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ABSTRACT

Motivation: Antibodies or immunoglobulins are proteins of paramount

importance in the immune system. They are extremely relevant as

diagnostic, biotechnological and therapeutic tools. Their modular

structure makes it easy to re-engineer them for specific purposes.

Short of undergoing a trial and error process, these experiments, as

well as others, need to rely on an understanding of the specific deter-

minants of the antibody binding mode.

Results: In this article, we present a method to identify, on the basis of

the antibody sequence alone, which residues of an antibody directly

interact with its cognate antigen. The method, based on the random

forest automatic learning techniques, reaches a recall and specificity

as high as 80% and is implemented as a free and easy-to-use server,

named prediction of Antibody Contacts. We believe that it can be of

great help in re-design experiments as well as a guide for molecular

docking experiments. The results that we obtained also allowed us to

dissect which features of the antibody sequence contribute most to

the involvement of specific residues in binding to the antigen.
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1 INTRODUCTION

The past two decades have seen monoclonal antibody (mAb)

therapy come to age. With430 molecules approved for clinical

practice and hundreds currently being tested, mAbs are rapidly

emerging as one of the most important classes of biological

therapeutics. Despite their benefits, mABs obtained from both

human and xenogeneic sources have some deficiencies, such as

short in vivo life, low stability and high chances to raise an im-

munogenic reaction in patients. To overcome these hurdles, a

number of strategies based on genetic recombination have been

developed and optimized, which allow the modification and

improvement of almost all the clinically relevant aspects of an

antibody molecule but require expensive and time-demanding

trial-and-error experimental procedures, a process that can be

speeded up by the understanding of the structure and binding

mode of the specific antibody (Morea et al., 2000). The antibody

molecule, with few exceptions, contains one or more tetramers of

two identical pairs of polypeptide chains, the heavy and the light

chains. Each chain consists of homologous domains, two for the

light chain (one variable and one constant domain) and four or

more for the heavy chain (one variable and three or more con-

stant domains). All the domains share a similar tertiary structure,

the so-called immunoglobulin fold, which is characterized by two

anti-parallel beta sheets. The antigen-binding site (ABS) is

mainly composed of six loops, three from the light and three

from the heavy chain [also known as the hypervariable (HV)

loops]. In a seminal study on antibody sequences (Wu and

Kabat, 1970), such large variability was exploited to correctly

define these HV sequence stretches as the complementarity deter-

mining regions (CDRs) in antibody recognition. Later studies

(Novotny et al., 1983) confirmed that this definition largely over-

laps with the structurally based definition of the ABS. A number

of other biological mechanisms are in place to increase the

sequence diversity of antibody regions containing the ABS to

enlarge the size of the antibody repertoire, and therefore the

number of different antigens that can be targeted by the

immune system (Di Noia and Neuberger, 2007; Schatz and

Swanson, 2011; Teng and Papavasiliou, 2007).
Analyses of the rapidly growing number of antibody crystal

structures in complex with their antigens pointed out that, even

though almost all the intermolecular interactions are made by

residues in the CDR (Kunik et al., 2012; MacCallum et al.,

1996), the specific interaction pattern of each antibody depends

on a subset of residues within or outside the CDR regions that

are important either to maintain the correct three-dimensional

(3D) conformation (Narciso et al., 2011) or to specify the phy-

sicochemical environment of the ABS.
Knowing the role played by a specific residue is a key aspect in

antibody rational design and engineering. This information can

be inferred by analyzing the 3D structure of the antibody mol-

ecule or, when the latter is not available, by building and analyz-

ing its 3D model. Modeling of antibody structures is a field that

has attracted much attention, and available methods can pro-

duce models of very good accuracy (Accelrys Software Inc.,

2012; Marcatili et al., 2008; Molecular Operating Environment,

2012; Sircar et al., 2009; Whitelegg and Rees, 2000). It should be

noted here that antibody structure prediction still has pitfalls,

mainly as far as the prediction of the conformation of the

third HV loop of the heavy chain is concerned (Kuroda et al.,

2012; Ramos, 2012; Sircar, 2012).

Despite the abundance of methods specifically devoted to the

prediction and analysis of antibodies (Lefranc et al., 2009), few

tools are available to provide information about the paratope,

i.e. the subset of residues that contact the antigen. Paratome

(Kunik et al., 2012) is a recently published online tool for*To whom correspondence should be addressed.
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identification of antigen-binding region that extends the defin-

ition of CDRs to include contacts outside the canonical ABS

region. However, Paratome does not provide any information

on the specific residues that are directly involved in the binding,

on the type of interaction (hydrogen bond, hydrophobic and

other non-bonded interactions) or on the atoms involved in the

interaction (main chain, side chain or both). This information is

of relevance for any type of antibody engineering experiment,

such as in silico maturation.
To overcome this problem, we developed prediction of

Antibody Contacts (proABC), a web server for predicting

which residues of an antibody are involved in recognizing its

cognate antigen. It is based on a machine-learning method

trained on sequence and sequence-derived features. Starting

from the antibody sequence alone, proABC estimates, for each

residue in its sequence, the probability that it interacts with the

cognate antigen. Three different types of interaction are con-

sidered and predicted separately (hydrogen bond, hydrophobic

and other non-bonded interactions). The results are displayed in

an intuitive manner allowing an easy yet comprehensive exam-

ination of the residues that could directly interact with the anti-

gen (also known as specificity determining residues). proABC

also builds a 3D model of the antibody, in which residues are

colored according to their contact probability.

The server is available at http://www.biocomputing.it/pro

ABC.

2 METHODS

2.1 Datasets

The two datasets used for training and testing the predictors contain 313

and 44 antibody-antigen complexes, respectively. We scanned the se-

quences of all the molecules contained in the Protein Data Bank (PDB)

database (October 15, 2012) using isotype-specific Hidden Markov

Model (HMM) profiles developed by us (Chailyan et al., 2012) and

found 1294 antibody molecules. Using the PISCES web server (Wang

and Dunbrack, 2003), we removed all the structures with a resolution

worse than 3 Å, ending up with 1139 molecules. Among them, we selected

all the immunoglobulins solved in complex with the antigen. This step

was performed by examining whether any atom not belonging to the

immunoglobulin light or heavy chain falls within a 10 Å radius from

the ABS barycenter. When such atoms were found, the antibody was

labeled as ‘bound’, and all the chains to which these atoms belong were

considered as ‘antigens’. Cases where non-immunoglobulin atoms were

present near the binding site but were not labeled with a different chain

identifier (usually small molecules) were manually examined to define the

antigen/hapten.

Of the initial set of 1139 immunoglobulin structures, 637 were found to

be in a bound state. We removed all complexes where the immunoglobu-

lin sequence shared a sequence identity higher than 95% with any other

using the cd-hit software (Li and Godzik, 2006), and ended up with 313

antibody structures. This dataset (hereafter called ‘RF dataset’) was used

for the cross-validated training of the predictors.

To make an unbiased comparison of our results with those of

Paratome, we also trained a predictor using a dataset obtained from

the RF dataset after removing all the complexes in which the antibody

sequence shares495% sequence identity with antibodies deposited in the

PDB database after February 2011. The antibodies released between

February 2011 and October 2012 were collected in a third dataset (here-

after called ‘Validation dataset’) and culled to remove redundancy both

within the dataset and with the other datasets.

2.2 Interaction identification

We calculated non-bonded contacts, hydrogen bonds and hydrophobic

interactions for all the complexes using the software Ligplot (Wallace

et al., 1995) with default parameters. We also categorized these three

groups of interactions according to which atoms of the residue (side

chain and/or main chain) contact the antigen. We obtained 18 different

interaction tables containing the number of non-bonded contacts,

h-bonds and hydrophobic interactions occurring between an antigen

and a residue, its main chain alone and its side chain alone for both

the heavy and the light chain. We used each table to train a different

predictor for every combination of interaction types (cont, h-bond,

hydro), location of interaction (whole, main, side) and Ig chain (H, L).

2.3 Random forest analysis

We aligned, following the Chothia numbering scheme, the heavy and the

light chain sequences in the RF dataset using HMM profiles that we

developed earlier (Chailyan et al., 2012). For the H3 alignment, we fol-

lowed the method described in Lefranc et al. (2003) and Morea et al.

(1998). The insertions were introduced at the center of the region com-

prised between the conserved residue Cys92 and Gly104 (Cys104 and

Gly119 according to the international ImMunoGeneTics information

system (IMGT) numbering).

Each position of the heavy and the light chain multiple alignment was

considered as a variable; therefore, we had 135 variables for the heavy

chain and 125 variables for the light chain. In other words, we predicted

the binding properties of an amino acid (the target site) taking into

account all the amino acids in the chains.

Each position can host one of the 20 amino acids or a gap, resulting in

a 21-letter alphabet. We adopted two different encodings for the amino

acids. The first strategy used the complete alphabet for all the variables

(predictor A). The second strategy (predictors B and C) used the complete

alphabet only for the target site and a reduced alphabet for all other

positions in the sequence. The B and C strategies differ for the inclu-

sion/exclusion of the antigen volume variable (see later in the text). We

chose a reduced alphabet based on the 11 amino acid classes described in

Pommie et al. (2004) and reported in Table 1. In this 12-letter alphabet

(11 amino acid classes and the gap symbol), specifically derived for im-

munoglobulins, aromatic residues such as tyrosine, tryptophan and

phenylalanine as well as glycine and proline are considered as different

classes. This allows us to capture the pivotal role played by these amino

acids both in antibody antigen recognition (Birtalan et al., 2008; Koide

Table 1. The eleven classes used to encode amino

acids in the reduced 12-letter alphabet adopted for

models B and C

Cluster Amino acid

Aliphatuc Ala, Val, Ile, Leu

Sulfur Cys, Met

Hydroxyl Ser, Thr

Acidic Asp, Glut

Basic His, Lys, Arg

Amide Asn

Phenylalanine Phe

Tryptophan Trp

Tyrosine Tyr

Glycine Gly

Proline Pro
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and Sidhu, 2009) and in maintenance of the ABS correct structural con-

formation (North et al., 2011).

2.4 Antigen volume

Several studies highlighted the correlation between antigen volume and

the shape of the ABS (Collis et al., 2003; Lee et al., 2006). Consequently,

we also evaluated the contribution of antigen volume to the overall per-

formance of our predictors. We determined the antigen volumes using the

3V software (Voss and Gerstein, 2010) and found that the distribution of

the volumes of the antigens in our RF dataset is bimodal with a median

value of 1538 Å3. Complexes were classified in two categories depending

on whether the antigen volume is larger or smaller than the median. This

variable was used in training predictors A and B.

2.5 Canonical structures and HV loop length

Hypervariable loops and their main chain conformations (canonical

structures) (Chothia and Lesk, 1987) are key parameters for antigen rec-

ognition. Five among the six loops (L1, L2, L3, H1, H2) adopt only few

canonical structures, while the H3 loop is the most variable in both se-

quence and structural conformation (Al-Lazikani et al., 1997; Morea

et al., 1998). We used the canonical structures and the HV loop length

as variables. These were obtained using the tools provided by the Digit

database (Chailyan et al., 2012).

We decided to use these variables that implicitly take into account the

3D structure of the antibody, rather than the modeled structure itself to

avoid biases arising from incorrect modeling of some parts of the mol-

ecule, especially the H3 loop.

2.6 Germline families

Germline heavy and light chain variable regions (VH and VL) gene germ-

line genes have been extensively used to study the biophysical properties

of different antibodies (Ewert et al., 2003) and for VH/VL packing pre-

diction (Chailyan et al., 2011a, b). We determined the source organism

and the germline family and included them as variables in our predictors

(Chailyan et al., 2012).

2.7 Random forest

In this study, we applied the R (v.4.6) implementation of the Random

Forest (randomForest package).

We built separate predictors for all the antibody positions that are in

contact with the antigen in at least 10 of the 313 complexes in our dataset.

For all the other positions, the proABC output is simply the frequency

with which the residue at that position interacts with the antigen in our

dataset. For each position, we generated 18 different predictors, taking

into account the type of interaction (non-bonded contact, h-bond, hydro-

phobic), the atoms involved in the interaction (whole residue, side chain

and main chain) and the Ig heavy and the light chain.

Predictors were built in two-steps. In the first step, we used all the

variables reported in Table 2 and fed a forest of 1500 trees. The total

number of variables to be tested at each tree node (mtry) was set to its

default value (corresponding to the square root of the total number of

variables).

Mean decrease Gini (MDG) values resulting from this first step were

ranked, and the average MDG was calculated (Chailyan et al., 2011a, b).

In the second step, we used only the features with an MDG value larger

than average MDG and built 1500 trees with default mtry. The entire

process was subjected to a 10-fold cross-validation.

Three different models, named A, B and C (Table 2), were developed

as described earlier in the text. For comparison, we also built a predictor

(naive predictor) trained on each position alone, independently of all the

others, using the 21-letter alphabet and building 100 trees. The results of

the 10-fold cross-validation were evaluated using the following statistical

measures: Precision, Accuracy, Recall, Matthew’s correlation coefficient

(MCC) and area under the curve (AUC).

2.8 Web interface

The web interface to the server is implemented in php and Jquery. Plots

and tables are generated with the R package GoogleVis v.0.33 (Gesmann

and de Castillo, 2011). Images are generated with Pymol (DeLano, 2002).

3 RESULTS

3.1 Performance evaluation

We compared the results of the three predictors with those ob-

tained using the naive predictor. The corresponding ROC curves

are shown in Figure 1, and the MCC and the AUC values for all

the models are shown in Table 3. In all cases, our models clearly

outperform the naive predictor indicating that information on

the whole antibody sequence effectively contributes to the pre-

diction performance. All predictors had similar values of AUC

and MCC for non-bonded contacts, whereas model B proved to

be better at predicting both hydrogen bonds and hydrophobic

interactions (See Supplementary Fig. S1). We obtained a slightly

worse performance for main chain hydrophobic interactions and

hydrogen bonds, possibly because of the small number of these

interactions present in our dataset.
Despite the importance of antigen volume for the prediction of

some specific positions (as discussed later), predictor C still has a

good overall classification ability. This gave us the possibility to

include the antigen volume as an optional feature in the proABC

web server, so that we use model B when the antigen volume is

known and model C in all other cases.

3.2 Variable importance

As shown in the previous section, the predictors that use all the

variables (sequence, antigen volume, canonical structures and

germline families) greatly outperform the naı̈ve one that only

takes into account the contact frequency and residue identity

at the target site.

Table 2. Random forest models

Model Sequence Antigen

Volume

CDRs

Lengths

Germline Position

A 20þ gap Yes Yes Yes 20þ gap

B 11þ gap Yes Yes Yes 20þ gap

C 11þ gap No Yes Yes 20þ gap

Naive No No No No 20þ gap

Note: The different sets of variables were adopted to train models A, B, C and the

naı̈ve predictor. All predictors use the complete amino acid alphabet to encode the

residue at the specific position for which the interaction is being predicted (‘Position’

column). The complete alphabet is used in model A to encode the whole sequence,

while the reduced 12-letter alphabet described in Table 1 is adopted in models B and

C (‘Sequence’ column). Models A, B and C share the same sequence-derived fea-

tures (canonical structures, HV loop length and germline family). The ‘Antigen

Volume’ binary variable, which labels antigens with a volume larger or smaller

than 1538 Å3, is used only in models A and B.
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Table 4 lists the 20 most important variables and their relative

contribution to the correct prediction of the target site inter-

actions. Supplementary Table S1 includes the complete list of

variables and their relative importance. The analysis of the

most important variables for specific target sites provides inter-

esting insights into the antibody ABS and the process of antigen

recognition. The antigen volume, for instance, is critical to cor-

rectly predict interactions with the N-terminals and C-terminals

of the H1 and L1 loops, whereas residues in the center of these

loops are influenced by the antigen volume to a significantly

lower extent. These findings agree with a recently published ana-

lysis of the ABS anatomy (Raghunathan et al., 2012).

It has been noticed (Collis et al., 2003) that the H3 loop packs

with L1 in the ABS reducing the accessibility of its C-terminal

residues. Our data support this observation, as we observe a

correlation between the H3 length and the number of contacts

in the C-terminal region of L1, the shorter the loop, the

higher the number of contacts (CL1¼�0.06H3Lenþ 1.61,

P¼ 2.16� 10�5, Pearson correlation coefficient¼ 0.24).

3.3 Comparison with other methods

To the best of our knowledge, proABC is unique in its purpose.

The most similar tool is Paratome (Kunik et al., 2012), an online

tool for antigen-binding region identification. The performance

of the two algorithms is evaluated here using the independent

validation set described in Methods section. The results are sum-

marized in Table 5. Paratome shows a very high total recall at

the expense of low precision and specificity. This can be ex-

plained considering the somewhat large threshold that

Paratome uses to define contacts (6.0 Å cut-off). This choice is

due to the fact that Paratome aims at defining a plausible region

of antigen binding rather than at predicting residue-specific inter-

actions. On the other hand, proABC, despite its lower recall,

outperforms Paratome in terms of precision and specificity.

The MCC of the two methods shows that, overall, proABC per-

forms significantly better.

3.4 Web server interface and 3D model

We integrated our predictors and several other tools, including a

routine to build a 3D model of the antibody (Marcatili et al.,

2008), in a web server with a user-friendly interface (http://www.

biocomputing.it/proABC). The web server includes six different

pages: (i) Home; (ii) Plot; (iii) Summary; (iv) High Quality (HQ)

figures; (v) Structure; and (vi) Logs.

The main page allows the user to input the light and the heavy

chain sequences and, optionally, the antigen volume. The input is

pre-processed to obtain all the information that can be derived

from the sequence, namely germline families, canonical structures

and length of each HV loop, shown in the Summary page, and

passed to the relevant predictor. The web server uses predictor B

(that has the best overall performance) if the user provides infor-

mation on the antigen volume (smaller or larger than 1538 Å3),

and predictor C if no information on the antigen volume is given.

The Plot page reports the results as graphs/tables listing the prob-

ability of each residue to interact with the antigen. The Summary

page also includes links to download the results and the

3D model. The Image and Structure tabs allow the users to visu-

alize the antibody 3D model and high-quality images of the anti-

body in which residues are colored according to their contact

Table 3. Matthews correlation coefficient and area under the curve values for each classifier and each type of interaction

Non-bonded contacts (%) Hydrogen bonds (%) Hydrophobic interactions (%)

All Side Main All Side Main All Side Main

AUC

A 84.8 83.7 82.2 73.8 73.3 75.9 79.4 79.6 70.8

B 85.1 85.0 82.8 76.3 76.6 76.1 80.7 80.5 72.2

C 84.7 84.5 82.6 75.9 75.9 75.2 80.1 80.4 71.3

Naive 77.7 78.0 69.8 64.8 64.7 58.8 72.0 73.6 59.9

MCC

A 51.9 48.2 41.5 25.5 26.0 19.8 36.2 36.6 11.2

B 52.2 51.0 40.2 26.9 27.0 22.0 38.5 38.4 14.1

C 51.2 49.8 40.4 26.9 25.3 20.8 37.5 38.0 14.2

Naive 41.4 41.1 25.4 18.5 20.2 12.6 30.0 33.5 0.0

Fig. 1. Non-bonded contact prediction ROC curves for models A,B and

C and the naive predictor
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probability (Fig. 2). The Log page shows the current job status,

indicating which operations are being performed.
Figure 3 shows an example of application of the server. The

selected case is that of the humanized antibody Gevokizumab,

the crystal structure of which (both free and in complex with

its antigen interleukin-1 beta) has been recently solved

(Blech et al., 2013), but was obviously not used for the prediction.

None of the antibodies in our dataset shares 475% sequence

identity with Gevokizumab. Figure 3 and Supplementary Table

S2 show the probabilities assigned by proABC to residues in the

Gevokizumab light and heavy chain sequences and highlights the

correct and incorrect predictions obtained in this example (con-

sidering a residue as predicted to be in contact if the correspond-

ing probability is40.5). As can be seen, most of the predictions

are correct. proABC predicts a marginal role for the H1 loop and

a prominent role of H2 in antigen recognition. Interestingly, the

L3 loop is predicted to be the most important light chain region

for antigen binding, with four contacts and two rarely observed

main chain hydrogen bonds. This is what is observed in the crys-

tal structure of the complex.
On the other hand, two contacts in L1 (position 27 and 28)

were not predicted with high probability in this case. These two

residues are rarely observed to be in contact with the antigen (13

and 18 cases in our dataset, respectively) and therefore are very

difficult to classify correctly, highlighting the importance of

increasing the number of solved structures of antibody com-

plexes to further improve the performance of our method.

4 CONCLUSIONS

In this article, we described a method for predicting the prob-

ability of site-specific interactions between an antibody and its

cognate antigen that reaches specificity and recall values of the

order of 80%. This implies that the predictions are sufficiently

accurate not only for investigating the properties of specific anti-

bodies, but also as input for the design of novel antibodies, for

example, in affinity maturation projects, and as a guidance for

docking methods if the structure of the antigen is known or can

be modeled.

Interestingly, our data show that the prediction accuracy im-

proves when the complete sequence of the antibody rather than

Fig. 2. Three-dimensional model generated by the proABC server for

Gevokizumab. Residues are colored according to their predicted contact

probabilities (light gray to blue gradient for the light chain, dark gray to

purple gradient for the heavy chain)

Table 4. The top 20 variables ordered according to their overall

importance

Heavy chain Light chain

Variable Importance Variable Importance

Germline family

VL

208,56 Germline family

VH

111,16

Position 140,90 Germline family VL 90,48

Germline family

VH

107,98 Position 82,35

H:95þ 1 97,65 L:96 70,88

H:95þ 2 93,78 H3 Length 68,93

H:101� 3 91,44 L:92 51,37

H:95 87,91 L:50 51,37

L1 Canonical

structure

87,62 L:94 51,28

H:95þ 3 86,54 L:91 49,73

H:101� 4 84,89 L:30 41,40

H:101� 2 82,69 L:93 39,71

H:50 75,04 L:55 39,52

H:95þ 4 67,92 L:32 38,75

H:33 66,77 L:34 37,53

H:52 62,25 L1 Canonical structure 37,26

H:53 58,77 L3 Canonical structure 30,07

H:56 58,33 H2 Canonical structure 28,34

H:101� 1 52,05 L:89 26,85

Antigen volume 50,83 Antigen volume 25,70

H:58 49,05 L:30 24,96

Note: The variable importance has been calculated by summing the mean decrease

Gini value of the variable for each position. H3 residues are numbered according to

their relative position with respect to H:95 and H:101 (i.e. H:95, H:95þ 1,

H:95þ 2, . . . , H:101-2, H:101-1, H:101).

Table 5. Comparison between proABC and Paratome

Index proABC Paratome

True positives 624 778

False positives 286 1386

True negatives 1264 164

False negatives 156 2

Recall 80% 100%

Precision 69% 36%

Specificity 82% 11%

MCC 60% 19%

Note: Comparison of proABC and Paratome in terms of true positives, true

negatives, false positives, false negatives, MCC, recall, precision and specificity of

the two methods.
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that of its binding site alone is taken into account. We could also

derive information about which position/features of the antibody

sequence influence the participation to the binding interface of

specific sites, thus permitting a detailed structural analysis of the

complex interplay between the framework and ABS in determin-

ing the specificity of the interaction, an issue of interest from

both a theoretical and practical point of view.

The main advantages of the method presented here are that (i)

it relies only on the sequence of the variable fragment of the

antibody of interest, (ii) it is able to take into account the size

of the antigen when the information is available and (iii) it can be

automatically updated as new data on the structure of antibody

complexes become available.

The associated server is straightforward to use and provides

publication-ready output images as well as information on

the properties of the analyzed immunoglobulin, including the

determination of the corresponding germline family and the

canonical structures and length of each HV loop. It also permits

the user to obtain a model of the 3D structure of the antibody

quickly and easily by using a well-tested and very accurate

method (Marcatili, et al., 2008). The server (http://www.

biocomputing.it/proABC) is free and open to all users and

there is no login requirement.
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