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Biodiversity is often attributed to a dynamic equilibrium between the immigration and
extinction of species. This equilibrium forms a common basis for studying ecosystem
assembly from a static reservoir of migrants—the mainland. Yet, natural ecosystems
often consist of many coupled communities (i.e., metacommunities), and migration
occurs between these communities. The pool of migrants then depends on what is
sustained in the ecosystem, which, in turn, depends on the dynamic migrant pool. This
chicken-and-egg problem of survival and dispersal is poorly understood in communities
of many competing species, except for the neutral case—the “unified neutral theory of
biodiversity.” Employing spatiotemporal simulations and mean-field analyses, we show
that self-consistent dispersal puts rather tight constraints on the dynamic migration–
extinction equilibrium. When the number of species is large, species are pushed to
the edge of their global extinction, even when competition is weak. As a consequence,
the overall diversity is highly sensitive to perturbations in demographic parameters,
including growth and dispersal rates. When dispersal is short range, the resulting
spatiotemporal abundance patterns follow broad scale-free distributions that correspond
to a directed percolation phase transition. The qualitative agreement of our results for
short-range and long-range dispersal suggests that this self-organization process is a
general property of species-rich metacommunities. Our study shows that self-sustaining
metacommunities are highly sensitive to environmental change and provides insights
into how biodiversity can be rescued and maintained.

complex metacommunities | spatiotemporal abundance patterns | directed percolation

The ecological dynamics of a community are shaped by the interplay of numerous
factors, including inter- and intraspecies interactions, speciation, and species immigration.
Finding meaningful theoretical models for the assembly and the stability of ecosystems is
further complicated by the overwhelming number of species typically found in natural
ecosystems (1–6). Despite this complexity, insights into some statistical properties of
the ecosystem can be gained by assuming a dynamic equilibrium between extinction
of species in a local community (island) and immigration of species from some static
reservoir (mainland)—a concept that builds on MacArthur and Wilson’s (7) classical
theory of island biography. For instance, assuming that, regardless of species iden-
tity, individuals have the same rates of reproduction and death [neutrality assumption
(8, 9)], one can analytically derive the static abundance distribution based on the balance
between extinction and the continuous emergence of new species (speciation) (10–14).
While the neutrality assumption seems to be a crude simplification of natural ecosystems
and has generated much controversy (15–20), its predicted abundance distributions
are in surprisingly good agreement with the typical log series– and log normal–like
distributions observed across different ecological systems (21–24). Embracing differences
among species, Robert May (25, 26) proposed in his seminal work that the diversity
of an ecosystem becomes unstable when the ecosystem is too complex because the
number of species, their connectivity, or differences in species interactions become too
large. Motivated by May’s work, theoretical studies based on random-interaction models
(27–32) have found that increasing differences in competitive interspecies interactions
can destabilize a community on an island and lead to strong temporal fluctuations in
the species’ abundances (30, 32–34), consistent with recent microbialecology experiments
(35, 36)

While in mainland–island models, the dynamic equilibrium of a local community
strongly depends on migrants from a static mainland, it is natural to ask how biodiversity
can be maintained when migrants instead come from other local communities them-
selves. Natural ecosystems, for instance, are often better represented as metacommunities
composed of many coupled communities, between which individuals disperse (37, 38).
This imposes an underlying self-consistency of dispersal in metacommunities: The pool
of migrants is determined by what is sustained in the ecosystem, which in turn, depends
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on the migrant pool. Mainland–island models generally lack
this self-consistency because there dispersal from the mainland
is assumed to be a free parameter that is independent of the
population on the island.

Over the past five decades, theoretical (34, 39–48) and exper-
imental studies (49–53) on metacommunities and metapopula-
tions have repeatedly shown that dispersal between patches can
alleviate global extinctions of species and stabilize biodiversity.
Simply put, dispersal can prevent global extinction because even
if species go extinct on some patches, they can still be present on
other patches and from there, recolonize the patches where they
had gone extinct. This vital role of dispersal becomes most evident
in patch occupancy models (37–40, 54, 55), which lack popula-
tion dynamics on patches, and where the colonization rate must be
sufficiently large to avert species extinction. When incorporating
population dynamics on patches, at least for metapopulations,
the self-consistency constraint of dispersal has proven useful in
deriving the equilibrium distribution of individuals on a patch
(43, 44, 56, 57) and a minimal dispersal rate necessary to avoid
extinction (43, 56). However, especially when many species inter-
act in a metacommunity, the effects of dispersal on biodiversity
and the spatiotemporal abundance patterns of species are much
less clear and depend on the underlying population dynamics
(34, 45, 47, 48, 57, 58). For instance, when local extinctions
are driven by large oscillations in the species’ abundances (e.g.,
through predator–prey interactions), the interplay between dis-
persal and local extinction can lead to intriguing spatiotemporal
abundance patterns, including spiral waves (58) and—when the
number of species is large—chaotic dynamics (34, 47).

Here, we focus on an alternative regime, where interspecies
competition is weak (relative to intraspecies competition) and the
species’ dynamics due to their interactions are overshadowed by
demographic fluctuations. Weak interspecies competitions may,
for instance, occur when species occupy different niches (59, 60),
as proposed for various natural ecosystems (61–65). Assuming
a scenario where species compete only weakly, how, if at all,
do these interactions then affect the macroscopic properties of
the metacommunity? Can we make general statements about
spatiotemporal abundance patterns when the number of compet-
ing species is large? And, based on the results for such a “weak
competition” model, can we draw conclusions for more complex
interaction structures? To address these questions, we develop a
stochastic discrete diffusion model of species-rich metacommuni-
ties. For a metacommunity with weak interspecies competition,
we find that, as species numbers increase, local demographic
fluctuations within species increase and drive the system to a
dispersal-dependent edge of global extinction. Motivated by the
large variation of dispersal length scales in natural ecosystems, we
consider dispersal on two limiting length scales: short-range dis-
persal between nearest neighboring patches and spatially uniform
dispersal between all patches (global dispersal). For short-range
dispersal, we find that the proximity of species to their critical
extinction threshold results in fractal spatiotemporal patterns that
fall into the universality class of directed percolation. For global
dispersal, we derive an analytical mean-field approximation for
the abundance distribution, which resembles distributions com-
monly observed in natural ecological systems. Finally, we discuss
the relevance of our results for various generalizations of our
mathematical description and applications to empirical studies of
natural ecological system. Our study sheds light on spatially struc-
tured metacommunities and suggests that self-consistent dispersal
renders a species-rich metacommunity much more sensitive to
perturbations, including environmental change, than previously
thought.

Results

Lotka–Volterra Model of Metacommunities with Weak Inter-
species Competition. In the following, we consider S species that
live in a metacommunity of P coupled communities (patches),
where P is assumed to be large. Lotka–Volterra equations provide
an intuitive and simple way to take into account self-limiting
interactions and interactions between species (66). The dynamics
of the species’ populations are modeled by the following set of
generalized Lotka–Volterra equations (see Fig. 1 for a graphical
representation):

∂tNx ,i(t) = rNx ,i

⎛
⎝1− α

K

S∑
j ,j �=i

Nx ,j −
Nx ,i

K

⎞
⎠

+

P∑
y

λy,x (Ny,i − Nx ,i) +
√

Nx ,i η, [1]

whereNx ,i denotes the abundance of species i ∈ {1, . . . S} on the
patch x ∈ {1, . . . ,P}. The first term in Eq. 1 describes growth
of a species’ population at a growth rate r , which is bounded by
self-limiting interactions within a species as well as competition
with all other species on the same patch. For a clearer presentation
of our main results, the strengths of interspecies interactions are
chosen to be identical for all species and set to α. Later, we
relax this assumption and will allow variations in the species’
interspecies interactions, growth rates, and dispersal rates. In
the absence of interspecies interactions (i.e., α= 0), self-limiting
interactions lead to population saturation at a carrying capacity
K . Thus, α can be interpreted as the ratio of interspecies and self-
limiting interaction strengths. By setting 0< α < 1, we assume
that self-limiting interactions are stronger than competition be-
tween species. This assumption emulates ecosystems where species
coexist by occupying different niches (59, 60), as frequently
suggested for natural microbial ecosystems (61–65) [α could be
interpreted as a measure for the niche overlap (66, 67)]. In the
following, we focus on weak competition and choose 0< α� 1,
which will allow multiple species to coexist on each patch. On
the other hand, strong interspecies competition (α > 1) is known
to promote exclusion between species (32, 66). The special case
α= 1 marks the neutral scenario (8) and sets the boundary be-
tween niche partitioning (0< α < 1) and competitive exclusion
(α > 1). The second term in Eq. 1 takes into account dispersal,
where λx ,y denotes the dispersal rate between two patches x

Fig. 1. Metacommunity framework with niche interactions. Populations of
different species (circles illustrate individuals) grow on patches (green) with
growth rate r and carrying capacity K . Competition between species, char-
acterized by the competition strength α, is weaker than self-limitation (e.g.,
due to limited niche overlap), allowing multiple species to coexist on a patch.
Furthermore, individuals disperse between different patches x and y at a
dispersal rate λx,y . Especially when a species’ population size on a patch is
low (e.g., due to a large number of competitors), demographic fluctuations
promote stochastic extinctions of species on individual patches (extinction of
the brown species on the right patch.
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and y and is assumed equal for all species (we will later relax
the assumption of equal dispersal rates). The last term in Eq.
1 reflects demographic fluctuations due to random births and
deaths of individuals within a population, where ηx ,i denotes
uncorrelated noise with zero mean and variance ω2. The square
root dependence of demographic noise on the density ensures
that the expected variance of fluctuations is proportional to the
expected number of birth or death events during one generation
and has been derived in various contexts from discrete descriptions
of growing populations (68–70).

Assuming 0< α < 1, the deterministic dynamics of Eq. 1 (i.e.,
ignoring noise) possess a stable solution in which all species coexist
on all patches at equal abundance N ∗ with

N ∗ =K/[1 + α(S − 1)]. [2]

The inverse dependence of N ∗ on the number of species S sug-
gests that when the number of species is large, the population size
of each species on a patch can become very small, favoring (local)
stochastic extinctions of species (compare with the extinction of
brown species illustrated in Fig. 1). This leads us to suspect that,
especially in the case of many coexisting species, dispersal plays an
important role in offsetting local species extinctions. Based on our
metacommunity model, Eq. 1, we can now investigate the role of
dispersal for metacommunities of weakly competing species and
ask how the balance of dispersal and stochastic extinctions shapes
spatiotemporal abundance patterns in a species-rich metacommu-
nity. In the following sections, we will address this question for
the two limiting scenarios of short-range dispersal and uniform
dispersal between all patches (global dispersal). Our results from
the fully symmetric case of indistinguishable species, Eq. 1, will
provide insights that contribute significantly to the understanding
of species-rich metacommunities with more general properties,
which we will discuss in the final section.

The Dispersal Rate Needs to Exceed a Threshold to Prevent
Global Extinction. First, we consider dispersal on the smallest
length scale where individuals can disperse only between neigh-
boring patches. This assumption has, for instance, been extensively
applied in studies of expanding microbial biofilms (71–74). To
implement short-range dispersal in one dimension, we assume a
one-dimensional lattice of patches and set λx ,y = (1/2)λ for all
pairs of neighboring patches x and y and λx ,y = 0 otherwise.
The dispersal term in Eq. 1 then reduces to (1/2)λ(Nx+1,i +
Nx−1,i − 2Nx ,i), where we furthermore assume periodic bound-
ary conditions. First, we fix r , K , and α (with α� 1) and vary
the dispersal rate λ for different numbers of species S .

When numerically solving the dynamics in Eq. 1 with
short-range dispersal (for details on the numerical solution, see
SI Appendix, section 1), we find that for zero and small dispersal
rates λ, all species eventually go extinct due to demographic
fluctuations. In contrast, when λ exceeds a critical threshold value
λc , the average population size N = (PS )−1

∑
x ,i Nx ,i after the

final time step of our numerical solution is finite and increases
with λ (circles in Fig. 2A). Here, species occasionally go extinct
on individual patches but are able to recolonize these patches
eventually (Fig. 2B).

Close above λc , the species’ mean population sizes are infinites-
imal small so that interactions between them should be negligible.
Consistently, we find that the critical dispersal rate λc does not
depend on the competition strength α nor the number of species
S (Fig. 2A). Equations of the form of Eq. 1 without interspecies
interactions (i.e., α= 0) are well studied in the context of the
directed percolation (see refs. 75 and 76 for reviews). In par-
ticular, for one-species metacommunities (i.e., metapopulations),
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Fig. 2. Dispersal–extinction balance and self-organization to the extinction
threshold. (A) Numerical solutions of Eq. 1 for short-range dispersal show
that for dispersal rates λ below λc , all species go globally extinct, whereas
for larger dispersal rates, the mean population size, N (circles), assumes
nonzero values. Shaded areas denote standard deviations of patch-averaged
abundances Ni across all species. (B) Spatiotemporal dynamics of a represen-
tative species for dispersal rates below and above the threshold λc for S = 5.
Axes denote time t (measured in units of ω−1) and the location (patch) x.
Regions where the species is present and extinct are colored in green and
white, respectively. (C) For dispersal rates λ larger than λc , the mean effective
growth factor geff = (PS)−1 ∑

x,i g(x,i)
eff (circles) drops below one. The shaded

areas denote the standard deviation of the patch-averaged effective growth
factors g(i) across all species (which is virtually zero). For increasing S, the
effective growth factors asymptotically approach the single-species threshold
value gc (green solid line). The green and white shaded areas indicate param-
eter regimes where the single-species dynamics, Eq. 4, yield finite and zero
population sizes, respectively. Parameter values are r = 0.3, K = 10, α = 0.1,
and P = 500. As an initial condition, we chose Nx,i = K for all patches and
species with small random perturbations.

the interplay of population growth, dispersal, and demographic
fluctuations is known to lead to a nonequilibrium phase transition
from a phase of zero population size (absorbing phase) to a phase
of finite population sizes (active phase) marking the directed
percolation threshold. In our multispecies metacommunity, we
thus recover the directed percolation threshold at the critical
dispersal rate λc , independent of the interaction strength α and
the number of interacting species S .

Comparing the patch-averaged population sizes of individual
species,Ni = P−1

∑
x Nx ,i , after the last time step of our numer-

ical solutions, we find that these can strongly differ across species,
especially when the number of species is large (compare with
the shaded areas in Fig. 2A). In particular, some species occupy
only a very small fraction of patches. Some species also die out
globally even for λ > λc , which we attribute to the finite number
of patches in our numerical solution.

Species Packing Pushes Growth Rates toward the Extinction
Threshold. Motivated by the wide variation in population size
across species, in the following we aim to better understand the
metacommunity dynamics on the individual species level. To

PNAS 2022 Vol. 119 No. 26 e2200390119 https://doi.org/10.1073/pnas.2200390119 3 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200390119/-/DCSupplemental
https://doi.org/10.1073/pnas.2200390119


investigate the dynamics of individual species, we first rewrite the
deterministic growth dynamics of a species i on patch x (the first
term in Eq. 1) as

∂tNx ,i(t) = rNx ,i

[
g
(x ,i)
eff − Nx ,i/K

]
. [3]

Here, we defined the effective growth factor g
(x ,i)
eff := 1−

(α/K )
∑S

j ,j �=i Nx ,j of species i on patch x , which can be
understood as the ratio of the species’ growth rate in the presence
of competing species and its growth rate in the absence of
competing species (i.e., r ). Depending on the degree to which
interspecies competition suppresses population growth, the
effective growth factor thus takes on values less than or equal
to one. Eq. 3 suggests that—in the absence of dispersal and
demographic fluctuations—a species’ population will grow and
assume a finite population size precisely if its effective growth
factor is larger than zero. Ignoring demographic fluctuations, this
observation has been used to derive expressions for the abundance
distributions in well-mixed species-rich communities with small
constant immigration when interspecies interactions are randomly
distributed (28, 29, 31).

In our numerical solutions of Eq. 1, we observe that the
patch-averaged effective growth factors of a species, g

(i)
eff =

P−1
∑

x ,i g
(x ,i)
eff , are virtually identical across different species

(Fig. 2C ; see SI Appendix, section 2 for their distribution). We
find that for dispersal rates λ above the critical dispersal rate λc ,
the patch-averaged effective growth factors g

(i)
eff drop to values

below one, consistent with the fact that there, species coexist
and thereby, suppress each other’s growth through competition.
Furthermore, when the number of species S increases, g

(i)
eff

decreases until it eventually saturates at a positive finite value. Why
does the patch-averaged effective growth factor saturate for large
S , and what is the role of this saturation for the spatiotemporal
dynamics of the metacommunity?

To better understand the role of the effective growth factor
g
(x ,i)
eff in the metacommunity’s dynamics, we substitute g(x ,i)eff in

Eq. 3 for a fixed parameter g and numerically solve the dynamics
of the metacommunity for different choices of g and λ, including
demographic fluctuations and dispersal. Species are thus no longer
coupled with each other, and the dynamics of every species’
population size Nx on a patch x reduce to

∂tNx (t) =Nx r

[
g − Nx

K

]

+
1

2
λ(Nx+1 + Nx−1 − 2Nx ) +

√
Nx η. [4]

From directed percolation theory (75, 76), we expect Eq. 4 to
feature a transition from a state of zero population size to a state
of finite population sizes depending on the parameters r , g , K ,
andλ. Indeed, solving the one-species dynamics Eq. 4 numerically
for different g and fixed r , K , and λ, we identify a threshold value
for g , which we denote gc (the green line in Fig. 2C ). When g is
smaller than gc , the dynamics (Eq. 4) eventually lead to stochastic
extinction, while for g larger than gc , the dynamics (Eq. 4) lead
to finite population sizes (regimes “Survival” and “Extinction” in
Fig. 2C, respectively). Interestingly, we find that this threshold
value gc(r ,K ,λ) marks the asymptotic values of the patch-
averaged effective growth factors g(i)eff in the metacommunity for
large S :

g
(i)
eff (λ,S )

S�1−−−→ gc(λ). [5]

Hence, when the number of competing species is large, the patch-
averaged effective growth factor of each species is pushed toward
the critical threshold value, at which the species’ growth is just
strong enough to balance stochastic extinctions. This suggests that
every species operates close to its extinction threshold (percolation
threshold). Importantly, this self-organization is not restricted
to a particular choice of the dispersal rate or the remaining
model parameters r , K , and α but occurs for any λ > λc when
the number of species S is large. In SI Appendix, section 3, we
systematically increase the interaction strengths and argue that the
observed self-organization toward the critical extinction threshold,
Eq. 5, is present as long as the number of coexisting species at each
patch (local diversity) is much greater than one, which is especially
the case for weak species interactions.

From a physical perspective, we expect that close to a critical
transition, the characteristic timescale and length scale of the
system’s dynamics diverge, and the system’s observables obey
scaling laws that are—to some extent—independent of model
details, such as microscopic interaction assumptions (75–77).
Indeed, when the number of species is large, our numerical
solutions display spatiotemporal extinction patterns whose length
scale and timescale extend to scales comparable with the system
size and simulation time of our numerical solution, respectively
(Fig. 3 A and B). More precisely, we find that the length �

A B

t t

C D

Characteristic extinction patterns

xx

Fig. 3. Characteristic spatiotemporal patterns in species-rich metacommu-
nities. (A) For dispersal rates larger than λc (here, λ = 0.89), the spatiotempo-
ral dynamics of a species in a species-rich metacommunity (S = 100) show
extinction patterns of various lengths � and times τ that can range up to
the system size and the time of our numerical solution, respectively. Two
hundred time steps (generations) between generation 104 and 5 × 104 are
shown. (B) Spatiotemporal dynamics of nine randomly picked species for
parameters as in A. (C and D) The distributions P(�) and P(τ) of extinction
lengths � and times τ (indicated in A), respectively. Purple open and closed
circles denote the distributions for S = 100 with small and large dispersal
rates (λ = 0.32 and λ = 0.89, both larger than λc), respectively, and green
circles show the distribution for the single-species dynamics, Eq. 4, at criticality
g � gc [g is set to S−1 ∑

i g(i)
eff measured in a metacommunity with S = 100].

Dashed black lines indicate power-law distributions with exponents γ =
−1.747 and δ = −1.840, respectively, as predicted from directed percolation
theory. Parameter values are r = 0.3, K = 10, α = 0.1, and P = 1,000. As an
initial condition, we chose Nx,i = K for all patches x ∈ {1, . . . P} and species
i ∈ {1, . . . S} with small random perturbations.
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of connected regions in which individual species are extinct is
well approximated by a power-law distribution (Fig. 3C, purple
circles). Similarly, the time τ between a species’ extinction on a
patch and its successful recolonization of that patch from adjacent
patches follows a power-law distribution (Fig. 3D, purple circles).
Our above analyses indicate that if the number of species in
the metacommunity is large, each species’ dynamics follow the
dynamics of a species that is uncoupled from other species but
has fixed growth parameters close to the percolation threshold.
To further test this hypothesis, we numerically solved the single-
species dynamics, Eq. 4, for values of g close to gc [for instance,
when we choose g = S−1

∑
i g

(i)
eff for S = 100]. We find that

the distribution of extinction lengths and times follows power
laws that are in excellent agreement with the distribution we
found for the species-rich metacommunity (compare green and
purple circles in Fig. 3 C and D). Furthermore, these power
laws are well described by exponents found in one-dimensional
directed percolation of a single species (78, 79) (dashed lines in
Fig. 3 C and D; for a more detailed discussion of the observed
power-law exponents, see SI Appendix, section 4). Together, our
results strongly suggest that in the species-rich metacommunity,
each species follows the dynamics of a species that is uncoupled
from other species with fixed growth parameters close to the
percolation threshold. The observed convergence of the single-
species dynamics to the universality class of directed percolation
underscores the relevance of our results for generalizations of
our theoretical description and suggests a broad applicability to
natural ecosystems (75, 76) (see Discussion).

While the effective growth factors averaged over patches
are driven toward the threshold gc for all species, the ef-
fective growth factors can differ between different patches
(SI Appendix, section 2). Specifically, we find that species
experience effective growth factors g

(x ,i)
eff that lie below the

threshold gc on some patches. Our results thus show that species
can survive effective growth factors below the threshold gc on
some patches as long as these patches are balanced by patches
with effective growth rates above the extinction threshold, such
that the patch-averaged effective growth factor of a species exceeds
the extinction threshold.

As exemplified in various metacommunities, including micro-
bial (80, 81) and plant communities (82, 83), different length
scales of dispersal can confer very different statistical properties to
an ecosystem, with important consequences on the evolutionary
dynamics of the community. In the next section, we will, there-
fore, explore the question of whether and in what ways our results
for short-range dispersal apply to larger length scales of dispersal.

Species-Rich Metacommunities with Global Dispersal. So far,
we have studied how a metacommunity can maintain itself if we
assume dispersal between nearest neighboring patches. We now
explore metacommunity dynamics under the opposite dispersal
pattern of global, all to all dispersal. This dispersal pattern allows us
to 1) check how sensitive our main results are to dispersal patterns
and 2) obtain concrete analytical results.

Specifically, we assume that all patches are connected through
dispersal with a dispersal rate λx ,y = λ/P . The dispersal term
in Eq. 1 then reduces to λ(N̄i − Nx ,i), where N̄i denotes the
abundance of species i averaged over all P patches. For our
analytical mean-field approach, we first express the interaction
term Eq. 1 through the species-averaged abundance on a patch
defined as N̂x = S−1

∑
i Nx ,i . Then, by treating the mean fields

N̂x and N̄i as deterministic mean-field parameters, we can map
the dynamics in Eq. 1 to the solvable problem of a Brownian

particle in a fixed potential. Since in our basic model (Eq. 1), all
species are indistinguishable, the mean abundances N̄i and N̂x are
equal in equilibrium (in the limit of an infinite number of species
and patches). Finally, we can derive an analytic expression for the
abundance distribution as a function of the mean species abun-
dance N̄ := N̄i = N̂x and the control parameters r , K , α, S ,
and λ (for a detailed derivation, see SI Appendix, section 5). The
abundance distribution is given by

P[N , N̄ , r ,K ,λ] =
1

Z

1

N 1−2λN̄
e−Kr[(geff−λ/r)−N

K ]
2

, [6]

where Z denotes the normalization constant, and we defined the
mean-field effective growth factor geff := 1− (α/K )(S − 1)N̄ .
We can now solve for the mean abundance N̄ self-consistently
by calculating the statistical mean abundance based on the
distribution (Eq. 6), 〈N 〉P , and demanding that N̄ = 〈N 〉P .
Eventually, this yields a closed form of the species abundance
distribution. From the species abundance distribution, we
can then calculate various equilibrium quantities, such as the
mean-field effective growth factor and the mean local diversity
(SI Appendix, sections 5 and 6). Depending on the choice of
parameters, the abundance distribution P approaches forms that
have been commonly found in natural ecosystems (13, 84–87)
and mathematically derived from previous ecological models (10–
14, 88, 89). For instance, when the dispersal rate is small (i.e.,
λN̄ � 1), Eq. 6 follows the scaling P[N ]∝ xN /N , which is
commonly referred to as Fisher log series and denotes one of the
most widely used abundance distributions in ecology (see refs. 90
and 91 for reviews). For larger dispersal rates, Eq. 6 suggests a
Gaussian contribution with a maximum at N =K (geff − λ/r)
and a variance K/(2r) (see SI Appendix, section 5 for details).

Similar to short-range dispersal (compare with Fig. 2A), we
find that the mean abundance of all species undergoes a bifur-
cation at a critical dispersal rate λc from zero to nonzero values
(SI Appendix, section 5). For Kλ�Kr , the critical dispersal rate
can be approximated by

λc(r ,K )≈ e−Kr

√
r

4πK
, [7]

which is independent of the number of interacting species and
the interaction parameter α. In the limiting case of Kr �Kλ,
we obtain the approximation

λc(r ,K )≈ 1

2K
− r . [8]

Both limiting behaviors, Eqs. 7 and 8, are in very good agreement
with numerical solutions of the metacommunity dynamics
(SI Appendix, section 5). The observation of a finite dispersal
threshold for global dispersal is consistent with previous studies of
metapopulations (43, 44, 56), which considered global dispersal
through a shared reservoir. When the number of species S
increases, we find that the mean effective growth factor geff
asymptotically approaches the single-species threshold value
gc(λ) (solid lines in Fig. 4A; for the mean-field solution of gc
and its limiting behaviors for small and large dispersal rates,
see SI Appendix, section 6). Similar to short-range dispersal, this
suggests that species in the species-rich metacommunity operate
close to their extinction threshold.

Treating N̄i and N̂x as deterministic mean fields is based on
the assumption that the number of patches P and the number
of species per patch are large enough such that fluctuations in
N̄i and N̂x across species and patches, respectively, are negligible.
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Fig. 4. Mean-field approach is in good agreement with numerical simu-
lations for global dispersal. (A) For dispersal rates λ larger than λc , the
mean effective growth factor geff drops below one (circles and solid lines
show numerical solutions and mean-field solutions for geff, respectively).
For large S, the mean effective growth factor asymptotically approaches the
single-species threshold value gc (green solid line; calculated from mean-
field theory). (B) Abundance distributions for S = 5 (light blue) and S = 200
(purple) for λ = 0.1 (main plot) and λ = 0.04 (Inset). Histograms display the
numerical solutions with global dispersal, and solid lines show the corre-
sponding mean-field solutions. Parameter values are r = 0.3, K = 10, and
α = 0.1. For the numerical solutions, we chose initial conditions Nx,i = K for
all patches x ∈ {1, . . . P} with P = 500 and species i ∈ {1, . . . S} with small
random perturbations.

While P can simply be chosen large in our numerical solutions,
the diversity per patch depends on the model parameters, includ-
ing the competition strength α. When the diversity per patch is
much larger than one, such as for weak competition (0< α� 1),
as is the main focus of this work, we find very good agreement
between our mean-field predictions and our numerical solutions
(compare Fig. 4A with Fig. 4B). However, for larger α, especially
α� 1, the diversity per patch can drop to only one species,
and we observe deviations between our mean-field and numerical
solutions (for a more detailed discussion of limitations of our
mean-field theory, see SI Appendix, section 7).

Variation in Growth Parameters Drives the Extinction of a Part
of the Community. The proximity of species to extinction in a
species-rich metacommunity allows several implications about the
sensitivity of the metacommunity to perturbations. For instance,
in a species-rich metacommunity, even a small variation in the
dispersal rates or growth rates between species may lift the effective
growth factors of some species below the extinction threshold
and thereby, lead to their global extinction. To investigate the
effect of differences in the species’ growth dynamics and dispersal,
we generalize Eq. 1 and consider the following dynamics in the
metacommunity:

∂tNx ,i(t) = riNx ,i

(
1− Nx ,i

K

)
− r

S∑
j ,j �=i

αi,j

K
Nx ,j

+

P∑
y

λi,y,x (Ny,i −Nx ,i) +
√

Nx ,i η, [9]

where fitness differences between species i are implemented by
assuming differential growth rates ri . Furthermore, interactions
between species i and j , represented by the coefficient αi,j ,
may differ, and species may have different dispersal rates λi .
For simplicity, the parameters ri , λi , and αi,j are drawn from
normal distributions centered around r , λ, and α, with stan-
dard deviations σr , σλ, and σα, respectively (negative dispersal
rates are set to λ). Previous studies (28–31) have shown that
without demographic fluctuations and only small differences in
interspecies interactions (σα � 1/

√
S ), a well-mixed community

approaches a unique stationary stable state. On the other hand,
when interspecies interaction differs more strongly, well-mixed
ecosystems may exhibit multiple (meta-)stable states, which can
lead to chaotic dynamics in metacommunities (30, 34).

With the generalized dynamics, Eq. 9, the effective growth
factor of a species i at the location x is given by g

(x ,i)
eff = 1−

(r/ri)
∑

j �=i αi,jNx ,j/K . When we solve Eq. 9 numerically for
short-range dispersal and relatively small parameter differences
across species, in particular σα < 1/

√
S , we find that the patch-

averaged effective growth factors g(i)eff = P−1
∑

x g
(x ,i)
eff initially

undergo quick relaxation dynamics followed by weak fluctuations
around their steady states. Fig. 5A shows the patch-averaged
effective growth factors g

(i)
eff after the last time step of our nu-

merical solution of Eq. 9 when only the competition strengths
and dispersal rates vary between species (σα, σλ > 0) and all
species have equal fitness (i.e., σr = 0, ri = r ). First, we observe

0.2 0.4
0.2

0.4

0.6

0.3 0.40.20.3

A
and dispersal rate
Differences in interaction B

and interactions
Differences in fitness

Alive Extinct

Fig. 5. Variation in growth parameters leads to a loss of diversity in species-
rich metacommunities. (A) Purple and gray circles denote the mean effective
growth factors g(i)

eff of species that are alive or have gone extinct at the end
of our numerical solution, respectively. Interaction strengths and dispersal
rates are drawn from normal distributions with mean α and λ, respectively,
and standard deviations σα and σλ, respectively (all growth rates ri are set
to r). The green line denotes the extinction threshold value for the growth
factor gc(λ) (compare with Fig. 2A). When the number of competing species
is large, the mean effective growth factors of the surviving species cluster
close to the threshold value gc(λ). (B) Fitness ri and interaction coefficients
αi,j are drawn from normal distributions with mean r and α, respectively,
and standard deviations σr and σα, respectively (all dispersal rates λi are set
to λ). The green line denotes the extinction threshold value for the growth
factor as a function of the growth rate r [i.e., gc(r)]. When the number of
competing species is large, the mean effective growth factors g(i)

eff cluster
close to the threshold value gc(r). The remaining parameter values are r =
0.3, K = 10, λ = 0.4, α = 0.1, S = 300, and P = 2,000. For A, σλ = 0.03 and
σα = 0.5/

√
S; for B, σr = 0.03, and σα = 0.5/

√
S. As an initial condition, we

chose Nx,i = K for all patches and species with small random perturbations. A
and B show the results for three independent draws of parameters and initial
conditions.
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that compared with Fig. 2C, the patch-averaged effective growth
factors g(i)eff now vary more strongly between species. Specifically,
species also assume patch-averaged effective growth factors that are
relatively far above the critical threshold gc(λ). A large fraction
of species assumes patch-averaged effective growth factors below
gc(λ) and dies out eventually in the metacommunity (gray circles
in Fig. 5A). Such a significant number of global extinctions already
occurs for relatively small differences in interspecies interactions,
where coexistence of most species is supposedly still a stable
solution of a well-mixed community coupled to a static mainland
(28, 29, 32). Our results hence highlight the important role of
self-consistent dispersal in a species-rich metacommunity that is
poised at the critical extinction threshold as it is in our case.
Considering the surviving species, their patch-averaged effective
growth factors (purple circles in Fig. 5A) cluster close to the
critical extinction threshold gc(λ), with the majority of species
being close to their (species-specific) extinction thresholds. When
allowing differences in fitness and the interaction coefficients (i.e.,
σr , σα > 0 ; σλ = 0), we observe a qualitatively similar behavior
in the metacommunity (Fig. 5B). While some species assume a
patch-averaged effective growth factor relatively far beyond the
threshold value gc(r) (plotted as a function of r in Fig. 5B),
others assume a patch-averaged effective growth factor below
gc(r) and eventually die out globally. The majority of surviving
species assumes patch-averaged effective growth factors close to
the threshold gc(r), suggesting that most species operate at their
(species-specific) extinction thresholds. Solving Eq. 9 for global
dispersal, we find a phenomenology similar to short-range dis-
persal (see SI Appendix, section 8 for a more detailed discussion).
In particular, species assume different patch-averaged effective
growth factors g

(i)
eff depending on the variances of differential

growth rates, dispersal rates, and interaction coefficients (i.e., σr ,
σλ, and σα, respectively). For moderate σα, species with g

(i)
eff

below the critical threshold gc eventually go extinct globally, while
the g(i)eff of the surviving species clusters close above gc . Increasing
σα leads to an increasing spread in patch-averaged growth factors
g
(i)
eff (SI Appendix, section 8). For large σα, we find that some

species survive despite having a patch-averaged growth factor g(i)eff

below the threshold [i.e., g(i)eff < gc]. We hypothesize that this is
related to the existence of multiple stable communities for large
σα, as suggested in refs. 28, 29, and 32 (see SI Appendix, section 8
for a more detailed discussion).

Discussion

In this study, we have explored the maintenance of biodiversity in
closed metacommunities. In contrast to mainland–island models,
long-term species survival requires that local species extinction is
balanced by dispersal from within the metacommunity. This leads
to a minimal dispersal threshold, below which species invariably
go extinct. Interestingly, even if dispersal rates exceed this thresh-
old, species tend to self-organize close to an extinction threshold—
the more so, the more species are added to the community.
The qualitative agreement of our results on both limiting length
scales for dispersal (i.e., short-range dispersal and global dispersal)
suggests that this self-organization process is a general property of
species-rich metacommunities and not restricted to certain length
scales of dispersal.

In the case of short-range dispersal, we find that living at
the edge of extinction generates fractal spatiotemporal dynam-
ics characteristic of a well-known nonequilibrium phase tran-
sition (directed percolation). In contrast to standard directed

percolation, this behavior is not restricted to a single point in
parameter space (e.g., a critical dispersal rate) but occurs whenever
the number of species is large.

The observed convergence of the single-species dynamics to
the universality class of directed percolation has important con-
sequences regarding the relevance and applicability of our results
to natural ecosystems and alternative theoretical descriptions of
metacommunities. First, it suggests that when the number of
species is large, all spatiotemporal properties of the single-species
dynamics, such as spatiotemporal correlations, the mean survival
time, the spreading of a species from a single patch, and the
extension of species extinction patterns (compare with Fig. 3),
can be described by power laws. Moreover, the exponents of these
power laws are all related to each other through merely three
critical exponents, all well established by analytical or numerical
methods. Second, at least close to the directed percolation thresh-
old, where the mean correlation length and time are expected to
diverge, the microscopic details of the underlying model should
play a subordinate role for the spatiotemporal dynamics of the
system. Our study thus relates the dynamics of species in a
species-rich metacommunity to other processes within the broad
class of directed percolation, such as models for the spread of
epidemics (92), forest fires (93), and range expansions in microbial
biofilms (72–74). We furthermore expect that the reported self-
organization in species-rich metacommunities and the resulting
patterns should be preserved in alternative implementations of
metacommunity models with weak competition, including dis-
crete patch occupancy models analogous to Eq. 1.

While empirical data indicate that spatially averaged static
observables, such as abundance distributions, follow rather general
trends across different ecosystems (13, 84–86), our study also
gives insights into dynamical properties of metacommunities. This
allows us to use much more specific spatiotemporal data to verify
or falsify our model and to test the proximity of species to global
extinction. It will further be interesting to apply our theoreti-
cal approach to experiments specifically designed to disentangle
colonization and local competition in metacommunities, such as
recently proposed with coupled microfluidic chambers (94).

We found that even small variations in the species’ growth,
interaction, and dispersal rates lead to extinctions of a fraction
of species, where the ability to survive can be characterized by
a species’ patch-averaged effective growth factor. This has several
implications for the manipulation and preservation of species-
rich metacommunities in the view of a changing environment.
For instance, environmental perturbations that result in slightly
different growth parameters among species (even if transient) can
cause a large number of species to go extinct that previously
coexisted near their extinction thresholds. In addition, species
that are prone to extinction can be saved by selectively increasing
their fitness or dispersal rate on some patches so that their patch-
averaged effective growth factor falls above the critical extinction
threshold. In the course of evolution, we hypothesize that the need
for a species to overcome a nonzero critical growth factor to survive
may have important consequences for its fixation probability and
thus, the evolution of species-rich metacommunities.

In our analyses, we have focused on demographic fluctuations,
which are inevitable in a population of discrete individuals. An ad-
ditional source of noise could stem from environmental (external)
fluctuations. Environmental noise is proportional to the number
of individuals itself (instead of the square root scaling introduced
in Eq. 1) and has been subject to several previous ecological studies
(57, 95, 96). Based on earlier work on metapopulations with
environmental noise (97, 98), we hypothesize that in a species-rich
metacommunity following Eq. 1 but with environmental noise,
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species will also be pushed to their extinction threshold, leading to
scale-free abundance patterns in the case of short-range dispersal.
We expect that the threshold values of the model parameters
and the exponents of the resulting power-law distributions will,
however, likely be different from the values reported here for
demographic noise. In particular, it has been suggested that for
metapopulations with environmental noise, the critical growth
rate for survival becomes zero in dimensions larger than two when
the noise amplitude is below a critical value (97) as well as in the
mean-field solution for global dispersal (99).

By considering weak interspecies competition among species
where demographic fluctuations dominate the dynamics, our
work provides a natural counterpart to several previous studies.
These include work on metacommunities with strong fluctua-
tions among patches due to the species’ interactions (34, 47,
58) as well as neutral models (8, 9), which—even in structured
metacommunities (13, 100–102)—rely on a continual speciation.
Our work underscores the value of self-consistent solutions in
coupled ecosystems, which have previously been applied in var-
ious contexts, including metapopulations (43, 44, 56, 57) and
metacommunities with chaotic dynamics (34, 47). Moreover, our
study suggests generalizations of previous work on mainland–
island models (28–31) toward closed metacommunities with
demographic fluctuations, which we expect to generally feature
dispersal thresholds.

Materials and Methods

Numerical Solution of the Metacommunity Dynamics. To numerically
solve the metacommunity dynamics described by Eqs. 1, 4, and 9, we em-
ployed a numerical update scheme where for every time step Δt, we first
calculate the deterministic contributions (i.e., growth, competition, and dis-
persal of every species on every patch) based on a Euler forward method.
After that, demographic fluctuations are implemented by drawing the up-
dated abundances from a Poisson distribution, which ensures the right statis-
tics for the stochastic contributions in Eqs. 1, 4, and 9. All calculations were
performed in Python (103), and the results were evaluated using Math-
ematica (104) (the Python code developed for this study is available at

https://github.com/Hallatscheklab/Self-Consistent-Metapopulations). For a more
detailed description of the numerical methods, see SI Appendix, section 1.

Mean-Field Theory for Global Dispersal. For metacommunities with global
dispersal, we employed a mean-field theory where the species-averaged and
patch-averaged abundances are approximated by their mean-field values N̂ and
N̄, respectively. As detailed in the text and SI Appendix, section 5, this mean-
field approximation allows us to derive the equilibrium species abundance
distribution of Eq. 1, P , as a function of the mean fields N̂ and N̄. Finally, we
numerically calculate N̂ and N̄ by demanding self-consistency [i.e., N̂ = N̄ =
〈N〉P , where 〈N〉P denotes the mean abundance based on the distribution P ;
all calculations were performed using Mathematica (104)]. From the equilibrium
abundance distribution, we can calculate several other equilibrium quantities
of the metacommunity, such as the critical dispersal rate λc , the critical growth
factor gc , and the mean local diversity (see SI Appendix, sections 5 and 6 for
details on the derivation and limiting behaviors of these equilibrium quantities).
When interspecies competition is weak (0 < α� 1) so that multiple species
typically coexist on the same patch, our mean-field theory shows very good
agreement with our numerical solution of the explicit metacommunity dynamics.
For stronger competition between species, such that there are only a few species
or even a single species per patch, the numerical explicit solution deviates from
our mean-field approximation (SI Appendix, section 7).

Data Availability. Python code is in GitHub (https://github.com/Hallatscheklab/
Self-Consistent-Metapopulations). All other study data are included in the article
and/or SI Appendix.
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