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ABSTRACT

Compared to the available protein sequences of dif-
ferent organisms, the number of revealed protein–
protein interactions (PPIs) is still very limited. So
many computational methods have been devel-
oped to facilitate the identification of novel PPIs.
However, the methods only using the information of
protein sequences are more universal than those
that depend on some additional information or
predictions about the proteins. In this article, a
sequence-based method is proposed by combining
a new feature representation using auto covari-
ance (AC) and support vector machine (SVM).
AC accounts for the interactions between residues
a certain distance apart in the sequence, so this
method adequately takes the neighbouring effect
into account. When performed on the PPI data
of yeast Saccharomyces cerevisiae, the method
achieved a very promising prediction result. An
independent data set of 11 474 yeast PPIs was
used to evaluate this prediction model and the
prediction accuracy is 88.09%. The performance of
this method is superior to those of the existing
sequence-based methods, so it can be a useful
supplementary tool for future proteomics studies.
The prediction software and all data sets used
in this article are freely available at http://www.
scucic.cn/Predict_PPI/index.htm.

INTRODUCTION

Identification of protein–protein interactions (PPIs) is
crucial for elucidating protein functions and further
understanding various biological processes in a cell.
It has been the focus of the post-proteomic researches.
In recent years, various experimental techniques have been

developed for the large-scale PPI analysis, including yeast
two-hybrid systems (1,2), mass spectrometry (3,4), protein
chip (5) and so on. Because experimental methods are
time-consuming and expensive, current PPI pairs obtained
from experiments only cover a small fraction of the
complete PPI networks (6). Hence, it is of great practical
significance to develop the reliable computational methods
to facilitate the identification of PPIs.
So far, a number of computational methods have been

proposed for the prediction of PPIs. Some methods are
based on the genomic information, such as phylogenetic
profiles (7), gene neighbourhood (8) and gene fusion
events (9,10). Methods using the structural information of
proteins (11–13) and the sequence conservation between
interacting proteins (14,15) have been reported. Previously
predicted (known protein) domains that are responsible
for the interactions between proteins have also been con-
sidered too (16–20). However, all these methods cannot be
implemented if such pre-knowledge about the proteins is
not available. Several sequence-based methods (21–25)
have shown that the information of amino acid sequences
alone may be sufficient to identify novel PPIs, but the
highest accuracy of these methods is only �80%, such as
the methods by Martin et al. (22), and Chou and Cai (25).
So Shen et al. (26) have developed an alternative method
that yields a high prediction accuracy of 83.9%, when
applied to predicting human PPIs. This method considers
the local environments of residues through a conjoint triad
method, but it only accounts for the properties of one
amino acid and its proximate two amino acids. However,
the interactions usually occur in the discontinuous amino
acids segments in the sequence, and the information of
these interactions may be able to further improve the
prediction ability of the existing sequence-based methods.
In this article, a new method based on support vector

machine (SVM) and auto covariance (AC) was proposed.
AC accounts for the interactions between amino acids
within a certain number of amino acids apart in the
sequence, so this method takes neighbouring effect into
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account and makes it possible to discover patterns that
run through entire sequences. The amino acid residues
were translated into numerical values representing physi-
cochemical properties, and then these numerical sequences
were analysed by AC based on the calculation of covari-
ance. Finally, the SVM model was constructed using the
vectors of AC variables as input. The optimization experi-
ment demonstrated that the interactions of one amino
acid and its 30 vicinal amino acids would contribute to
characterizing the PPI information. The method was
tested by the PPI data of yeast Saccharomyces cerevisiae
and yielded a prediction accuracy of 87.36%. At last, this
model was further evaluated by an independent data
set of other yeast PPIs with the prediction accuracy
of 88.09%.

MATERIALS AND METHODS

Data collection and data set construction

The PPI data was collected from Saccharomyces cerevisiae
core subset of database of interacting proteins (DIP) (27),
version DIP_20070219. The reliability of this core subset
has been tested by two methods, expression profile reli-
ability (EPR) and paralogous verification method (PVM)
(28). At the time of doing the experiments, the core subset
contained 5966 interaction pairs. The protein pairs that
contained a protein with <50 amino acids were removed
and the remaining 5943 protein pairs comprised the final
positive data set. All proteins in the data set were aligned
using the multiple sequence alignment tool, cd-hit
program (29). The aligned result shows that among the
5943 protein pairs, the overwhelming majority of them
(5594 PPIs) have <40% pairwise sequence identity to one
another. Although there are only 349 pairs with �40%
identity in the training data set, the classifier will possibly
be biased to these homologous sequence pairs.
Since the non-interacting pairs were not readily avail-

able, three strategies for constructing negative data set were
used in order to compare the effects of different training
data sets on the performance of the method. The first
strategy has been described by Shen and colleagues (26)
in detail. The non-interacting pairs were generated by
randomly pairing proteins that appeared in the positive
data set. Here the negative data set based on this method is
called Prcp. The second is based on such an assumption
that proteins occupying different subcellular localizations
do not interact. The subcellular localization information of
the proteins in the positive data set was extracted from
Swiss-Prot (http://www.expasy.org/sprot/). The proteins
without subcellular localization information and those
denoted as ‘putative’, ‘hypothetical’ were excluded. The
remaining proteins were grouped into eight subsets based
on the eight main types of localization—cytoplasm,
nucleus, mitochondrion, endoplasmic reticulum, golgi
apparatus, peroxisome, vacuole and cytoplasm&nucleus.
Each subset contained 10 proteins at least. The non-
interacting pairs were generated by pairing proteins from
one subset with proteins from the other subset. It must
be pointed out that proteins from cytoplasm subset
and nucleus subset cannot be paired with those from

cytoplasm&nucleus subset. Here the negative data set
based on subcellular localization information is called
Psub. The two strategies must meet three requirements:
(i) the non-interacting pairs cannot appear in the whole
DIP yeast interacting pairs, (ii) the number of negative
pairs is equal to that of positive pairs and (iii) the contri-
bution of proteins in negative set should be as harmonious
as possible (24,26).

As a comparison, the third strategy was used for creat-
ing non-interacting pairs composed of artificial protein
sequences. It has been demonstrated that if a sequence of
one interacting pair is shuffled, then the two proteins can
be deemed not to interact with each other (30). Thus, the
negative data set was prepared by shuffling the sequences
of right-side interacting pairs with k-let (k=1,2,3) counts
using the Shufflet program (31).

Feature extraction and AC

Protein–protein interaction can be defined as four inter-
action modes: electrostatic interaction, hydrophobic inter-
action, steric interaction and hydrogen bond. Here seven
physicochemical properties of amino acids were selected
to reflect these interaction modes whenever possible and
they are hydrophobicity (32), hydrophicility (33), volumes
of side chains of amino acids (34), polarity (35), polariz-
ability (36), solvent-accessible surface area (SASA) (37)
and net charge index (NCI) of side chains of amino acids
(38), respectively. The original values of the seven physico-
chemical properties for each amino acid are listed in
Supplementary Table S1. They were first normalized to
zero mean and unit standard deviation (SD) according to
Equation (1):

P0
ij ¼

Pi, j � Pj

Sj
1

where Pi,j is the j-th descriptor value for i-th amino acid,
Pj the mean of j-th descriptor over the 20 amino acids and
Sj the corresponding SD. Then each protein sequence
was translated into seven vectors with each amino acid
represented by the normalized values of seven descriptors.

Artificial intelligence-based techniques such as SVM
and the neural network require a fixed number of inputs
for training. However, there are often unequal-length
vectors because of protein sequences with different
lengths. So auto cross covariance (ACC) was used to
transform these numerical vectors into uniform matrices.
As a statistical tool for analyzing sequences of vectors
developed by Wold et al. (39), ACC has been adopted by
more and more leading investigators for protein classifica-
tion (40–42). ACC results in two kinds of variables, AC
between the same descriptor, and cross covariance (CC)
between two different descriptors. In this study, only AC
variables were used in order to avoid generating too
large number of variants, compared to the limited number
of PPI pairs. Given a protein sequence, AC variables
describe the average interactions between residues, a
certain lag apart throughout the whole sequence. Here,
lag is the distance between one residue and its neighbour,
a certain number of residues away. The AC variables are
calculated according to Equation (2), where j represents
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one descriptor, i the position in the sequence X, n the
length of the sequence X and lag the value of the lag.

AClag, j ¼
1

n� lag

Xn�lag

i¼1

Xi, j �
1

n

Xn
i¼1

Xi, j

 !

� XðiþlagÞ, j �
1

n

Xn
i¼1

Xi, j

 !
2

In this way, the number of AC variables, D can be cal-
culated as D= lg�P, where P is the number of descrip-
tors and lg is the maximum lag (lag=1, 2, . . . , lg). After
each protein sequence was represented as a vector of AC
variables, a protein pair was characterized by concatenat-
ing the vectors of two proteins in this protein pair.

Model construction

The classification model for predicting PPIs was based on
SVM. Vapnik (43) has given a full description about how
to use SVM to do classification. The software libsvm 2.84
(http://www.csie.ntu.edu.tw/�cjlin/libsvm/) was employed
in this work. A radial basis function (RBF) was chosen
as the kernel function. Two parameters, the regulariza-
tion parameter C and the kernel width parameter g were
optimized using a grid search approach. In statistical
prediction, sub-sampling test and jackknife test are often
used as two cross-validation methods (44). Jackknife test
is deemed more objective and has been widely adopted by
many investigators (41,45–56) to test the power of various
predictors, but it will take much long time to perform the
jackknife test. Although it has been demonstrated that the
sub-sampling test cannot avoid arbitrariness according
to a recent comprehensive review (45) and a penetrating
analysis in (57), it is still a good validation method for the
large data set. Considering the numerous samples used in
this work, 5-fold cross-validation was used to investigate
the training set.

The final data set consisted of 11 886 protein pairs, half
from the positive data set and half from the negative data
set. Here three-fifths of the protein pairs respectively from
the positive and negative data set were randomly chosen
as the training set (7130 protein pairs) and the remaining
two-fifths (4576 protein pairs) were used as the test set.
An SVM model was built using the training set and 5-fold
cross-validation, and the performance of this model was
evaluated by the test set. In order to test the robustness of
the method, this process of random selection of training
set and test set, model-building and model-evaluating was

repeated five times. Thus, five training sets and five test
sets were prepared, so five models were generated. Three
parameters, sensitivity, precision and accuracy were used
to measure the performance of this method. They are
defined as follows:

Sensitivity ¼
TP

TPþ FN
3

Precision ¼
TP

TPþ FP
4

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
5

where TP, TN, FP and FN represent true positive, true
negative, false positive and false negative, respectively.

RESULTS AND DISCUSSION

Comparing the prediction performances of different
negative data sets

SVM models were constructed using the five negative
data sets derived from the three strategies. In this step,
lg was initialized to be 25 amino acids. Table 1 gives the
average prediction results of SVM models using different
negative data sets. Using 1-let, 2-let and 3-let shuffled
protein sequences as negative data set, the average predic-
tion accuracy is 79.25, 77.30 and 70.25%, respectively. The
trend that the prediction accuracy decreases with the
increase of k is resulted from the fact that the shuffling
procedure provides more native-like artificial proteins by
conserving higher-order biases. The model based on the
negative data set Prcp yields very low prediction accuracy
of 58.42%, while the model built with the same strategy
by Shen et al. (26) achieves a good performance with an
accuracy of 83.90%. It is probably due to the different
feature representation methods and data sources. Com-
pared to other four models, the model based on the nega-
tive data set Psub gives the best performance. The average
prediction accuracy, sensitivity and precision are 86.23,
85.22 and 87.83%, respectively, which indicate that this
method is successful in predicting PPIs using the non-
interacting pairs of non co-localized proteins as the nega-
tive data set. However, it is necessary to point out that
selecting non-interacting pairs of non co-localized protein
will lead to over-optimistic estimates of classifier accuracy,
as denoted by Ben-hur and Noble (58).

Selecting optimal lg

The use of AC with large lags will result in more variables
that account for interactions of amino acids with large

Table 1. The comparative results of the prediction performance of the method based on different negative data sets, respectively, using AC with lg of

25 amino acids

Negative data set Psub Prcp 1-let 2-let 3-let

Sensitivity (%) 85.22 41.76 79.29 69.81 60.74
Precision (%) 87.83 62.64 82.67 85.14 80.15
Accuracy (%) 86.23� 1.95 58.42� 1.68 79.25� 7.80 77.30� 12.38 70.25� 10.40

Psub is the negative data set of non-interacting pairs of non-co-localized proteins; Prcp is the negative data set derived from the method by Shen
et al. (26). The three negative data sets, 1-let, 2-let and 3-let are obtained by shuffling the protein sequences with k-let counts, k=1, 2, 3.
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distances apart in the sequence. The maximal possible lg
is the length of the shortest sequence (50 amino acids) in
the data set. In this study, several lgs were optimized
in order to achieve the best characterization of the protein
sequences. Using Psub as the negative data set, nine
models were constructed with nine different lgs, respec-
tively (lg=5, 10, 15, 20, 25, 30, 35, 40, 45). The prediction
results for the nine models are shown in Figure 1. As seen
from the curve, the prediction accuracy increases when lg
increases from 5 to 30, but it slightly fluctuates when lg
increases from 30 up to 45. There is a peak point with an
average accuracy of 87.36% and the lg of 30 amino acids.
It is concluded that AC with lg less than 30 amino acids
would lose some useful features of the protein sequences
and larger lgs could introduce noise instead of improving
the prediction power of the model. So the optimal lg is 30
amino acids.

Comparing the performance of AC with that of ACC

After represented by the seven descriptors, a protein pair
was converted into a 420-dimensional (2� 30� 7) vector
by AC with lg of 30 amino acids. However, when ACC

is used, a protein sequence will be a vector of 2940 dimen-
sion (2� 30� 7� 7). To reduce the calculating time, only
AC variables were used as the input of SVM. Here, we
also used ACC to transform the protein sequences and
compared the performance of the model based on ACC
with that of the model based on AC. From Table 2, we can
see that the model based on ACC transform gives good
results with the average sensitivity, precision and accuracy
of 89.93, 88.87 and 89.33� 2.67%, respectively. However,
when the dimension of vector space is dramatically
reduced from 2940 to 420 using AC transform, the perfor-
mance of the model based on AC is very close to that of
the model based on ACC. It proves that CC variables only
have a little contribution to the performance of the model
and AC variables are the principal components of ACC
variables.

So in this work, the optimal model was based on the
negative data set Psub and AC transform with lg of
30 amino acids. The prediction results for five test sets are
listed in Table 2. For all five models, the prediction
accuracies are all >86% with a relatively low SD of
1.38%. On average, the sensitivity, precision and predic-
tion accuracy of this model are 87.30, 87.82 and 87.36%,
respectively. These results are obtained based on the
original data set that contains homologous protein pairs.
However, for the statistical predictions, it is absolutely
necessary to avoid redundancy and homology bias in the
training data set (57). In order to determine the homology
effects, the non-redundant data set was constructed by
removing the protein pairs with �40% pairwise sequence
identity from the whole original data set. The performance
of the five models based on this non-redundant data set is
shown in Supplementary Table S2. The average prediction
accuracy of the non-redundant data set is 86.55%.

Two SVM parameters, C and g were optimized as 32
and 0.03125. So using the whole data set, the final predic-
tion model was built with the optimal parameters.

Performance on the independent data set

In order to evaluate the practical prediction ability of the
final prediction model, a large independent data set was
constructed. In DIP, the yeast data set contained 17 491
interaction pairs, out of which that which contained

Figure 1. The average prediction accuracy of the method with AC of
different lgs respectively.

Table 2. The prediction results of the test sets based on the negative data set Psub and lg of 30 amino acids

Test set TP FN TN FP Sensitivity (%) Precision (%) Accuracy (%)

ACC 1 2096 282 2226 152 88.14 93.24 90.87
2 2282 96 1741 637 95.96 78.18 84.59
3 2023 355 2291 87 85.07 95.88 90.71
4 2181 197 2099 279 91.72 88.66 89.99
5 2052 267 2194 184 88.77 91.98 90.52
Average 2138 240 2110 268 89.93 88.87 89.33� 2.67

AC 1 2161 217 1944 434 90.87 83.28 86.31
2 2215 163 1890 488 93.15 81.95 86.31
3 2062 316 2153 225 86.71 90.16 88.63
4 1890 488 2221 157 79.48 92.33 86.44
5 2052 326 2185 193 86.29 91.40 89.10
Average 2076 312 2079 299 87.30 87.82 87.36� 1.38

TP, true positive; FP, false positive; TN, true negative; FN, false negative; Psub is the negative data set of non-interacting pairs of non-co-localized
proteins.
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a protein with <50 amino acids and those appearing in the
training data set were all excluded. Among the remaining
11 474 protein pairs, 10 108 PPIs are correctly predicted
by the prediction model and the success rate is 88.09%.
In this article, the negative training set was generated by
selecting non-interacting pairs of non-co-localized pro-
teins. However, Ben-Hur and Noble (58) have denoted that
restricting negative examples to non-co-localized protein
pairs leads to a biased estimate of the accuracy of a PPI
predictor. So it is necessary to generate a test data set of the
non-interacting pairs with the same localization to test the
effects of this bias. The yeast proteins used in the positive
training set were assigned with the seven main types of
localization. The non-interacting protein pairs with the
same localization were generated and none of them has
occurred in the whole DIP yeast interacting pairs. The
performance of this method in predicting such negative
samples is summarized in Supplementary Table S3. For
cytoplasm and nucleus subsets, only 8000 non-interactions
were randomly selected from the large-scale data set,
respectively. The result shows that the prediction model is
able to correctly predict the non-interacting pairs of all
subsets with >80% accuracy, except the cytoplasm subset
with 77% accuracy and endoplasmic reticulum subset
with 69% accuracy. For all 27 204 non-interactions, the
total prediction accuracy is 81.46%. In addition, using the
model based on the non-redundant data set, the prediction
accuracy for 11 474 yeast PPIs is 93.25% and the result
of the non-interacting pairs is shown in Supplementary
Table S4. All these results demonstrate that this method is
also able to predict non-interacting pairs with the same
localization.

CONCLUSION

In this article, we developed a new method for predicting
PPIs only using the primary sequences of proteins. The
prediction model was constructed based on SVM and AC.
Shen et al. (26) have denoted that usually the methods
with no local environments of amino acids are not reliable
and robust, so they proposed a conjoint triad method to
consider the properties of each amino acid and its two
proximate amino acids. However, in most cases, the long-
range interactions are also important for representing the
PPI information. In this article, AC was used to involve
the information of interactions between amino acids a
longer distance apart in the sequence. A protein sequence
was characterized by a series of ACs that covered the
information of interactions between one amino acid and
its 30 vicinal amino acids in the sequence. So this method
adequately takes the neighbouring effect into account.
As expected, this method improved the prediction accu-
racy compared with the current methods. Moreover, three
different negative data sets were compared and the model
trained using non-interacting pairs of non co-localized
proteins yielded the best performance with a high accu-
racy of 87.36%, when applied to predicting the PPIs of
S. cerevisiae. Meanwhile, the final prediction model was
tested using the independent data set of the yeast PPIs
with a good performance. Overall, such a robust method

will be a useful tool to elucidate the biological function
of newly discovered proteins and to expedite the study of
protein networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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