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Abstract
Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide.

Adult-plant resistance (APR) is an efficient approach to provide long-term protection of

wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level

of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this

cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Lin-

mai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two

sites during the 2011–2012, 2012–2013 and 2013–2014 cropping seasons, providing data

for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used

to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight

QTL, namelyQYr.caas-2AL,QYr.caas-2BL.3,QYr.caas-3AS, QYr.caas-3BS,QYr.caas-
5DL, QYr.caas-6AL, QYr.caas-7AL andQYr.caas-7DS.1, respectively. All exceptQYr.caas-
2BL.3 resistance alleles were contributed by Zhong 892.QYr.caas-3AS andQYr.caas-3BS
conferred stable resistance to stripe rust in all environments, explaining 6.2–17.4% and

5.0–11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences

tightly linked to QTL for APR against annotated proteins in wheat and related cereals

genomes identified two candidate genes (autophagy-related gene and disease resistance

gene RGA1), significantly associated with stripe rust resistance. These QTL and their

closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP)

technology, are potentially useful for improving stripe rust resistances in wheat breeding.
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Introduction
Stripe rust (yellow rust, YR), caused by Puccinia striiformis f. sp. tritici (Pst), is a very destruc-
tive fungal disease of common wheat (Triticum aestivum), and it is prevalent in temperate or
medium altitude and maritime wheat-growing regions, such as China, India, Pakistan, Austra-
lia, USA, Mexico, and northwestern Europe [1,2]. Yield losses caused by YR ranged from 10 to
70% and over 20 significant YR epidemics were documented worldwide during 1954–2010 [3].
During recent years, YR has occurred in about 4.2 million ha and caused heavy yield losses in
the southwestern and northwestern China annually [4–6].

Although YR can be controlled by fungicides, this may be limited by management and
financial constraints. Resistant cultivars are an economically effective and environmentally
friendly approach to control the disease [7]. Resistance to YR can be categorized broadly into
all-stage resistance and adult-plant resistance. Generally, all-stage resistance is conferred by
major genes that are race-specific in effect and qualitatively inherited [8–10]. However, such
resistance is usually not durable and readily overcome by new pathogen races. A singly
deployed all-stage resistance gene is effective only for about 3–5 years on average [8]. In con-
trast, adult-plant resistance (APR) is more likely conferred by minor genes that are typically
race non-specific, inherited quantitatively, and has greater potential for durability [11–12]. An
APR gene usually contributes partial resistance and combinations of 4–5 APR genes act addi-
tively to confer adequate levels of durable resistance [13–14]. For example, Yr18 and 2–4 addi-
tional minor genes have provided effective resistance to YR in China and other countries for
over 80 years [15–17]. APR is being increasingly emphasized in breeding for rust resistance
worldwide [18–19] mainly because of its potential but not exclusive durability [20].

To date, 70 YR resistance genes at 67 wheat loci have been formally catalogued [18–21].
Most of these genes are race-specific, and in China, the majorities have been overcome by new
races [22]. APR genes at 13 loci have been cataloged, namely, Yr16 [23], Lr34/Yr18/Pm38/Sr57
[24–25], Lr46/Yr29/Pm39/Sr58 [26–27], Sr2/Yr30 [28], Yr36 [29–30], Yr39 [31], Lr67/Yr46/
Pm46/Sr55 [32], Yr48 [33], Yr49 [34], Yr52 [35], Yr54 [36], Yr59 [37], and Yr62 [38]. Some
such as Lr34/Yr18/Pm38/Sr57, Lr46/Yr29/Pm39/Sr58, Sr2/Yr30 and Lr67/Yr46/Pm46/Sr55 con-
fer pleiotropic disease resistances. Lr34/Yr18/Pm38/Sr57 [30], Yr36 [15], and Lr67/Yr46/Pm46/
Sr55 (Lagudah, pers. comm.) were cloned and appear to have quite different molecular struc-
tures to the currently cloned all-stage rust resistance genes.

During the last 15 years more than 160 QTL that reduce YR severity were assigned to 49
chromosomal regions [18,21]. Even allowing for commonality this represents a high level of
genetic diversity. Given that combinations of several such QTL (genes) are required to obtain
sufficiently high levels of resistance [7,14], the expected reward is durability. Many studies have
shown that such resistance can be obtained by visual selection in disease nurseries, but clearly
such selection is greatly aided (perhaps even circumvented) by use of molecular markers.
Molecular markers can be used in programs that aim to combine both APR and all-stage resis-
tance where it is impossible or extremely difficult to visually assess APR effects in the presence
of all-sage resistance genes.

Marker platforms used in the past for linkage map construction and QTL mapping included
restriction fragment length polymorphism (RFLP) [7,39–40], amplified fragment length poly-
morphism (AFLP) [41–42], simple sequence repeats (SSRs) [43–45] and diversity arrays tech-
nology (DArT) [22,46]. However, the low level of polymorphism and the large genome size of
common wheat ultimately limits mapping resolution. SNP arrays that provide a large number
of genome-wide polymorphic, co-dominant markers for high-throughput, cost-effective geno-
typing are ideal for QTL mapping. The high-density linkage maps constructed with SNP mark-
ers can be used for high-resolution QTL analysis and identification of candidate genes

Genome-Wide Linkage Mapping of QTL for APR to Stripe Rust

PLOS ONE | DOI:10.1371/journal.pone.0145462 December 29, 2015 2 / 14

Competing Interests: The authors have declared
that no competing interests exist.



associated with quantitative traits [47–48]. The recently developed wheat 90K SNP array, com-
prising 81,587 SNPs with a dense coverage of the wheat genome [49], can be used for efficient
QTL mapping and construction of high-density maps [47–48,50].

Zhong 892 is a good semi-dwarf winter wheat line, exhibiting a moderate level of resistance
to YR and powdery mildew in the field, whereas it is susceptible at the seedling stage, indicating
a typical APR. However, little is known about the inheritance of resistance to YR in this culti-
var. The objectives of the current study were to identify APR QTL to YR in a Linmai 2 × Zhong
892 RIL population using high-density SNP markers, and to assess the stability of detected
QTL across environments.

Materials and Methods

Plant materials
A total of 273 F2:6 RILs were developed from the Linmai 2 × Zhong 892 cross. Zhong 892 and
Linmai 2 were highly susceptible to currently prevalent Pst races CYR29, CYR31, CYR32, and
CYR33 at the seedling stage, whereas they showed moderately resistant and moderately suscep-
tible, respectively, at the adult-plant stage in the field. The RILs were generated through single
seed descent, where one random spike was harvested in each generation and advanced to the
next generation.

Field trials
The F2:6 RILs and their parents were evaluated for APR to YR at the Pixian experimental sta-
tion of Sichuan Academy of Agricultural Sciences (30°050N, 102°540E) in Sichuan province by
Dr. Ling Wu (a co-author of this manuscript, and a wheat breeder in Sichuan Academy of
Agricultural Sciences), and the Qingshui experimental station of Gansu Academy of Agricul-
tural Sciences (34°050N0, 104°350E) in Gansu province by Dr. Bin Bai (a co-author of this man-
uscript, and a wheat breeder in the Qingshui experimental station) during the 2011–2012,
2012–2013 and 2013–2014 cropping seasons, providing data for five environments. Both loca-
tions are hotspots for YR in China with ideal conditions for rust infection and spread. Field tri-
als were conducted in randomized complete blocks with three replicates at each location. Each
plot consisted of a single row with 1.5 m length and 25 cm between rows. Approximately 50
seeds were sown in each row. Every tenth row was planted with the highly susceptible control
cv. Huixianhong. To ensure ample field inoculum, infection rows of cv. Chuanyu 12 and Huix-
ianhong surrounded the experimental areas at Pixian and Qingshui, respectively. Inoculations
at both sites each year were performed at the three-leaf stage with a mixture of prevalent Chi-
nese Pst races, CYR29, CYR31, CYR32 and CYR33, using spray method (around Jan. 5 at Pix-
ian and April 10 at Qingshui). Maximum disease severities (MDS) [51] of RILs were scored
18–20 d post-flowering, when YR severities on the control Huixianhong reached a maximum
level around 8–10 April at Pixian and 7–10 June at Qingshui.

Genotyping
Genomic DNA was extracted from five bulked leaves each line using a modified CTAB proce-
dure [52]. All 273 lines and their parents were genotyped with the Illumina 90K iSelect assay
[49] by Capital Bio Corporation (Beijing, China; http://www.capitalbio.com). Genotypic clus-
ters for each SNP were determined using the manual option of Genome Studio version 1.9.4
with the polyploid clustering version 1.0.0 (Illumina; http://www.illumina.com), based on data
from all genotypes. The default clustering algorithm implemented in Genome Studio was ini-
tially used to classify each SNP call into three distinct clusters corresponding to the AA, BB and
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AB genotypes expected for bi-allelic SNPs. These SNP markers were described by Wang et al.
[49] and only co-dominant SNP markers were used for genetic mapping. The chromosome
location of each SNP was based on wheat SNP consensus map [49].

Statistical analysis
The MDS were evaluated in five environments during three cropping seasons, and data from
each environment and the arithmetic means for each line were used for analysis of variance
(ANOVA) and subsequent QTL mapping. ANOVA and computation of correlation coefficients
were performed by the SAS V9.0 (SAS Institute Inc., Cary, NC). The contributions of lines
(RILs) and environments were evaluated by PROCMIXED, where environments were treated
as fixed effects, and lines, line × environment interaction and replicates nested in environments
were all treated as random. The information in the ANOVA table was used to calculate broad
sense heritability (hb

2) for YR: hb
2 = σg

2/(σg
2 + σge

2/r + σε
2/re), where σg

2, σge
2 and σε

2 were esti-
mates of genotypic, genotype (line) × environment interaction and residual error variances,
respectively, and e and r were the numbers of environments and replicates per environment.

Genetic linkage map construction and QTL analysis
The genotypic data for SNP markers were used to construct genetic linkage maps with the soft-
ware Joinmap V4.0 (http://www.kyazma.com) [53] and maps were made by MapChart V2.2
(http://www.earthatlas.mapchart.com) [54]. Map distances (in centimorgans, cM) were calcu-
lated based on the Kosambi mapping function [55].

Composite interval mapping (CIM) was performed using the software QTL Cartographer
V2.5 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) [56]. The walking speed chosen for all
QTL was 2.0 cM, with P = 0.001 in stepwise regression. Based on 2,000 permutations at a prob-
ability of 0.01, the LOD score to declare significant QTL for MDS was 2.0–2.5 in all five envi-
ronments and the averaged data, thus the LOD score 2.5 was set as the threshold for declaring
significant QTL. The proportion of phenotypic variance (R2) explained by a single QTL was
determined by the square of the partial correlation coefficient, and the total R2 in a simulta-
neous fit was calculated through multiple linear regressions using the SAS REG procedure
(SAS Institute Inc., Cary, NC). Individual environment QTL overlapping within a 20 cM inter-
val were considered common. In this study, the genotype of Zhong 892 was defined as 2, and
the genotype of Linmai 2 was defined as 0. Thus, the allele from Zhong 892 reduced YRMDS
when the additive effect was negative. QTL detected in at least two environments were included
in the results.

Search for candidate genes for stripe rust resistance
In order to identify candidate genes involved in QTL for stripe rust resistance detected in the
Linmai 2/Zhong 892 population, the EST sequences (about 50 bp upstream and 50 bp down-
stream) corresponding to the SNP markers [49] located in the regions underlying the QTL
were used to BLAST against the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/) and
European Nucleotide Archive (http://www.ebi.ac.uk/ena). BLAST hits were filtered to an e-
value threshold of 10−5 with an identity higher than 75%.

Results

Phenotypic evaluation
The mean MDS of the susceptible control Huixianhong were over 80% across all environments.
The averaged MDS for the 273 RILs were 48.3%, 44.5%, 56.6%, 35.2% and 42.8%, ranging
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between 5.0–95.1%, 2.0–90.0%, 3.1–96.2%, 3.1–74.5% and 2.6–84.2% in Pixian 2012, Pixian
2013, Pixian 2014, Qingshui 2013 and Qingshui 2014, respectively (S1 Fig), indicating poly-
genic variation. Zhong 892 was rated with a mean MDS of 23.3%, 34.6%, 40.7%, 25.0% and
20.0% in Pixian 2012, Pixian 2013, Pixian 2014, Qingshui 2013 and Qingshui 2014, respec-
tively, whereas Linmai 2 had mean MDS of 53.2%, 46.8%, 60.2%, 38.3% and 42.7% in the
five environments, respectively (S1 Fig). The MDS were significantly correlated (0.47–0.61,
P< 0.01) across environments, and the broad-sense heritability of YR MDS was 0.85.
ANOVA of MDS revealed significant differences (P< 0.01) among RILs, environments, and
line × environment interactions (Table 1).

QTL for APR to YR
Eight QTL were identified on different chromosomes, namely QYr.caas-2AL, QYr.caas-2BL.3,
QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-
7DS.1 (Table 2; Fig 1). The resistance alleles of the QTL on 2AL, 3AS, 3BS, 5DL, 6AL, 7AL and
7DS were contributed by Zhong 892, whereas QYr.caas-2BL.3 was from Linmai 2.

A major and consistent QTL for YR resistance, QYr.caas-3AS, was flanked by Kukri_r-
ep_c102131_891 and Kukri_c96747_274 with genetic distances of 2.2 and 1.5 cM, respectively,
and explained 9.2%, 6.2%, 13.0%, 17.4%, 6.5% and 15.8% of the phenotypic variances in Pixian
2012, Pixian 2013, Pixian 2014, Qingshui 2013 Qingshui 2014 and the averaged MDS, respec-
tively. The second consistently detected QTL with a relatively large effect, QYr.caas-3BS,
between IAAV5662 and BS00056257_51 with genetic distances of 1.1 and 1.2 cM, respectively,
explained 5.0 to 11.5% of the phenotypic variances in five environments and the averaged
MDS. The third QTL, QYr.caas-7AL, between Kukri_c41603_111 and Excalibur_c25335_306
with genetic distances of 2.0 and 1.2 cM, respectively, accounted for 12.0%, 7.7%, 5.0% and
6.6% of the phenotypic variances in Pixian 2013, Qingshui 2013, Qingshui 2014, and the aver-
aged MDS, respectively. The fourth QTL, QYr.caas-7DS.1, between tplb0024a09_2369 and
RAC875_c29314_291 with genetic distances of 10.0 and 2.3 cM, respectively, explained 7.8%,
6.7%, 5.7% and 9.1% of the phenotypic variances in Pixian 2013, Pixian 2014, Qingshui 2013,
and the averaged MDS, respectively (Table 2; Fig 1).

Three QTL, QYr.caas-2AL, QYr.caas-2BL.3 and QYr.caas-6AL, were found in Pixian 2014,
Qingshui 2013 and the averaged MDS, and explained 4.4–7.2%, 5.6–7.6% and 4.3–7.8% of the
phenotypic variances, respectively (Table 2; Fig 1). QYr.caas-2AL was flanked by
wsnp_Ex_c16627_25162391 and BS00092550_51 with genetic distances of 6.5 and 1.6 cM,
respectively; QYr.caas-2BL.3 was located in the interval of Ra_c21099_1781 and IACX8602
with genetic distances of 2.0 and 0.9 cM, respectively; QYr.caas-6AL was mapped on chromo-
some 6AL between Ku_c45494_267 and BS00040166_51 with genetic distances of 0.8 and 7.3
cM, respectively (Fig 1).

QYr.caas-5DL flanked by wsnp_Ex_c508_1008029 and wsnp_Ex_c22984_32207214 with
genetic distances of 1.7 and 4.1 cM, respectively, explained 5.8%, 6.5% and 4.7% of the pheno-
typic variances in Pixian 2013, Qingshui 2013, and the averaged MDS, respectively (Table 2;
Fig 1).

To identify the combined effects of these QTL, the flanking markers were used to select
RILs possessing the corresponding QTL. Among 42 combinations (genotypes) of eight resis-
tance QTL, a significant additive effect for stripe rust was found in the RILs possessing 5–7
QTL (S1 Table). Results indicated that the more resistance genes a line possessed, the lower the
disease severity was (Fig 2). When 5–7 genes were combined in a line, the MDS was less than
30% on average (Fig 2).
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Discussion

Comparisons of QTL with previous reports
QYr.caas-3AS. The QYr.caas-3AS was derived from Zhong 892, and it was detected con-

sistently across all environments. A number of QTL were previously found on chromosome 3A
[57–59]. As this is a first report of a QTL for YR resistance on chromosome 3AS, it is likely to
be a new gene.

QYr.caas-3BS. Several QTL for YR resistance on chromosome 3BS were reported previ-
ously [24,27,33,40,42,60–61]. Most of these QTL are probably in the same region [57]. For
example, loci Xfba190 [40], and Xgwm493 [60] are close to Xgwm389 and Xgwm533 [24]. Yr30
[40], Sr2 [62], pseudo-black chaff [63] and a Fusarium head blight resistance gene Fhb1 [64]
were all closely linked to Xgwm533. QYr.caas-3BS derived from Zhong 892 showed consistent
resistance to YR across all environments. The SNP markers closely linked to QYr.caas-3BS
were IAAV5662 and BS00056257_51. SSR marker Xgwm533 and SNP marker BS00056257_51
belong to the same bin (3BS9-0.57–0.78). The molecular marker for csSr2 [65] was not present
in Zhong 892 indicating absence of Sr2/Yr30. Nevertheless, QYr.caas-3BS was likely to be the
same as some of the QTL described above. Further study is needed to test the allelism between
QYr.caas-3BS and other previously reported QTL.

QYr.caas-5DL. Suenaga et al. [24] identified QYr.jirc-5DL on chromosome 5DL closely
linked to SSR locus Xwmc215; this explained 3.9% of the phenotypic variance. Imtiaz et al.
[66] found QYr.nsw-5DL on chromosome 5DL, closely linked to Xgwm583, explaining 6.1%
of the phenotypic variance. The SSR markers Xwmc215 and Xgwm583, and the SNP marker
wsnp_Ex_c22984_32207214 belong to the same bin (5DL5-0.76–1.00). Thus, QYr.caas-5DL
was likely to be the same as the QTL described previously.

QYr.caas.7AL. Dedryver et al. [42] identified an APR QTL QYr.inra-7A on chromosome
7A in wheat cultivar Recital; it was located between AFLP markers Xbcd129b and Xfba127c.
Zwart et al. [67] identified QYr.sun-7A on chromosome 7A in wheat cultivar CPI133872; this
was mapped between AFLP markersWpt-7214 andWpt-4877. Due to different kinds of mark-
ers used in those and current studies, it is difficult to determine whether they are the same
or not.

QYr.caas-7DS.1. The pleiotropic APR gene Lr34/Yr18/Pm38 located on the short arm of
chromosome 7D [68–70], and closely linked to Xgwm295. Many other studies also detected
QTL in this region, explaining 20–40% of the phenotypic variances [16,24,40,67,71–76]. The
closest marker BS00022203_51 linked to QYr.caas-7DS.1 in bin 7DS5-0.36–0.61 is near
Xgwm295 in bin 7DS4-0.61–1.00. The available information indicates that QYr.caas-7DS.1 is
different from Yr18. Firstly, tests with the STS marker csLv34 [25] were negative and secondly,
Lr34/Yr18/Pm38 is linked with the phenotypic marker LTN (leaf tip necrosis), which was not
observed in the present materials under conditions where LTN was clearly expressed in other

Table 1. Analysis of variance of MDS for stripe rust response in the Linmai 2 × Zhong 892 RIL population.

Source of variance Df Mean square F value

Replicate (environment) 2 1571 8.8**

Environment 4 38028 212.0**

Line 272 3125 17.4**

Line × Environment 1088 311 1.7**

Error 1654 179

** Significant at P < 0.0001

doi:10.1371/journal.pone.0145462.t001
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Fig 1. LOD contours obtained by composite interval mapping of QTL for stripe rust response in the
Linmai 2 × Zhong 892 RIL population. Pixian 2012, Pixian 2013, Pixian 2014, Qingshui 2013, Qingshui
2014, and averagedMDS are indicated with deep blue, red, purple, green, light blue and orange colours.
LOD thresholds of 2.5 are indicated by solid vertical lines.

doi:10.1371/journal.pone.0145462.g001
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materials. In addition, the effect of QYr.caas-7DS.1 on YR response was much less than nor-
mally observed on materials with Yr18.

Candidate genes related to stripe rust resistance
With the rapid development of gene chip technologies in wheat, the SNP markers play more
and more important role in the development of high-density genetic linkage maps [77] and
genetic diversity studies [78]. The wheat 90K SNP arrays were mainly developed from
expressed genes, and the availability of EST sequence data corresponding to SNP markers
makes it possible to identify candidate genes by BLAST against the database of common wheat,
Brachypodium and other cereals genome sequences.

The bioinformatics analysis of SNP markers tightly linked to stripe rust resistance QTL indi-
cated that the closest marker IACX8602 for QYr.caas-2BL.3 corresponded to the autophagy-
related gene [79]. The autophagy-related proteins ATG4 and ATG8 are crucial for autophagy
biogenesis and play important role in resistance response to fungus infection, such as Blumeria
graminis f. sp. tritici [79]. Another SNP marker on chromosome 7DS (RAC875_c29314_291)
corresponded to a putative disease resistance gene RGA1 [80], at a distance of 2.3 cM from the
LOD contour peak of QYr.caas-7DS. However, since the resistance response to fungus is a very
complicated biological process, a more detailed experimental analysis should be carried out to
confirm the role of these genes on stripe rust resistance.

Potential application of QTL for MAS in wheat breeding
The present study indicated that any combination of 4–5 APR genes with minor or intermedi-
ate effects in a line may provide a higher level of resistance to YR, which is consistent with pre-
vious reports [7,22,45,81]. In all QTL combinations, QYr.caas-3AS and QYr.caas-3BS showed
high and stable resistance than the others, and their additive effects played more important
role than interaction effects in this study (S1 Table).

QTL identified across multiple environments should be useful for marker-assisted selection
(MAS) [82]. In the present study, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-7AL and QYr.caas-
7DS showed consistent effects across multiple environments. QYr.caas-3AS and QYr.caas-3BS
were tightly linked to Kukri_c96747_274 and IAAV5662, with genetic distances of 1.5 and 1.1
cM, respectively; they should provide accurate selection in wheat breeding. KASP is a uniplex

Fig 2. The effects of QTL combinations on stripe rust severity among different classes. The number in
abscissa indicates the number of QTL combined in each subset of RILs. The error bars indicate the standard
error of sample means.

doi:10.1371/journal.pone.0145462.g002
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SNP genotyping platform that offers cost-effective and scalable flexibility in applications that
require small to moderate numbers of markers, such as marker-assisted selection, and QTL
fine mapping [83]. The QTL reported in the present study, QYr.caas-3AS, QYr.caas-3BS, QYr.
caas-7AL and QYr.caas-7DS, and their closely linked SNP markers Kukri_c96747_274,
IAAV5662, Excalibur_c25335_306 and RAC875_c29314_291, could be potentially used for
MAS and pyramiding of stripe rust APR genes in wheat breeding using KASP technology.

Supporting Information
S1 Fig. Frequency distributions of MDS for stripe rust responses in the Linmai 2 × Zhong
892 RIL population. A, Pixian 2012; B, Pixian 2013; C, Pixian 2014; D, Qingshui 2013; E,
Qingshui 2014; F, averaged MDS. Mean MDS for the parents, Linmai 2 and Zhong 892, are
indicated by arrows.
(TIF)

S1 Table. Mean stripe rust severity of lines with different QTL combinations from the Lin-
mai 2/Zhong 892 RIL population.
(DOCX)
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