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