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ABSTRACT: Genomic selection (GS) is routinely 
applied to many purebreds and lines of  farm spe-
cies. However, this method can be extended to pre-
dictions across purebreds as well as for crossbreds. 
This is useful for swine and poultry, for which 
selection in nucleus herds is typically performed 
on purebred animals, whereas the commercial 
product is the crossbred animal. Single-step 
genomic BLUP (ssGBLUP) is a widely applied 
method that can explore the recently developed 
algorithm for proven and young (APY). The APY 
allows for greater efficiency in computing BLUP 
solutions by exploiting the theory of  limited 
dimensionality of  genomic information and chro-
mosome segments (Me). This study investigates 
the predictivity as a proxy for accuracy across 
and within 2 purebred pig lines and their crosses, 
under the application of  APY in ssGBLUP setup, 
and different levels of  Me overlapping across 
populations. The data consisted of  approximately 
210k phenotypic records for 2 traits (T1 and T2) 
with moderate heritability. Genotypes for 43k 
SNP markers were available for approximately 
46k animals, from which 26k and 16k belong 
to 2 pure lines (L1 and L2), and approximately 

4k are crossbreds. The complete pedigree had 
more than 720k animals. Different multivariate 
ssGBLUP models were applied, either with the 
regular or APY inverse of  the genomic relation-
ship matrix (G). The models included a standard 
bivariate animal model with 3 lines evaluated as 1 
joint line, and for each trait individually, a 3-trait 
animal model with each line treated as a separate 
trait. Both models provided the same predictivity 
across and within the lines. Using either of  the 
pure lines data as a training set resulted in a sim-
ilar predictivity for the crossbreed animals (0.18 
to 0.21). Across-line predictive ability was limited 
to less than half  of  the maximum predictivity 
for each line (L1T1 0.33, L1T2 0.25, L2T1 0.35, 
L2T2 0.36). For crossbred predictions, APY per-
formed equivalently to regular G inverse when the 
number of  core animals was equal to the number 
of  eigenvalues explaining between 98% and 99% 
of the variance of  G (4k to 8k) including all lines. 
Predictivity across the lines is achievable because 
of  the shared Me between them. The number of 
those shared segments can be obtained via eigen-
value decomposition of  genomic information 
available for each line.
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INTRODUCTION

Genomic selection (GS) is routinely applied 
within many purebreds and lines of livestock species. 
In certain cases, joint evaluations are desirable, e.g., 
when GS is mainly on purebreds, but the commercial 
production is based on crossbreds, a joint analysis 
allows evaluating the impact of purebred selection 
on crossbred performance (Dekkers, 2007). Breeds/
lines originating from common ancestors may share 
chromosome segments (Me) or causative variants; 
therefore, interbreed prediction may be possible 
if those can be identified and their allele substitu-
tion effects and frequencies are similar, which may 
be more likely for recently separated breeds/lines. 
However, predictions may be poor if dominance or 
epistasis effects cause substitution effects to differ 
(Esfandyari et  al., 2015). The GS relies on linkage 
disequilibrium (LD) between SNP and causative var-
iants, and on the ability to accurately estimate Me 
effects (Meuwissen et al., 2001), which requires large 
number of phenotypes. The expected number of Me 
for a randomly mated population was given by Stam 
(1980) as 4NeL, where Ne is the effective population 
size and L is genome length (Morgan). Me seems to 
be the key parameter of the algorithm for proven and 
young (APY) (Misztal et al., 2014), which reduces the 
computational cost of the inversion of genomic rela-
tionship matrix (G) by shrinking the dimensionality 
of genomic information (Misztal, 2016). For large 
populations, such dimensionality was close to 4NeL 
and corresponded to the number of eigenvalues 
explaining 98% variability of G (Pocrnic et al., 2016a, 
2016b). The same study showed that Me varies from 
about 4k for pigs and chickens to over 10k for cat-
tle. The main purpose of this study was to examine 
predictivity across and within 2 recently separated 
pig lines and their crosses using the Me concepts via 
APY, and secondly, to determine the degree of over-
lap across the Me in the populations.

MATERIALS AND METHODS

Animal Care and Use Committee approval was 
not needed as data were obtained from preexisting 
databases.

Data

Data were provided by PIC (a Genus com-
pany, Hendersonville, TN) for 2 traits (T1 and T2) 

measured on 2 purebred terminal sire pig lines (L1 
and L2) and their F1 crosses (C). Both traits were 
moderately heritable, with heritability estimates 
0.28 and 0.35, respectively, and genetic correlation 
of 0.27. The number of recorded phenotypes were 
211,987 for T1 and 209,260 for T2. Specifically, L1 
had 181,030 phenotypes for T1 and 178,796 for T2, 
consequently, L2 had 25,318 phenotypes for T1 and 
25,028 for T2, and C had 5,639 phenotypes for T1 
and 5,436 for T2. Genomic information consisted 
of genotypes for 43,456 SNP markers from 46,488 
(38,535) animals (with phenotypes), representing 
26,543 (22,812) for L1, 15,976 (13,166) for L2, 
and 3,969 (2,557) for C. Initial pedigree consisted 
of 727,303 animals, with the number of animals 
reduced depending on the amount of data available.

Analyses and Computations

Four different scenarios were considered: 
1)  using phenotypic records for L1, L2, and C 
jointly, 2) L1 and L2 jointly, 3) only L1, and 4) only 
L2. Same genomic information, including L1, L2, 
and C, was used across scenarios. Data together 
with pedigree were processed with the renum-
bering software (RENUMF90) that is part of 
the BLUPF90 family of programs (Misztal et al., 
2018). Pedigree was included for all animals with 
phenotypes or genotypes and up to 3 generations 
of their ancestors. After reduction, pedigree data 
consisted from only 62k individuals for scenario 
4 to approximately 220k individuals for scenario 
1.  Predictions were computed using single-step 
genomic BLUP (ssGBLUP), implemented with the 
BLUP90IOD2 software (Tsuruta et al., 2001) either 
with the standard (direct) inverse of G or the APY 
inverse (Misztal et al., 2014). The initial G (G0) was 
constructed as in VanRaden (2008):

�
G0=MM′/2Σpj(1 − pj),

where M is a matrix of allele content centered for 
allele frequencies and pj is the allele frequency for 
marker j.  The allele frequencies were computed 
directly from the complete genotyped population, 
i.e., L1, L2, and C jointly.

We tested 2 different statistical models. In the 
first model, traits were treated as a bivariate vari-
able. All lines were included, but line distinctions 
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were ignored. The second model was fitted within 
a trait, but records of different lines were treated as 
different variables in a multiple-trait formulation.

The first model can be represented as a 2-trait 
animal model:

� yt=Xtbt+Ztut+Wtct+et,

where yt is a vector of phenotypes for trait t (t = T1 
and T2); b, u, c, and e are vectors of fixed effects, 
additive genetic effects, common litter environ-
ment effects, and random residuals, respectively, 
with X, Z, and W being the assigned incidence 
matrices. Variance–covariance structures for ran-
dom effects were

� Var(u) =
ñ
σ2

uT1 σuT1,uT2

σuT2,uT1 σ2
uT2

ô
⊗H,

� Var(c) =
ñ
σ2

pT1 0
0 σ2

pT2

ô
⊗ I,

� Var(e) =
ñ
σ2

eT1 σeT1,eT2

σeT2,eT1 σ2
eT2

ô
⊗ I.

In all cases, diagonal elements correspond to addi-
tive genetic, common environmental, and residuals 
variances, whereas off-diagonal elements represent 
corresponding covariances between the trait-spe-
cific random terms when present. I is the identity 
matrix and H is a matrix that combines pedigree 
and genomic relationships, with its inverse as in 
Aguilar et al. (2010), i.e.,

� H−1=A−1+

ñ
0 0
0 G−1 − A−1

22

ô
,

where A−1 is the inverse of a pedigree-based 
relationship matrix for all animals included in 
the analysis and A−1

22  is the inverse of the pedi-
gree-based relationship matrix for genotyped ani-
mals alone (A22). The G matrix was constructed by 
blending 0.95G0 with 0.05A22 to avoid singularity 
problems (VanRaden, 2008) and then tuned for 
compatibility with A22 using the default options 
in BLUPF90 family of programs (e.g., Chen et al., 
2011; Vitezica et al., 2011).

The second model, as applied within each trait, 
can be written as a similar 3-trait animal model:

� yl=Xlbl+Zlul+Wlcl+el,

where yl is a vector of phenotypes for line l 
(l = L1, L2, and C); b, u, c, and e are vectors of 
fixed effects, additive genetic effects, common 

litter environment effects, and random residuals, 
respectively, with X, Z, and W being the assigned 
incidence matrices. Variances were

� Var(u) =



σ2

uL1 σuL1,uL2 σuL1,uC

σuL2,uL1 σ2
uL2 σuL2,uC

σuC,uL1 σuC,uL2 σ2
uC


⊗ H,

� Var(c) =



σ2

pL1 0 0
0 σ2

pL2 0
0 0 σ2

pC


⊗ I,

� Var(e) =



σ2

eL1 0 0
0 σ2

eL2 0
0 0 σ2

eC


⊗ I.

Variances and matrices H and I are defined simi-
larly to analogous parameters of the first model. 
For both models, variance components were esti-
mated via Bayesian inference. We applied a Gibbs 
sampler algorithm as implemented in GIBBS2F90 
program (Misztal et al., 2018).

To investigate independence between the lines 
and to find the number of core animals needed for 
the APY inverse, we applied singular value decom-
position (SVD) to the matrix M using subroutine 
DGESVD in LAPACK (Anderson et  al., 1999). 
This is equivalent to eigenvalue decomposition 
of G, but with a lower cost. The SVD of matrix 
M is M  =  UDV′, where D is a diagonal matrix 
of singular values that correspond to the square 
root of the nonzero eigenvalues of M′M and 
MM′. The columns of U are left singular vectors 
(U′U = UU′ = I), and the columns of V are right sin-
gular vectors (V′V = I). They correspond to eigen-
vectors of MM′ and M′M, respectively. Therefore, 
M′M =VD′U′UDV′=VD2V′ and (M′M)V=VD2,  
where D2 is a diagonal matrix of eigenvalues of 
M′M (squares of singular values of matrix M) and 
the columns of V are eigenvectors of M′M. Same 
follows for MM′, as MM′ =UD2U′. Based on the 
proof, singular values were sorted in descending 
order, squared to get eigenvalues, and counted until 
they explained 50%, 80%, 90%, 95%, 98%, and 99% 
of the variance in G (Pocrnic et  al., 2016a). This 
was applied for 5 groups of genotyped animals: L1, 
L2, and C each separately; L1 and L2 jointly; and 
L1, L2, and, C jointly.

Finally, the number of largest eigenvalues that 
explained 90%, 98%, or 99% of variation from the 
combined group (L1, L2, and C jointly) was used as 
the number of core animals in APY. For this pur-
pose, core animals for APY were randomly selected 
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from L1 solely, L2 solely, or from all the genotyped 
animals (L1, L2, and C). When the core animals 
were randomly selected from all the genotypes (L1, 
L2, and C), contribution of each line to the core 
subset was following contribution of each line to the 
total number of genotypes, i.e., approximately 57% 
from L1, 34% from L2, and 9% from C. Analyses 
were repeated using the first model, with the only 
difference being the type of inverse of G.

Validation

Validation population consisted of genotyped 
animals born in 2017 that had their phenotypes 
removed from the analysis. Accuracy was defined 
as the correlation between genomic EBV (GEBV) 
and phenotypes adjusted for the fixed effects in 
the model (y*), which is similar to the method 
proposed by Legarra et  al. (2008) if  correlations 
would be divided by the square root of heritability. 
Potential GEBV inflation and bias was measured 
by the regression:

� y∗=b0+b1GEBV + e,

where a regression coefficient (b1) smaller or greater 
than 1 indicates GEBV inflation or deflation, re-
spectively, and intercept (b0) indicates bias. In add-
ition, correlations between GEBV obtained by APY 
inverse and direct inverse of G were calculated. 
Validation was separate for each group of animals 
(L1, L2, and C), resulting in up to 2,770 animals 
from L1, 2,623 from L2, and 2,557 from C.

RESULTS AND DISCUSSION

Correlations between GEBV and y* for the first 
model are shown in Table 1. Compared with using 

all available phenotypes (L1, L2, and C), removing 
crossbred phenotypes did not reduce predictive abil-
ity for young animals from any group (L1, L2, and 
C) for both traits evaluated. This was surprising, as 
in several studies, impact of adding crossbred phe-
notypes was mostly positive (e.g., Bijma and van 
Arendonk, 1998; Bijma et al., 2001; Lutaaya et al., 
2002). Possible reason could be relatively small 
number of crossbred phenotypes in comparison 
to phenotypes coming from L1 and L2. In all the 
analyses, complete genotyped data (L1, L2, and C) 
was used as previous studies indicated that inclu-
sion of crossbreed genotypes is beneficial for pre-
diction accuracies (Lourenco et  al., 2016; Iversen 
et al., 2017; Sewel et al., 2018). When phenotypes 
for only L1 were available, predictive ability for L2 
and C was affected, whereas for L1 it stayed the 
same as when using all phenotypes. In the scenario 
where phenotypes only from L2 were used to fit the 
model, predictive ability for L1 and C was affected, 
whereas for L2 it stayed the same.

For the second model and T1, heritability es-
timates (posterior standard deviations) were 0.31 
(0.01) for L1, 0.26 (0.02) for L2, and 0.33 (0.05) for 
C. When applied to T2, heritability estimates (pos-
terior standard deviations) were 0.39 (0.01) for L1, 
0.44 (0.02) for L2, and 0.30 (0.04) for C. Therefore, 
the second model provided comparable, but slightly 
greater heritability estimates relative to the first 
model. Typically, moderate to high genetic correl-
ation between purebreds and crossbred is needed 
to achieve good predictions for the latter group. 
When the second model was applied to T1, gen-
etic correlations (posterior standard deviations) 
were 0.51 (0.13) between L1 and C, 0.90 (0.04) be-
tween L2 and C, and 0.29 (0.16) between L1 and 
L2. T2 showed a different pattern of genetic cor-
relations: 0.92 (0.03), 0.57 (0.09), and 0.80 (0.07), 
respectively, for the same pairs of groups. Genetic 
correlations between purebreds and crossbreds 
in pigs have been reported in several studies. The 
correlations for lifetime daily gain were 0.99 with 
one purebred line and 0.62 with the second pure-
bred line (Lutaaya et  al., 2001). The same correl-
ations for backfat were 0.32 and 0.70, respectively. 
Lourenco et al. (2016) reported genetic correlations 
for the number of stillborn and litter size below 
0.8, Xiang et al. (2016) reported values from 0.57 
to 0.79 for the total number of piglets born, and 
Tusell et  al. (2016) reported values ranging from 
0.69 to 0.91 for several traits (i.e., growth rate, feed 
conversion ratio, lean meat, pH measured in the 
longissimus dorsi, drip loss, and intramuscular fat). 
Genetic correlations between pure breeds are less 

Table 1. Correlations between genomic EBV and 
phenotypes adjusted for fixed effects, for different 
groups of validation animals (purebred animals L1 
and L2, and their crosses C) with a different source 
of phenotypes available, shown for traits 1 (T1) and 
2 (T2), under the first model (2-trait animal model 
without the distinction between the lines)

Phenotypes1

T1 T2

L1 L2 C L1 L2 C

L1 + L2 + C 0.33 0.34 0.26 0.24 0.36 0.25

L1 + L2 0.33 0.34 0.26 0.24 0.36 0.25

L1 0.33 0.15 0.19 0.25 0.14 0.19

L2 0.18 0.35 0.21 0.11 0.36 0.18

1Phenotypes coming from L1, L2, and C jointly, L1 and L2 jointly, 
L1 solely, or L2 solely.
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commonly estimated and reported, e.g., between 
Landrace and Yorkshire breeds correlations were 
reported to be from 0.2 to 0.3 (Xiang et al., 2017).

Predictive abilities for the second model are 
shown in Tables 2 and 3 for the biological traits T1 
and T2, respectively. When phenotypes from all lines 
were used, predictive abilities for validation animals 
were comparable to the ones from the first model. 
Specifically, for crossbred predictions, correlations 
between GEBV and y* were 0.26 for T1 and 0.25 
for T2 using the first model, and 0.24 for T1 and 
0.22 for T2 using the second model. For the L1 and 
L2, it was in the opposite direction, and correlations 
between GEBV and y* were slightly greater when 
the second model was used. These small variations 
are probably due to the re-estimated variance com-
ponents used in the second model. When only L1 or 
L2 phenotypes were considered in the training data 
set, correlations between GEBV and y* using the 
second model were almost identical to those from 
the first model. Using phenotypes for either of the 
pure lines solely resulted in similar predictive abil-
ities for the crossbred animals. When this scenario 
was applied to predictions on the other pure line, 
correlations between GEBV and y* were roughly 
halved both for L1 to L2 and L2 to L1 predictions. 
Both models performed equally well for all differ-
ent sources of available phenotypes for fitting. In 
the terms of GEBV inflation (Table 4), models were 
comparable as well, and the inflation was small-
est when all available phenotypes were included. 
Inflation was more extreme for T2, and especially 
for L1. Presence of actual inflation is questionable 
due to the method used (regression), i.e., sensitivity 
to adjustments in y*, specific population structure 
(combined lines), and specific selection. This could 
potentially be solved by use of unknown parent 
groups in the models or metafounders approach 
(Legarra et  al., 2015). Statistical models used in 

this study are arguably simple, and more com-
plex models that consider alleles breed of origin 
and breed-specific relationship matrix are availa-
ble (e.g., Ibanez-Escriche et al., 2009; Christensen 
et al., 2014). Nevertheless, the application of these 
methods might be cumbersome in the APY setup. 
The breed-specific model was tested with mixed 
success; e.g., several studies (Lopes et  al., 2017; 
Ibanez-Escriche et al., 2009; Lourenco et al., 2016) 
obtained similar prediction accuracies as with the 
simple model, whereas Xiang et  al. (2016) found 
better prediction with the more complex model. 
Model used by Xiang et  al. (2016) was based on 
the construction of separate, breed-specific pedi-
gree and genomic relationship matrices via 3-step 
process: 1) accounting for breed of origin-specific 
genetic effects for crossbreds, 2)  construction of 
breed-specific partial relationship matrices for each 
breed of origin genetic effects, and 3)  combining 
pedigree-based and adjusted marker-based partial 
relationship matrices to a combined partial rela-
tionship matrix. Additional implementation chal-
lenge for these models is the assumption of known 
alleles for the breed of origin, and this assumption 
can be relaxed by approximations (Vandenplas 
et al., 2016).

Analyses of eigenvalues are useful when deal-
ing with large multivariate genomic data (Cavalli-
Sforza et al., 2003; Patterson et al., 2006; Solberg 
et al., 2009; Macciotta et al., 2010). In this work, 
SVD was applied to M as equivalence to eigenvalue 
decomposition of G to assess the independence of 
the lines. The number of largest eigenvalues that 
explain certain percentages of variance in G was 
calculated from different combinations of lines 
(Table 5). If  we assume there is complete independ-
ence of Me across the lines, i.e., no shared seg-
ments across them, we would expect the resulting 
number of eigenvalues obtained from a combined 

Table 2. Correlations between genomic EBV and 
phenotypes adjusted for fixed effects, for different 
groups of validation animals (purebred animals L1 
and L2, and their crosses C) with a different source 
of phenotypes available, shown for trait 1 (T1) 
when that trait was separated into 3 traits based on 
the line of the animals (second model)

Phenotypes1 L1 L2 C

L1 + L2 + C 0.33 0.35 0.24

L1 0.33 0.15 0.19

L2 0.18 0.35 0.20

1Phenotypes coming from L1, L2, and C jointly, L1 solely, or L2 
solely.

Table 3. Correlations between genomic EBV and 
phenotypes adjusted for fixed effects, for different 
groups of validation animals (purebred animals L1 
and L2, and their crosses C) with a different source 
of phenotypes available, shown for trait 2 (T2) 
when that trait was separated into 3 traits based on 
the line of the animals (second model)

Phenotypes1 L1 L2 C

L1 + L2 + C 0.25 0.38 0.22

L1 0.25 0.15 0.20

L2 0.12 0.38 0.19

1Phenotypes coming from L1, L2, and C jointly, L1 solely, or L2 
solely.
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population (L1 + L2 + C) would equal the sum of 
eigenvalues obtained from individual lines L1, L2, 
and C. The number of eigenvalues explaining 99% 
of the variance of G (Eig99) was 5,957 for L1, 5,601 
for L2, and 8,137 when L1 and L2 were evaluated 
together. This indicates the lines are not completely 
independent of each other, and the genetic connect-
edness probably arose in the historical generations 
through coalescent ancestry before artificial selec-
tion started. One of the additional metrics used to 
assess connectedness between the lines is Wright’s 
FST statistic (Wright, 1965). McVean (2009) showed 
that the FST for the 2 populations can be obtained 
as the fraction of total variance explained by the 
first principal component (PC). In this study, first 
PC explained 14.83% of the variance of G based on 
L1 and L2, and therefore, FST for the L1 and L2 was 
0.15, which confirms certain degree of connected-
ness and nonindependence between the lines. When 
3,969 crossbred genotypes (Eig99  =  2,459) were 
added to the genomic data, the number of eigenval-
ues for the combined population (L1 + L2 + C) was 
8,141, which is almost the same number obtained 
by combining L1 and L2 populations (L1  + L2). 

This indicates that the genomic information added 
from crossbred animals was already accounted for 
by the L1 and L2 genotypes. The number of eigen-
values for lower percentages of variance explained, 
e.g., 50%, is similar across the lines and their com-
binations. This suggests that a limited number of 
segments, with the same origin, could be shared 
across the lines. Eigenvalues are one of the indica-
tors for the number of Me in a population, and the 
largest eigenvalues cluster a number of segments 
across the genome, comparable to developments 
described in Patterson et  al. (2006). This can be 
interconnected with the results of a PC analysis 
of G, which are presented in Figure 1. Projections 
of genomic relationships from G into the first and 
second PC are clearly indicating stratification of 
the genotyped population. PC showed separation 
between the lines as expected, with crossbred pop-
ulation positioned centrally between the 2 purebred 
populations.

Eigenvalue decomposition is currently used 
to define the dimensionality of  genomic data and 
select the number of  core animals for APY. This 
was successfully demonstrated for several purebred 

Table 4. Regression coefficients (b1) of adjusted phenotypes on genomic EBV, for different groups of val-
idation animals (purebred animals L1 and L2, and their crosses C) with a different source of phenotypes 
available, shown for traits 1 (T1) and 2 (T2), under the first model (M1; 2-trait animal model without the 
distinction between the lines) and second model (M2; when that trait was separated into 3 traits based on 
the line of the animals)

Phenotypes1

M1–T1 M1–T2

L1 L2 C L1 L2 C

L1 + L2 + C 0.82 0.99 0.78 0.48 0.97 0.56

L1 + L2 0.82 0.99 0.78 0.48 0.97 0.56

L1 0.81 0.59 0.60 0.50 0.59 0.52

L2 0.64 1.03 0.76 0.32 0.93 0.48

 M2–T1 M2–T2

L1 L2 C L1 L2 C

L1 + L2 + C 0.79 1.06 0.77 0.49 0.94 0.79

L1 0.79 2.08 1.09 0.51 0.98 0.80

L2 2.11 1.07 0.78 0.31 0.92 0.90

1Phenotypes coming from L1, L2 and C jointly, L1 and L2 jointly, L1 solely, or L2 solely

Table 5. Numbers of largest eigenvalues (Eig) explaining 50%, 80%, 90%, 95%, 98%, and 99% of the vari-
ance in the genomic relationship matrix with a different source of genotypes available

Genotypes1 Number genotyped Eig50 Eig80 Eig90 Eig95 Eig98 Eig99

L1 26,543 119 531 1,068 1,944 3,888 5,957

L2 15,976 125 602 1,209 2,112 3,884 5,601

L1 + L2 42,519 126 728 1,528 2,763 5,381 8,137

C 3,969 105 479 864 1,315 1,968 2,459

L1 + L2 + C 46,488 130 735 1,533 2,759 5,368 8,141

1Purebred animals L1 and L2, and their crosses C.
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populations in different species (e.g., Pocrnic et al., 
2016b); however, the application of  this concept 
for crossbred/multibreed contexts was unclear. 
Bradford et al. (2017) found, by simulating a pure-
bred population, that any core definition is robust 
in populations with complete pedigree; otherwise, 
selecting core animals randomly across multi-
ple generations gives desirable accuracies. This is 
attributed to a random sample that increases the 
likelihood of  all generations of  genotyped ani-
mals being represented in the core group. Since the 
theory behind APY is based on the utilization of 
the number of  effective Me in the population and 
selection is working through eigenvalues that clus-
ter those segments, core definition in a mixed pop-
ulation should include animals from all pure lines 
for better representation of  various segments in 
the population. In a recent simulation study based 
on a 3-way crossbreeding system with genotypes 
available for 3 different breeds and their F1 and F2 
crosses, Vandenplas et al. (2018) showed that APY 
was as accurate as the direct inverse in ssGBLUP, 
when the core animals were randomly selected from 
all different breed compositions available and had 
a size between the number of  eigenvalues explain-
ing 98% (Eig98) and 99% of the variance of  G.

One of  the metrics used to assess approaches 
regarding the composition of  the core in crossbred/
multibreed populations is across line predictiv-
ity using APY with different core configurations. 

These results are shown in Table 6. When core 
animals were randomly selected from the L1 only, 
predictive ability was the same for L1 validation 
animals as when the regular G inverse was used, 
whereas for the L2 and C validation animals, it was 
lower especially when the number of  core animals 
was less than the number of  eigenvalues explaining 
98% of the variance of  G. When the core group 
was based on L2 animals only, predictive ability 
was greater for the L2 validation animals. Line 
2-based core resulted in better predictions of  L1 
and crossbred when the number of  core animals 
was at Eig98. This could be reflecting different 
selection pressure on these lines. When the core 
animals were randomly selected from all genotyped 
animals (L1 + L2 + C) and their number was either 
Eig98 or Eig99, predictive ability for all groups 
of  animals was the same as the scenario with the 
regular G inverse. Similar results were obtained 
in a simulation study by Vandenplas et al. (2018). 
These findings can be confirmed by looking at the 
correlations between GEBV obtained by APY and 
regular G inverse, as shown in Table 7. Correlations 
between GEBV obtained by APY and regular G 
inverse were greater than 0.99 for both traits and 
all groups of  validation animals when the core ani-
mals were selected in beforementioned way. When 
the core group was selected from L1 or L2 ani-
mals only, correlations between GEBV obtained 
by APY and regular G inverse were greater than 
0.99 only for the validation animals coming from 
the line that core group was made of, and number 
in core being either Eig98 or Eig99. Core at Eig98 
and based on L2 solely produced greater correla-
tions between GEBV obtained by APY and regu-
lar G inverse for L1 and C validation animals (0.96 
to 0.97) in comparison to core based on L1 solely 
(0.91 to 0.95).

Results from this study could be interpreted 
from the perspective of  the overlapping number 
of  eigenvalues between the lines and epistatic 
interactions. Epistasis interactions might be one 
of  the causes of  breed-specific SNP effects, with 
other causes being dominance, a difference in LD 
between SNP and QTL, or different QTL allele 
frequencies across breeds (Ibanez-Escriche et al., 
2009; Esfandyari et al., 2015). When allele substi-
tution effects between the breeds are different and 
only one line’s information is used, (G)EBV may 
not accurately predict crossbred performances 
(Lopes et al., 2017). Although many causal vari-
ants have been identified, they seem to add little 
predictive power for multibreed predictions. One 
good example is the DGAT1 variant, as it is highly 

Figure 1. Projection of genomic relationships into first 2 principal 
components (PC), showing purebred animals (L1 and L2), and their 
crosses (C). The percentage of variance explained by each PC is shown 
in parentheses.
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associated with milk production traits across 
bovine breeds, but with different allele frequencies 
and substitution effects among them (Spelman 
et al., 2002; Thaller et al., 2003). As epistatic inter-
actions can result in changes of  substitution effects 
over generations, predictive ability may be more 

likely across breeds or lines that show recent diver-
gence. Examples include breeds independently 
selected from multiple farms, or even within the 
same farm for different breeding goals. Since the 
prediction across lines was possible in the dataset 
used, it is implied that these populations share cer-
tain overlapping segments and have similar allele 
substitution effects, suggesting similar genetic 
backgrounds. They may have been connected or 
may have influenced one another in recent history. 
Additionally, individuals sharing identical chro-
mosome segments by coancestry present greater 
phenotypic similarity than a random sample of 
individuals from a given population (Thompson, 
2013).

CONCLUSIONS

The APY can be applied to crossbred datasets if  
the core subset is selected randomly with consider-
ation of all available breeds or lines. Limited predic-
tion between the lines is possible, due to the shared 
Me between them. Increased predictivity requires 
the availability of phenotypes to accurately estimate 
effects for nonoverlapping segments. The number of 
overlapping segments can possibly be derived from 
the difference between eigenvalue decomposition of 
all lines/breeds separately and jointly.
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