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The estimates of contiguousness parameters of an epidemic have been used

for health-related policy and control measures such as non-pharmaceutical control

interventions (NPIs). The estimates have varied by demographics, epidemic phase, and

geographical region. Our aim was to estimate four contagiousness parameters: basic

reproduction number (R0), contact rate, removal rate, and infectious period of coronavirus

disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana,

Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious,

or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December

2021. For reference, we also estimated these parameters for three of COVID-19’s most

severely affected countries: Brazil, India, and the USA. The basic reproduction number,

contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0,

0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and

India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55,

0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8

African countries in this study was estimated to be 2.86%. Contact and removal rates

among an affected African population were positively and significantly associated with

COVID-19 related deaths (p-value < 0.003). The larger than one estimates of the basic

reproductive number in the studies of African countries indicate that COVID-19 was still

being transmitted exponentially by the 31 December 2021, though at different rates. The

spread was even higher for the three countries with substantial COVID-19 outbreaks. The

lower removal rates in the USA, Brazil, and India could be indicative of lower death rates

(a proxy for good health systems). Our findings of variation in the estimate of COVID-19

contagiousness parameters imply that countries in the region may implement differential

COVID-19 containment measures.
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1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic, which
originated in Wuhan in China in December (1, 2), has now
infected over 304 million people and caused more than 5.4
million deaths (3). As of 26December 2021, the African continent
had 7,055,628 confirmed cases and 1,55,292 cumulative deaths,
while the global total of 278.7 million COVID-19 infected people
with over 5.39 million deaths had been reported by WHO (4).
Due to the slow roll-out of COVID-19 vaccinations, especially in
the African continent (3), non-pharmaceutical control measures
such as social distancing, travel and border closures, school
closures, isolation of symptomatic individuals and their contacts,
and large-scale lockdowns of populations have been by far the
main containment measures against the pandemic spread.

Coronavirus disease 2019 non-pharmaceutical policy
responses have largely depended on epidemiological parameters
of the pandemic estimated from mathematical and statistical
COVID-19 modeling.The models have included epidemiological
growth models (5–8), and the Susceptible, Infected, and
Recovered (SIR) type models (9–15). In other epidemiological,
healthcare, and surveillance indicators, the estimates have
provided relevant policymakers with scientifically driven
strategies for appropriately imposing and lifting COVID-19
related restrictions. Our study used the Susceptible, Infectious,
or Recovered (SIR) modeling approach as it does not depend on
the data, uses fewer assumptions, and has good predictive power
(16, 17).

However, a classic SIR model’s estimation of COVID-19
contagiousness parameters, namely the effective reproductive
number, contact rate, removal rate, and infectious period,
assumes a homogeneous mixing of the infected and susceptible
populations. The total population is constant in time. This may
not be the case when several communities or countries are
analyzed since these may differ in COVID-19 venerability risk
factors, disease burden, health systems, and changes in testing
policies resulting in variations in infections detected over time
and between countries (18–20). As regards countries in Africa,
there is a paucity of studies that have looked at differences
in contagiousness parameters of COVID-19 infections based
on fitting SIR-type mathematical models. Countries in Africa
have great variation in socioeconomic and COVID-19 health
vulnerabilities (20, 21). Thus, it is reasonable to assume that there
would be differences in COVID-19 contagiousness parameters
from fitting SIR models. This article analyses COVID-19 data
from eight purposely selected African countries, namely Angola,
Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and
Tunisia, using SIR models. The country-specific estimates of the
COVID-19 contagiousness parameters were compared to those
obtained from an analysis of the three hardest-hit countries,
Brazil, India, and the USA.

2. METHODOLOGY AND DATA SOURCE

Settings
We studied eight African countries; Angola, Botswana, Egypt,
Ethiopia, Malawi, Nigeria, South Africa, and Tunisia, which

were chosen subjectively. For comparison, the three hardest-
hit countries, Brazil, India, and the USA were also included in
our analysis. Table 1 shows several COVID-19 vulnerability risk
factors, including total populations, GDPs, the proportion of
the elderly populations, international exposure, and population
density of the selected countries. There is so much difference in
the African countries concerning all risk factors, e.g., GDPs (with
Botswana and South Africa being the wealthiest) and population
density (with Botswana having the lowest).

2.1. Data
Country-level cumulative COVID-19 cases and deaths were
extracted for the period of 1 January 2020 to 31 December, 2021
from publicly available COVID-19 data at the Johns Hopkins
Coronavirus Resource Center at: https://coronavirus.jhu.edu/
about/how-to-use-our-data.

2.2. The SIR Model
Understanding dynamics and spread of an epidemic often relies
on predictive mathematical epidemic models. These models
consider the movement of of individual through mostly four
mutually exclusive stages of infection: susceptible (S), exposed
(E), infectious (I) and removed (R), giving rise to the SEIR
model, which is a slight extension of the usual SIR model.
Individuals vulnerable to infection belong to the S (susceptible)
compartment. Those already infected but do not show symptoms
or cannot infect others belong to the E (exposed) compartment.
An infected individual who starts infecting others belongs to the
I (infectious) compartment while those cured of the infection
belong to the R (recovered) compartment. A recovered individual
either remains there if they get permanent recovery or may
become susceptible again andmove back into the S compartment
(10, 14, 22).

Many dynamic models for infectious diseases, such as SIS,
SIR, SEIS, SIS, and SIRS, demonstrate that incidence increases
with the numbers of susceptible, infectious, and saturation
are incorporated into their mathematical forms for a better
understanding of the epidemics (10). In these models, the
population is assumed to be homogeneously mixed, and
individuals get infections or are cured at constant rates. The
Basic reproduction number (R0), a fundamental determinant
of the dynamics of disease infection at the population level,
offers insights into controlling the epidemic. When R0 > 1
an epidemic results in an outbreak. This threshold property
provides important information about the potential of disease
spread and the impact of control mechanisms. Our choice of
the SIR model is motivated by its non-dependence on data,
use of fewer assumptions, and the predictive power to show
how different public health interventions affect the outcome of
infectious diseases such as understanding patients’ immunity in
the absence of enough evidence (10, 11).

dS

dt
= −βIS
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TABLE 1 | Summary of the country context.

USA Brazil India Angola Botswana Egypt Ethiopia Malawi Nigeria South Africa Tunisia

Total Population 331,002,651 214,619,177 1,380,004,385 32,866,272 2,351,627 102,334,404 114,963,588 19,129,952 206,139,589 59,308,690 11,818,619

Percentage of Female 50.52% 50.87% 48.04% 50.52% 51.60% 49.50% 50.00% 50.68% 49.30% 50.70% 50.40%

GDP per capita 54225.45 14103.45 6426.67 5819.50 15807.37 10550.21 1729.93 1095.04 5338.45 12294.88 10849.30

Proportion Aged 65 yrs 15.41 8.55 5.99 2.41% 3.94 5.16 3.53 2.98 2.75 5.34 8.00

COVID19 Total Tested 583.91million 57.5million 569.0million 1.8million 3.5million 309766 3.0million 17.7million 2.9million

Daily COVID-19 case fatality rate 1.61% 2.79% 1.60% 2.72% 1.32% 5.69% 1.61% 3.71% 1.32% 3.02% 3.52%

Density (P/sq. KM) 36 25 464 26 4 103 115 203 226 49 76

Fertility Rate 1.78 1.70 2.24 5.55 2.89 3.33 4.30 4.25 5.42 2.41 2.20

Median Age 38 34 28 17 24 25 19 18 18 28 33

Total Deaths due to COVID-19 701201 596749 448339 1746 2427 21752 6898 2332 3022 90814 25569

Proportion of people who

received ≥ 1 dose

63.60% 69.90% 49.60% 13.10% 45.90% 24.30% 1.40% 4.00% 2.50% 27.60% 52.40%

Prevalence of Diabetes 10.79 8.11 10.39 3.94% 4.81 17.31 7.47 3.94 2.42 5.52 8.52

Mortality rate due to

cardiovascular

151.09 177.96 282.28 276.05 237.37 525.43 182.63 227.35 181.01 200.38 318.99

International Exposure 3 4 5 3 2 5 5 4

Public Health Systems 4 2 1 3 3 5 2 1

Density of urban areas 4 1 3 4 1 2 1 2

Total Populations in Urban Areas 3 1 5 5 2 5 4 2

Government Transparency 4 1 3 2 3 4 1 1

Press Freedom 4 3 4 4 3 3 2 3

Conflict Magnitude 1 1 2 3 1 4 1 1

Forced Displacement 3 1 4 5 3 5 4 2
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dI

dt
= βIS− γ I

dR

dt
= γ I

where S(0) = S0 > 0, I(0) = I0 > 0, and R(t) = R0 = 0.
Additionally, also

dS

dt
+

dI

dt
+

dR

dt
= 0

implying that this gives a constant term

S(t)+ I(t)+ R(t) = N

such that S, I,R are bounded by N. The dynamics of the infectious
class depends on the following ratio:

R0 =
β

γ

which is referred to as the basic reproduction ratio. The biological
interpretation of the parameters is given in the table below:

Parameter Biological meaning

β Contact rate

γ−1 Mean recovery rate for the clinically ill

S Proportion of susceptible population

I Proportion of infected population

R Proportion of recovered population

N Total population

S_0 Number of susceptible population at time t = 0

I_0 Number of infected population at time t = 0

R_0 Number of recovered population at time t = 0

S_c Relative removal rate

2.3. Estimation of Model Parameters
The four contagiousness COVID-19 parameters in the SIRmodel
described in Section 2.2 for each of the eight African countries
and the three COVID-19 hardest-hit countries were estimated
using the COVID-19 analytics R package which allows users
to access and analyze worldwide data from resources publicly
available (23). The package is easily accessible from https://
github.com/mponce0/covid19.analytics. Even though there are
many R packages and resources for analyzing the COVID-19
pandemic, the COVID-19 analytics package offers more analysis
options, including estimates of growth rates and daily changes
and dashboards. It is also easy to implement when estimating key
epidemiological parameters of COVID-19 using SIR models.

Key epidemic indicators were calculated like the herd
immunity threshold (HIT), which represents the minimum
proportion of a population that must be immune by vaccination
or natural infection to halt the unfolding of associated infection
in a given community, defined as HIT = 1 − 1

R0
by Kwok et al.

(24). We also used the basic reproduction number R0, defined
as the average number of secondary infections when one infected
individual is introduced into a completely susceptible population.
We then estimated the contact rate (β) and removal rate (γ ).
From the removal rate, we determined the average infectious
period to be ( 1

γ
). Considering a homogeneous population, we

interpret herd immunity to be achieved when 1 −
1
R0

of the
population has become immune, either through the disease itself
or vaccination (9, 25).

Once the parameters were estimated, we statistically
performed the correlation analysis of basic reproduction
number, removal rates, and infectivity period against some
identified risk factors for COVID-19 to establish an association
among the random variables from a univariate distribution
perspective. The correlation study generated p-values which
we used to make a determination of dependence between
random variables.

3. RESULTS

Comparative Analysis
Previous studies have found estimates of R0 to range from 1.35
to 2.11, 1.5 to 2.0, and 1.41 to 2.12 for the USA, Brazil, and
India, respectively (26–29). For our study, these were estimated
at R0 = 1.94, R0 = 1.55, and R0 = 1.62 for USA, Brazil, and
India, respectively.

Figures 1–9 present COVID-19 trajectories for each of the 8
African countries using the total number of confirmed COVID-
19 cases and the global totals.

The patterns display a general trend of exponential growth,
and they are characterized by fluctuations within short time
intervals showing rapid changes in cases confirmed. While the
graphs confirmed that all the 8 countries experienced the two
COVID-19 waves, Botswana and Tunisia show a steep growth in
confirmed cases (refer to Figures 3, 9). For Botswana, the peaks
for wave one and wave two were not easy to distinguish but
observably close to each other.

Similarly, Figures 10–18 show COVID-19 death trajectories
within the sampled countries compared to the total global deaths.
The growth in fatalities is not very steep, suggesting it could be
closer to a constant change in deaths. All the selected countries
displayed similar patterns of deaths due to COVID-19 and an
exponential growth pattern.

We then explored the epidemiological situation at the country
level. We understood the linkages between COVID-19 and
country-level factors for Angola, Botswana, Egypt, Ethiopia,
Malawi, Nigeria, South Africa, and Tunisia to help understand
the spread of the pandemic from the first day since each country
registered the virus to the end of September 2021. The average
case fatality rate for the selected 8 countries was observed to
be 2.86%. To understand the infectivity dynamics of COVID-
19 within the sampled countries, we adopted and applied a less
time-consuming approach to estimating the contact rate, removal
rate, basic reproduction number, infectious period, and herd
immunity of COVID-19 for the 8 countries.
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FIGURE 1 | Global cases.

FIGURE 2 | Angola cases.

The results are presented in the table below. We observed
the average basic reproduction number of 1.24 (vs. 1.94 in the
US), contact rate of 0.61 (0.66), removal rate of 0.49(0.34),
and infectious period of 2.12 (2.94) the COVID-19 pandemic
in Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South
Africa, and Tunisia, respectively, during the study period. Our
analysis revealed variations in contact and removal rates, with

South Africa displaying higher contact and removal rates than the
other countries (Table 2). Except for Egypt, the other 6 countries
showed that the contact and removal rates for COVID-19 were
not different from each other. Similarly, South Africa displays a
lower basic reproduction number and lower average infectious
period of 1.23 days compared to the other countries. There are
no significant variations in the period of infectivity and basic
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FIGURE 3 | Botswana cases.

FIGURE 4 | Egypt cases.
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FIGURE 5 | Ethiopia cases.

FIGURE 6 | Malawi cases.
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FIGURE 7 | Nigeria cases.

FIGURE 8 | South Africa cases.

reproduction number for the sampled countries except for Egypt,
which has a higher infectious period of 2.6 days and a basic
reproduction number of 1.5869. While Egypt showed a higher
herd immunity threshold, the other countries’ herd immunity

thresholds were not far from each other (Table 2). In 6 of the
8 countries, we found that the herd immunity threshold is less
than 0.23, and in the other 2 countries, it was between 0.23
and 0.37.
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FIGURE 9 | Tunisia cases.

FIGURE 10 | Global deaths.

We plotted the first 25 observed confirmed cases against the
respective predicted cases to understandmodel fit. Figures 19–26
show the comparison between predicted confirmed cases and
observed for the 8 sampled African countries for the first 25
days since each country registered an active case. Based on the
Angola graph, the model almost fitted the predicted and actual

values well, with minor underestimation observed for the first
15 days. Ethiopia also better fitted the predicted values for the
first 10 days and the period between days 20 and 25. The model
then overestimated the predicted values between days 10 and
20. While Botswana shows a good fit between the predicted and
actual values for the first 10 days, a similar case was observed for
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FIGURE 11 | Angola deaths.

FIGURE 12 | Botswana deaths.
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FIGURE 13 | Egypt deaths.

FIGURE 14 | Ethiopia deaths.
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FIGURE 15 | Malawi deaths.

FIGURE 16 | Nigeria deaths.
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FIGURE 17 | South Africa deaths.

FIGURE 18 | Tunisia deaths.

the first 8 days for Malawi. The Botswana and Malawi graphs
overestimated the predicted values between the 10th day to the
18th day and the 10th day to the 20th day, respectively. Plots for
Egypt, Nigeria, South Africa, and Tunisia consistently show that

the model underestimated the predicted values until later when it
overestimated COVID-19 cases.

To assess associations between the estimated basic
reproduction number, contact rate, and removal rate and
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TABLE 2 | COVID-19 contagiousness and impact in the 8 countries.

Country Contact rate(β) Removal rate(γ ) Basic reproduction No.(R0) Infectious period ( 1
γ
) Herd immunity threshold (HIT)

Angola 0.53 0.47 1.11 2.11 0.10

Botswana 0.54 0.46 1.17 2.17 0.14

Egypt 0.61 0.39 1.59 2.59 0.37

Ethiopia 0.54 0.46 1.16 2.16 0.14

Malawi 0.54 0.46 1.17 2.17 0.15

Nigeria 0.55 0.45 1.22 2.22 0.18

South Africa 1.00 0.81 1.23 1.2 0.19

Tunisia 0.56 0.44 1.30 2.30 0.23

Mean 0.61 0.49 1.24 2.12 0.20

Brazil 0.62 0.38 1.62 2.62 0.38

India 0.61 0.39 1.55 2.55 0.36

United States 0.66 0.34 1.94 2.94 0.49

FIGURE 19 | Graph for Angola.

select 20 COVID-19 vulnerability factors, we performed
pairwise correlation analyses. Table 3 shows the COVID-
19 vulnerability factors and their associations with the
three epidemiological parameters. We had set 0.05 as
a statistically significant level due to the problems of
multiple comparisons as a result of testing 20 correlations
for significance with each of the three epidemiological
parameters. Thus, we conservatively adjusted the significant
level to 0.05/20=0.0025. Only contact rate and removal rate
had a significant correlation with total COVID-19 deaths
(p < 0.0025).

4. DISCUSSION

Using publicly available COVID-19 data for the period 1
January 2020 to 31 December 2021, this study has estimated

basic reproduction number, contact rate, and removal rates for
COVID-19 in eight African countries using the classical SIR
model. The study also compared and validated our approach
using COVID-19 for the same period in the USA, Brazil, and
India which are some of the countries with the most COVID-
19 outbreaks. The study found positive significant associations
between contact and removal rates with total deaths due to
COVID-19. Thus, for the studied countries, higher removal
rates could not have been attributed to patients recovering (and
hence gaining immunity) but more to those who have died
from the disease. Our findings have also revealed a higher herd
immunity threshold for Egypt and Tunisia, respectively. Thus,
these two countries would require higher rates of 60% or more
COVID-19 vaccinations than in the other six African countries
(30). Our study found variations in contact rates between South
Africa and the other seven countries. Our findings compare well
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FIGURE 20 | Graph for Botswana.

FIGURE 21 | Graph for Egypt.

with those (31) who found differences in the contagiousness
of COVID-19 between countries. The differences could be
attributed to differences in COVID-19 vulnerability factors such
as social behavior and political strategies (19, 20). South Africa
was found to have a high removal rate than the other countries,
suggesting a better rate of recovery of patients from COVID-19.

Also, South Africa had the fastest spread of COVID-19 at
1.2 days.

Our findings could be subjected to some limitations
that could have influenced our results based on the
assumptions of our modeling approach. Our SIR
model approach assumes a homogeneous population,
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FIGURE 22 | Graph for Ethiopia.

FIGURE 23 | Graph for Malawi.

a constant rate of infections, and a non-quantification
of uncertainty from model parameters. Moreover,
the model does not incorporate the latent period
between when an individual is exposed to a disease
and becomes infected and contagious (17, 32). In this

study’s context, these assumptions may be limiting factors
as the vulnerability of countries differs and vary with
continuous changes in population due to migration,
births, and deaths, which directly affect COVID-19 testing
and vaccinations.
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FIGURE 24 | Graph for Nigeria.

FIGURE 25 | Graph for South Africa.

5. CONCLUSION

We applied a basic SIR mathematical model to understand of
COVID-19 epidemic in eight African countries. The insights
drawn from this study could be vital in understanding how

regional coordinated efforts could play a critical role in
containing the pandemic. However, the limitation lies in
knowing the precise basic reproduction number which is
directly linked to the precision of the data and its quality.
Although, the simple SIR model could not have been sufficient
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FIGURE 26 | Graph for Tunisia.

TABLE 3 | Association of reproduction number, contact rate, and removal rate with socioeconomic determinants.

Reproduction number

correlation (p-value)

Contact rate correlation (p-value) Removal rate correlation (p-value)

Total population –0.19 (0.65) –0.02 (0.97) –0.10(0.82)

Percentage of female –0.34 (0.41) 0.11 (0.79) 0.30 (0.47)

GDP per capita –0.19 (0.65) 0.39 (0.34) 0.26 (0.53)

Proportion aged ≥ 65 yrs –0.02 (0.97) 0.33 (0.42) 0.12 (0.78)

Daily COVID-19 case fatality rate –0.14 (0.75) 0.17 (0.69) –0.12(0.79)

Density (P/sq. KM) 0.24 (0.57) –0.24(0.57) –0.27 (0.51)

Fertility Rate 0.24 (0.57) –0.49 (0.21) –0.34 (0.41)

Median age –0.17 (0.69) 0.45 (0.27) 0.26 (0.53)

Total deaths due to COVID-19 –0.82 (0.01) 0.98 (0.001)* 0.89 (0.003)

Proportion of people who received ≥ 1 dose 0.41 (0.31) 0.27 (0.52) 0.18 (0.67)

Prevalence of diabetes 0.41 (0.31) 0.10 (0.82) –0.24 (0.56)

Mortality rate due to cardiovascular 0.55 (0.16) –0.09 (0.82) –0.41 (0.31)

International exposure –0.18 (0.67) 0.50 (0.21) 0.27 (0.51)

Public health systems –0.08 (0.85) –0.28 (0.50) –0.05 (0.90)

Density of urban areas 0.37 (0.36) –0.39 (0.35) –0.39 (0.34)

Total populations in urban areas –0.02 (0.97) 0.22 (0.60) 0.08 (0.86)

Government transparency 0.36 (0.38) –0.43 (0.29) –0.41 (0.31)

Press freedom 0.73 (0.04) –0.68 (0.06) –0.73 (0.04)

Conflict magnitude 0.26 (0.54) –0.24 (0.57) –0.28 (0.51)

Forced displacement –0.12 (0.78) 0.20 (0.63) 0.14 (0.74)

∗significant at p-value = 0.0025.

to test the effects of different interventions that could be fit
to understand the dynamics of the COVID-19 epidemiology,
including Omicron and other potentially novel emerging SARS-
CoV-2 variants.
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