
Special Issue

4D Graph-Based Segmentation for Reproducible and
Sensitive Choroid Quantification From Longitudinal OCT
Scans

Ipek Oguz,1–3 Michael D. Abramoff,1,2,4 Li Zhang,2 Kyungmoo Lee,2 Ellen Ziyi Zhang,5 and
Milan Sonka1,2

1Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States
2Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, Iowa, United States
3Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
4Veterans Affairs Medical Center, Iowa City, Iowa, United States
5Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United
States

Correspondence: Ipek Oguz, Penn
Image Computing & Science Lab
(PICSL), 3700 Hamilton Walk, 6th
Floor, Philadelphia, PA 19104, USA;
ipekoguz@mail.med.upenn.edu.

Submitted: December 14, 2015
Accepted: September 24, 2016

Citation: Oguz I, Abramoff MD, Zhang
L, Lee K, Zhang EZ, Sonka M. 4D
graph-based segmentation for
reproducible and sensitive choroid
quantification from longitudinal OCT
scans. Invest Ophthalmol Vis Sci.
2016;57:OCT621–OCT630. DOI:
10.1167/iovs.15-18924

PURPOSE. Longitudinal imaging is becoming more commonplace for studies of disease
progression, response to treatment, and healthy maturation. Accurate and reproducible
quantification methods are desirable to fully mine the wealth of data in such datasets.
However, most current retinal OCT segmentation methods are cross-sectional and fail to
leverage the inherent context present in longitudinal sequences of images.

METHODS. We propose a novel graph-based method for segmentation of multiple three-
dimensional (3D) scans over time (termed 3D þ time or 4D). The usefulness of this approach
in retinal imaging is illustrated in the segmentation of the choroidal surfaces from longitudinal
optical coherence tomography (OCT) scans. A total of 3219 synthetic (3070) and patient
(149) OCT images were segmented for validation of our approach.

RESULTS. The results show that the proposed 4D segmentation method is significantly more
reproducible (P < 0.001) than the 3D approach and is significantly more sensitive to
temporal changes (P < 0.0001) achieved by the substantial increase of measurement
robustness.

CONCLUSIONS. This is the first automated 4D method for jointly quantifying choroidal thickness
in longitudinal OCT studies. Our method is robust to image noise and produces more
reproducible choroidal thickness measurements than a sequence of independent 3D
segmentations, without sacrificing sensitivity to temporal changes.
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Longitudinal studies of the retina and choroid using series of
optical coherence tomography (OCT) images offer a

uniquely powerful view into the dynamic changes of retinal
and choroid anatomy over the course of a study.1–4 Compared
with the large intersubject variability in cross-sectional studies,
within-subject measurements allow more precise quantification
of change over time. This is of great interest both for
quantifying disease progression and in studies of aging.

Currently existing image analysis methods for OCT do not
fully leverage the available data in such studies. Most existing
approaches are either two-dimensional (2D) or 3D4–8 and treat
the OCT images from different time points completely
independently. These methods rely on statistical analysis for
exploring the relationship of the time points with each other.
Recently, a new approach that considers the longitudinal time
sequence during image analysis was proposed9; however, this
method appears to suffer from temporal over-regularization as
it can only detect small temporal changes. Such over-
regularization is a concern in many longitudinal analysis
methods, which aim to reduce the measurement discrepancies
between time points by using temporal regularization; such

over-regularization can be seen as preferring no or limited
changes over time for which the allowed changes would not
reflect the true changes of anatomy/pathology over time.
Although temporal regularization is indeed useful to reduce
measurement noise and increase reproducibility, in the extreme
cases, over-regularization would result in an inability to detect
actual temporal changes present in the data, which is clearly
undesirable. In summary, no method currently exists for a
successful 4D (3Dþ time) image quantification of longitudinal
OCT scans that adequately balances the need to detect small
changes over time with the need for consistent measurements
between time points.

We present a novel 4D approach for simultaneous graph-
based segmentation in longitudinal studies. It is capable of
simultaneously segmenting multiple surfaces from all the time
points associated with a subject in a globally optimal manner
while satisfying the topology and smoothness constraints
specified at each time point.

We illustrate this new method in application to the
segmentation of the choroid. The choroid is the vascular plexus
between the retina and the sclera that forms a vascular system,

iovs.arvojournals.org j ISSN: 1552-5783 OCT621

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/


which is crucial for oxygenation and metabolic activity of the
retina.10,11 Choroidal thickness is an important retinal biomark-
er that is affected in many diseases of the retina, for example, in
AMD,12 in response to anti-VEGF therapy in diabetic macular
edema,13 and in healthy aging.14 However, because of
absorption by the RPE, the choroid is prone to low signal-to-
noise ratio (SNR) in OCT scans and is therefore challenging to
segment,15–18 even in swept-source OCT, which is designed to
increase SNR in the deeper layers. This is especially problem-
atic in longitudinal studies where small changes in the noise
appearance between images from different time points may
lead to highly inconsistent surface positioning between time
points, reducing statistical power in studies.

Validation of the proposed algorithm is done using patient
OCT scans and synthetic experiments. We show that the 4D
approach successfully leverages the inherent redundancy in
longitudinal image series to reduce measurement noise and
leads to better automated quantification of OCT images. As
discussed above, an important concern for longitudinal
segmentation algorithms is the danger of over-regularization
in the temporal domain; we demonstrate that our approach
successfully enforces temporal coherence without overly
regularizing by showing its effectiveness in detecting temporal
differences.

METHODS

Subjects and Data Collection

Longitudinal sequences of spectral-domain (SD)-OCT images
from a cohort of 15 AMD patients (age: 78.2 6 9.6 years)
diagnosed with choroidal neovascularization were used for the
sensitivity experiment and the synthetic experiments. Age-
related macular degeneration and its complications are not the
subject of this study on 4D choroidal segmentation; rather, this
specific cohort was chosen because of the large number of
well-characterized OCT images that are available.

The image acquisition was done while the patients
underwent an initial 12-week induction phase of anti-VEGF
treatment, during which injections and imaging were uniform
for all patients. The induction phase was defined as the process
of administration of three intravitreal injections at 4-week
intervals (weeks 0, 4, and 8) supplemented by OCT imaging
sessions every 2 weeks for a total of seven scans per patient, or
105 OCT volumes overall.

Image acquisition was performed using a Topcon swept-
source OCT scanner (Topcon, Paramus, NJ, USA), centered on
the fovea of the retina. The device acquires anisotropic 3D
OCT images having 512 3 128 3 885 voxels with 11.72 3 46.88
3 2.6-lm3 spacing and covering a volume of 6 3 6 3 2.3 mm3.

A second set of images was obtained from a separate cohort
of 22 glaucoma patients that were scanned twice within a 3-
month period for a reproducibility study (average time
between two scans: 44 6 27 days), for a total of 44 3D OCT
volumes. This dataset was used in the reproducibility
experiment. Image acquisition was performed using a Heidel-
berg Spectralis OCT scanner (Heidelberg Spectralis; Heidelberg
Engineering, Heidelberg, Germany), centered on the fovea of
the retina. The device acquires anisotropic 3D OCT images of
61 3 768 3 496 voxels with 127.193 3 11.291 3 3.872-lm3

spacing, and covering the volume of 7.76 3 8.67 3 1.92 mm3.
This research followed the tenets of the Declaration of

Helsinki. Written informed consent was obtained from the
subjects after explanation of the nature and possible conse-
quences of the study. The research was approved by the
institutional human experimentation committee or institution-
al review board.

Initialization

The location of Bruch’s membrane (BM) is needed as input for
initializing the choroidal segmentation approach. For this
purpose, the OCT volumetric images were segmented individ-
ually using our previously reported Iowa Reference Algorithm
that yielded 11 intraretinal surfaces.6,19–23 Because the retinal
angle between the incident light and subject’s optical axis
varied in OCT volumetric images, some geometric distortion
occurs in the choroidal layer. An angle adjustment approach24

was applied to the original OCT volumes to overcome this.
Bruch’s membrane was transformed to a relatively symmetrical
surface in the OCT images, and then the BM was modeled as a
convex arc on each B-scan, and the curvature of this arc was
computed using the average axial length of a human eyeball. A
single surface graph-search method was used to segment BM
by utilizing this arc model as shape-prior information.19 The
OCT volumes were then flattened using the BM surface. The
flattened scans from all time points are aligned such that the
horizontal line representing the (flat) BM surface is at the same
position in each volume. No within-plane alignment was
necessary in the presented experiments because all scans were
carefully centered on the fovea; however, other datasets with
greater foveal location variability may need this as an additional
preprocessing step.

The resulting flattened images and the BM surfaces were
used as input to both the cross-sectional (3D) and longitudinal
(4D) segmentation approaches described below.

Prior Work: 3D Graph Segmentation

The 3D segmentation of the choroid4,8 was done using the
LOGISMOS framework.25 We begin by cropping the flattened
OCT image to a sufficiently large region of interest underneath
the BM surface. The empirically determined size of the crop
region was 489 lm (188 voxels) in the anterior–posterior
direction. Twenty-one micrometers of this region was anterior
to the BM surface, to allow for recovery from any errors in the
BM initialization. For computational efficiency, as well as to
alleviate the anisotropy of the acquisition protocol, this
cropped image was down-sampled by a factor of (2 3 4 3 1)
in the inferior–superior, anterior–posterior, and nasal–temporal
directions, respectively. A median filter was used in a one-voxel
neighborhood to reduce noise.

A multisurface graph-cut approach was used to jointly
segment the lower and the upper boundary of the choroid
region. For this purpose, we constructed a graph such that
each image voxel is represented by a graph node. Neighboring
voxels in the anterior–posterior direction are grouped together
in graph columns, connected to each other via intracolumn
arcs. Neighboring voxels in the nasal–temporal and inferior–
superior directions are represented by neighboring graph
columns, connected to each other by intercolumn arcs, which
encode hard and soft constraints for spatial smoothness. Two
identical copies of this graph were created to represent the
two surfaces of the choroid; these two graphs are connected to
each other via intersurface arcs, which encode the minimum
and maximum allowed distance between the two surfaces. An
edge-sensitive image derivative filter along the posterior–
anterior direction was used to determine the cost at each
graph voxel. The graph thus constructed was optimized using
the LOGISMOS framework25 to obtain the optimal surface
segmentations.

Proposed Method: 4D Graph Segmentation

The proposed 4D method jointly segments the upper and
lower surfaces of the choroid from N time points, that is, 2N

4D Choroid Segmentation from Longitudinal OCT Scans IOVS j Special Issue j Vol. 57 j No. 9 j OCT622



surfaces are segmented simultaneously. The preprocessing of
each image, including the flattening, cropping, and down-
sampling, was identical to the 3D approach.

Because the graph construction for the 4D segmentation
assumes spatial correspondence between the images from
different time points, the images were first registered to each
other. The anterior–posterior registration was provided implic-
itly by the image flattening step, based on the BM surface. For
in-plane registration, all images were centered on the patient’s
fixation.

The graph construction for the 4D segmentation was
different than the 3D approach. Each image was represented
by a subgraph constructed as described in the 3D segmenta-
tion, using the intracolumn, intercolumn, and intersurface arcs.
These subgraphs were connected to each other using novel
inter–time point arcs to encode temporal constraints between
consecutive time points. In particular, for each ver-
texvs;ti (x,y,z), where s denotes the surface ID (lower or upper
choroid), ti denotes the ith time point, and (x, y, z) denotes the
spatial coordinates, the following infinite-weighted arcs were
added:

vs;ti ðx; y; zÞ; vs;tiþ1
ðx; yþMaxt ; zÞ

� �
; ð1Þ

vs;ti ðx; y; zÞ; vs;ti�1
ðx; y�Mint ; zÞ

� �
: ð2Þ

Equation 1 encodes the maximum allowed vertical dis-
placement constraint between two consecutive time points,
whereas Equation 2 encodes the minimal allowed vertical
displacement constraint. For the choroid, for all presented
experiments, Mint and Maxt were set to [�2,2] node intervals
for the upper choroid surface and [�5,5] node intervals for the
lower choroid surface. These empirically determined settings
indicate that each surface can move anteriorly or posteriorly
independently. The choroid region bound by these two
surfaces can thus thin or thicken by up to seven node
intervals. Because the graph is constructed in the down-
sampled image space, this corresponds to 72.8-lm thinning or
thickening between consecutive time points, which is
clinically reasonable.

It is important to realize that the arcs used to enforce these
temporal constraints carry infinite weight and are therefore
hard constraints, that is, thresholds on what is considered a
feasible solution of the graph. This is in contrast to soft
constraints, represented by finite-weighted arcs, which penal-
ize large displacements. Such soft temporal constraints were
avoided in our approach as they introduce a segmentation bias
by preferring smaller displacement, which may reduce the
temporal sensitivity of the segmentation algorithm.

We note that the temporal constraint for the upper surface
was chosen to be more strict because the spatial registration
was based on the BM surface, which is immediately next to this
upper choroid surface. The lower choroid surface, which is
farther away, is assigned a more relaxed temporal regulariza-
tion threshold.

Given N longitudinal OCT volumes from N time points, all N

subgraphs are connected to each other using the inter–time
point arcs described above, to result in a single complex graph
that represents the segmentation problem for all N time points.
The segmentation is then carried out using a single graph-cut
on this complex graph to achieve simultaneous segmentation
of the 2N surfaces.

Reproducibility Experiment on Synthetic Data

To assess the reproducibility and robustness to noise of our
novel 4D choroid segmentation method, we conducted a
simulation study. Starting with patient OCT images, increasing

levels of random speckle noise was synthetically introduced.
The choroid was segmented independently (3D) and jointly
with the proposed 4D method from pairs of noisy images. We
report both the surface positioning reproducibility and choroid
thickness reproducibility.

Speckle Noise Simulation. The primary type of noise in
OCT images, which derives from the low coherence light
source, is speckle,26 which is equivalent to additive Gaussian
noise in the linear scale. To simulate noisy OCT images, we first
converted the real 16-bit OCT images to decibel scale, by
linearly scaling the intensities such that the voxel intensity
range corresponded to the dynamic range of the OCT camera.
The dynamic range of our OCT camera was empirically
determined to be 42 dB. Then, the image was de-logged to
convert it to linear scale, according to

Ilinear ¼ 10ðIdB=10Þ: ð3Þ

In this linear scale, additive Gaussian noise of the desired SD
was introduced to the image. Finally, the images were brought
back to their original scale, by first re-logging them according
to

IdB ¼ 10 3 log10ðIlinearÞ ð4Þ

and then scaling them back up to 16-bit OCT image range.
Dataset. The OCT scans from the first time point for each

of the 15 AMD patients were chosen as the starting points for
this experiment. For each subject, for each noise level, 10 noisy
copies of the image were created by introducing randomized
speckle noise. These 10 images were split into five pairs. Each
such pair was segmented both independently in 3D and jointly
in 4D. This process was repeated for 13 different noise levels
(r ¼ 1, 3,. . ., 25), where the noise level is the SD of the
Gaussian additive noise in the linear scale as described above.
A total of 15 3 0 3 13¼ 1950 synthetic images were thus used
in this experiment. For a fair comparison, the initial BM surface
was computed only once per subject, on the real image (before
addition of any speckle noise); this surface was used as input to
both 3D and 4D segmentation methods.

Analysis. Because the underlying retinal and choroidal
anatomy is the same for a given pair, these pairs can be
considered as a test–retest setup; therefore, the segmentation
results should be ideally identical. Thus, any discrepancies are
purely due to noise and are reported as reproducibility error. In
particular, we report the reproducibility error associated with
the surface positioning of the lower choroid boundary and
choroid thickness. Paired t-tests between 3D and 4D segmen-
tation reproducibility errors are used to assess statistical
significance. We also present scatter plots of test–retest
thickness measurements and report the correlation between
these values at each noise level for 3D and 4D.

Complete segmentation failures were excluded from
analysis. We empirically determined that an average reproduc-
ibility error of >100 lm indicated such cases.

Temporal Sensitivity Experiment on Synthetic
Data

To assess the sensitivity of our novel 4D choroid segmentation
method to detect temporal changes, we conducted a synthetic
simulation study. Starting with patient OCT images, random
amounts of deformation in the anterior–posterior direction
were added to the choroid and surrounding regions to simulate
thinning and thickening, which may happen in real data from
reasons such as disease progression, drug effects, or aging. The
choroid was segmented independently (3D) and jointly (4D)
from the resulting images. Because the artificially introduced
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deformation amount is known, we use this dataset to quantify
the sensitivity of each algorithm.

B-Spline Deformation. Given a real OCT image, a series of
eight synthetically deformed images was created for each trial,
representing a sequence of eight time points. At each time
point ti (i ¼ 0. . .8, with t0 designating the real OCT image), a
target thinning rate ai was generated as a random sample from
a uniform distribution between [�25,25] lm, with a negative a
denoting a thinning choroid and a positive a denoting a
thickening choroid. These bounds for ai were chosen to
represent a wide range of changes that can be realistically
observed in the choroid. A B-spline grid with 13 nodes in each
dimension is created to represent the whole OCT image
domain. This grid density was empirically chosen to give
adequate resolution, such that the choroid and surrounding
regions can be manipulated separately from the rest of the
image domain. The B-spline deformation was set to 0 outside
the choroid region of interest (ROI), which is represented by
two rows of grid nodes around the choroid. The B-spline grid is
illustrated in Figure 1a. Inside the choroid region, each grid
node (x,y) was assigned a local thinning amount bi,(x,y), which
was randomly drawn from a uniform distribution between
[0,2jaij]. Then, the vertical displacement at the grid node
corresponding to the top row of the choroid ROI was set to
bi,(x,y), and at the grid node corresponding to the bottom row
of the choroid ROI, it was set to �bi,(x,y), for positive ai. The
vertical displacement values were reversed for negative ai. We
note that this corresponds to a local displacement of 2bi,(x,y).
Figure 1b shows these local displacements of the B-spline
nodes. The smooth deformation field represented by the B-
spline simulation ensures that the region surrounding the true
choroid is stretched or compressed to accommodate the
desired motion of the choroid itself.

At each time point ti, the random deformation field thus
computed was applied to the image at ti�1. Figures 1c and 1d
show the thickening simulation for a particular B-scan from the
experiment. We note that the ai are independent from each
other; in practice, this means a time sequence can have
alternating thinning and thickening periods, at varying rates of
deformation. We chose this approach rather than consistent
thinning or consistent thickening to obtain a wider range of
situations that may occur in real clinical data based on disease
progression and treatment schedule.

Dataset. Similar to the reproducibility experiment, the real
OCT scans from the first time point for 14 AMD patients were
used as the starting points t0 for the sensitivity experiment.
One subject was excluded from this study as it had a very thin
choroid, which occasionally led the choroidal layer to collapse
to a line locally when a random deformation was applied. This
resulted in an inability to create a synthetic 4D dataset and
does not indicate a choroidal thickness measurement limitation
of the reported image segmentation method. For each subject,
10 trials were conducted. For each trial, eight randomly
deformed images were generated as described above. These
images at t1,. . .,8 were segmented both independently in 3D and
jointly in 4D. A total of 14 3 10 3 8 ¼ 1120 synthetic images
were thus used in this experiment. For a fair comparison, the
initial BM surface was computed only once for each deformed
image and used as input to both 3D and 4D segmentation
algorithms.

Analysis. The known synthetic deformation field is used to
compute the ground truth for choroid thickness change dtrue(i)
between time points ti and ti�1, by summing the local bi,(x,y)s. It
is important to note that, although these relative thickness
changes are known between time points, the absolute choroid
thickness at any given time point is unknown, because we do
not have the ground truth at t0. For assessing the temporal
sensitivity of the two methods, we compute the choroid
thickness at each time point using the 3D and 4D segmentation
results, and we report d3D(i) � dtrue(i) and d4D(i) � dtrue(i) as
momentary sensitivity errors. Both signed and unsigned
differences are reported. In this context, signed error
represents a measurement bias in sensitivity, whereas unsigned
error represents the bulk measurement error. In addition to
these momentary thickness changes, we also consider cumu-
lative thickness changes, Dtrue(i), D3D(i), and D4D(i), which
represents the total change between time points ti and t0,
computed as

Pi
t¼1 dðtÞ. Paired t-tests are used to statistically

compare the findings.

Glaucoma Cohort for Reproducibility

To assess the reproducibility achieved by our algorithm in a
clinical dataset, we leveraged the test–retest glaucoma dataset.
For each of the 22 subjects in this cohort, the two OCT
volumes were segmented cross-sectionally (3D) and longitudi-

FIGURE 1. B-spline deformation method for the synthetic sensitivity experiments. (a) A regular grid 13 3 13 3 13 B-spline node is created. The
nodes that approximately correspond to the choroid region (red circles) are deformed, whereas the other nodes remain stationary (black circles).
(b) For thickening simulations (positive a), the B-spline nodes in the choroid region move away from each other vertically (shown), whereas for
thinning simulations (negative a), they move toward each other. Note that the local deformation amount is randomly selected, allowing more
realistic local thinning/thickening effects rather than a global shrinking of the choroid at a constant rate. (c, d) Thickening simulation example. (c)
B-scan from the original image. (d) The same B-scan with a synthetically thickened choroid. Blue arrows highlight a visibly enlarged vessel, whereas
other regions of the B-scan show more modest amounts of deformation.
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nally (4D). The comparison of the results from the two
approaches offers additional insights regarding the effect of the
temporal constraints proposed in our algorithm. Given the
short time period between the two scan acquisitions and the
very slowly progressing character of the glaucoma disease, no
changes to the underlying choroidal anatomy are expected
within 3 months for any given subject. Thus, similar to the
synthetic reproducibility experiment we presented earlier, any
thickness discrepancies would be purely due to noise and are
reported as thickness reproducibility error. Similar to the
synthetic experiment, we present scatter plots of test–retest
thickness measurements and report the correlation between
these values and the respective regression equations.

Age-Related Macular Degeneration Cohort for
Sensitivity

Finally, to assess the performance of our algorithm in a clinical
dataset with respect to sensitivity, we analyzed the longitudinal
AMD data. For each of the 15 subjects in the study, the 7 OCT
images were segmented cross-sectionally (3D) and longitudi-
nally (4D), for a total of 105 images. The resulting choroidal
thickness measurements are compared between the two
methods, including the mean choroidal thickness (over time
points) per patient, the SD of choroidal thickness (over time
points) per patient, and the slope of the temporal change (i.e.,
change in thickness divided by total study time) per patient.
This temporal slope represents an estimate of the true

anatomical change, whereas the SD of choroid thickness
measurement between time points (for a given subject)
represents a combination of measurement noise and true
anatomical change. Our hypothesis was that longitudinal 4D
segmentation would result in lower noise (smaller SD) but will
retain its temporal sensitivity (same slope). Paired t-tests were
used for statistical comparison.

RESULTS

Reproducibility Experiment on Synthetic Data

Figure 2 presents the results of the reproducibility experiment.
Given the pairs of synthetically generated noisy images, Figure
2a presents the reproducibility error in the lower choroid
boundary location, whereas Figure 2b presents the reproduc-
ibility error in choroid thickness measurement. The asterisk
denotes highly significant statistical differences (P < 0.001)
between 3D and 4D segmentation methods; 4D segmentation
was significantly more reproducible than 3D segmentation at
each tested noise level, in terms of both surface positioning
and thickness measurement. For eight pairs of images, 3D
segmentation results were excluded due to segmentation
failure.

Figure 3 presents the consistency of the thickness
measurements in the reproducibility experiment. For each
pair of noisy images, the average choroid thickness for the first

FIGURE 2. Choroid segmentation reproducibility in the presence of simulated speckle noise. (a) Lower-choroid surface position reproducibility
error (lm) per noise level (r of Gaussian kernel). Longitudinal (4D, red) segmentation resulted in significantly more reproducible surfaces (P <
0.001) than cross-sectional (3D, blue) segmentation for each tested noise level. (b) Choroid thickness reproducibility error (lm) per noise level.
Four-dimensional segmentation led to significantly more reproducible thickness measurements (P < 0.001) than 3D segmentation for each tested
noise level. Note that the error bars for the 4D plots are difficult to see because of their small scale.

FIGURE 3. Choroid thickness consistency in the presence of simulated speckle noise. (a) Test–retest choroid thickness measurements (lm) for
cross-sectional (3D) segmentation. y ¼ x line is shown for reference. (b) Test–retest choroid thickness measurements (lm) for longitudinal (4D)
segmentation. y ¼ x line is shown for reference. (c) Correlation of test–retest choroid thickness measurements per noise level (r of Gaussian
kernel). High correlation corresponds to highly consistent measurements. Four-dimensional (red) measurements were significantly more consistent
than 3D (blue) measurements (P < 0.002).
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image is plotted against the average choroid thickness for the
second image. Figure 3a presents this test–retest scatter plot
for cross-sectional (3D) segmentation, whereas Figure 3b
shows longitudinal (4D) segmentation results; results from all
noise levels are pooled together for this figure. The dramatic
improvement in measurement consistency afforded by 4D
segmentation is evident from these plots. Figure 3c presents
the correlation between these test–retest thickness measure-
ments per noise level. The correlation measures for 4D
segmentation were significantly higher (P < 0.002) than for
3D segmentation.

Temporal Sensitivity Experiment on Synthetic
Data

The Table and Figure 4 summarize the results of the sensitivity
experiment using the synthetic deformation fields. For both
signed and unsigned error metrics, the 4D approach was
significantly more sensitive to temporal change than the 3D
approach (P < 0.001), both for momentary and cumulative
time intervals.

Figure 5 shows the scatter plots of the automatically
measured momentary choroid thickness changes against the
known deformation amounts, using the 3D and 4D approach-
es. The correlation between the momentary d3D and dtrue(i)
was R2 ¼ 0.299, compared with a correlation of R2 ¼ 0.970
between momentary d4D and dtrue(i). Similarly, the correlation
between the cumulative D3D and Dtrue(i) was R2 ¼ 0.288
compared with a correlation of R2¼0.975 between cumulative
D4D and Dtrue(i).

Figure 6 presents the results qualitatively for a single trial.
The first four randomly deformed images are shown in column
a. The same surface is overlaid in red on these images to help
assess the temporal change; it can be clearly seen that the
image at t1 has a thicker choroid than the images at t2–t4,
especially on the nasal side of the image. Quantitatively, the
true change in thickness was dtrue(1)¼ 12 lm, dtrue(2)¼ 1 lm,
and dtrue(3) ¼�2 lm. The 3D and 4D segmentations for the
lower choroid boundary are shown in column b. Although the
two methods closely agree at t1, the 3D segmentation results

are very poor at t2 and t3, where they capture the wrong
surface, presumably due to local noise and poorly defined
boundaries. At t4, the 3D segmentation captures the lower
choroid surface on the nasal side of the image but again fails on
the temporal side. The 4D segmentation leverages temporal
regularization to generate reliably correct results at all four
time points.

However, the temporal regularization does not prevent the
4D algorithm from capturing true temporal change present in
the data. This is illustrated in Figure 6c, which shows the 4D
segmentation results for the four time points overlaid on top of
each other. It can be clearly seen that the lower choroid surface
at t1 is substantially different than the later time points [d4D(1)
¼ 10 lm], in agreement with the dtrue(1) value. In contrast, the
thre surfaces corresponding to the time points t2–t4 are nearly
identical, which agrees with the near-zero dtrue values for these
time points. As shown in Figure 4, these anecdotal findings
were also found to be statistically significant in quantitative
analysis.

Glaucoma Cohort for Reproducibility

Figure 7 illustrates the results of the thickness reproducibility
experiment in the glaucoma cohort. Figures 7a and 7b present
the test–retest thickness measurements in the cross-sectional
(3D) and longitudinal (4D) measurements, respectively. The
test–retest correlation was R2¼ 0.54 for the 3D approach (y¼
1.69x� 60.38) and R2¼ 0.99 for the 4D approach (y¼ 1.02x�
1.82). Note that despite allowing quite dramatic changes of
surface positioning along the temporal direction (liberal
temporal context constraints Mint and Maxt), the slope and
intercept of the regression line are virtually indistinguishable
from 1 and 0, respectively. This further confirms both the
hypothesized excellent performance of the 4D approach and
also the validity of our expectation that choroidal thickness is
not changing within 3 months in patients with glaucoma.
Figure 7c further shows the thickness reproducibility error
(i.e., the absolute difference between the test and retest
thickness measurements). The mean and SD of the thickness
reproducibility error was 35.6 6 82.0 lm for the 3D approach

TABLE. Sensitivity Error

Method

Signed Unsigned

Momentary Cumulative Momentary Cumulative

3D (cross-sectional) �0.8 6 9.5 �4.3 6 14.9 4.0 6 8.6 7.3 6 13.7

4D (longitudinal) 0.0 6 1.1 0.0 6 2.3 0.8 6 0.7 1.6 6 1.7

Four-dimensional segmentation was highly significantly more sensitive than 3D segmentation in all compared measurements (P < 0.001) in all
paired t-tests.

FIGURE 4. Sensitivity error. In the temporal sensitivity experiment where the choroid is synthetically deformed, we report the detected temporal
thickness change compared to the ground truth (the true amount of vertical deformation synthetically introduced) as the sensitivity error. Four-
dimensional segmentation was highly significantly more sensitive than 3D segmentation in all compared measurements (P < 0.001 in paired t-tests).
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FIGURE 5. Sensitivity to temporal changes in choroidal thickness. All units are micrometers. (a) Changes in choroid thickness measurements for
cross-sectional (3D) segmentation compared with the known synthetic deformation amount. The same data is presented in b after thresholding and
zooming to the [�15,15]-lm range, for a fair comparison with 4D. (c) Changes in choroid thickness measurements for longitudinal (4D)
segmentation compared with the known synthetic deformation amount. The Pearson correlation coefficients were R2¼0.299 for 3D and R2¼0.970
for 4D.

FIGURE 6. Choroid segmentation in a synthetically deforming time sequence. Four consecutive time points are shown in subsequent rows. (a)
Deformed OCT image at that time point. The choroid surface at t4 is overlaid on each image to help highlight the temporal changes. The t1 image can
be appreciated to have a thicker choroid than the t2�t4 images, especially on the nasal side. (b) The 3D (blue) and 4D (red) lower choroid surfaces at
each time point, overlaid with the deformed OCT image at that time point. The two methods closely agree in the t1 image. At t2 and t3, the 3D
segmentation fails throughout most of the B-scan (except in the center) and captures the upper boundary of the choroid rather than the lower
boundary. At t4, the 3D segmentation is successful in only the temporal side of the image and locks onto the wrong surface in the nasal side. Four-
dimensional segmentation (red) leverages temporal regularization to successfully segment all four time points. (c) The 4D segmentations from each
time point are overlaid on the t1 OCT image (different shades of red represent different time points). It can be clearly seen that the t1 segmentation
is substantially different than the t2�t4 segmentations, with more pronounced thickening in the temporal side than in the nasal side, in accordance
with the data. This illustrates that the temporal regularization is not an obstacle to sensitivity to temporal change actually present in the data.
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compared with 3.7 6 2.3 lm for the 4D approach. Similar to
the results from the synthetic experiments, the dramatic
improvement in reproducibility afforded by the longitudinal
approach is clearly evident in these results.

Age-Related Macular Degeneration Cohort for
Sensitivity

In the AMD dataset, the mean choroidal thickness (50.6 6 19.3
vs. 49.2 6 15.1 lm) and temporal thinning rate (4.28 6 3.11
vs. 7.43 6 9.04 lm/12 wk) were not significantly different
between the 3D and 4D methods (P > 0.34 for mean thickness,
P > 0.22 for temporal slope). The SD of choroidal thickness
was significantly different (P < 0.001, 2.43 6 0.92 lm in 4D
vs. 7.05 6 3.69 lm in 3D). The results confirm our hypothesis

that effective longitudinal (4D) analysis reduces measurement
noise without sacrificing sensitivity to temporal change.

Figure 8 shows the 3D and 4D segmentation results
qualitatively for a single subject. Although the 3D and 4D
segmentations agree with each other in many places, image
regions that present low signal or high noise lead to substantial
discrepancies between the methods. In such regions, the 3D
segmentation results may differ by up to 280 lm locally. Given
the lack of evidence of true anatomical change to the choroid
in the images, these changes are attributed to measurement
noise of the 3D approach. The 4D joint segmentation resolves
the discrepancies of 3D segmentation and offers segmentation
consistency.

Figure 9 shows the 3D and 4D thickness measurements per
patient, over the course of the seven time points. The overall

FIGURE 7. Choroidal thickness reproducibility in the glaucoma cohort. All units are micrometer. (a) Test–retest choroid thickness measurements
(lm) for cross-sectional (3D) segmentation. The regression line is shown in black, and the y¼ x line is shown in color for reference. (b) Test–retest
choroid thickness measurements (lm) for longitudinal (4D) segmentation. The regression line is shown in black, and the y¼x line is shown in color

for reference. (c) Thickness reproducibility error for the two methods. Mean and SD of absolute reproducibility error are shown for each method.

FIGURE 8. Choroidal segmentation consistency and accuracy. (a) Four-dimensional (red) and 3D (blue) segmentations are substantially different
from each other in areas of high ambiguity (white rectangle). Note that the 3D approach erroneously cuts through choroidal vessels. b and c are
zoomed in the region outlined by the white rectangle for visibility. (b) The 3D segmentations at the seven time points for the same subject. (c) The
4D segmentations at the seven time points for the same subject.

4D Choroid Segmentation from Longitudinal OCT Scans IOVS j Special Issue j Vol. 57 j No. 9 j OCT628



patterns are similar between the two methods, for example,
the average choroid thickness of each patient and the amount
of choroidal thinning over the study duration. However, the
temporal 4D thickness functions are appreciably smoother
than their 3D counterparts. These findings are also visible in
Figure 10, where the same data are presented per method
rather than per patient; different colors represent individual
patients. Overall thinning is noticeable for both methods;
however, 3D measurements are substantially noisier than their
4D counterparts.

The run time of the algorithm was roughly linearly related
to the number of time points, and the additional overhead
between 4D and 3D segmentation was relatively small. In
particular, the run time for the subjects in the synthetic
sensitivity study was 13 minutes 36 seconds 6 1 minute 14
seconds for eight scans in 3D (i.e., 1 minute 42 seconds 6 9
seconds for a single 3D scan) and 16 minutes 37 seconds 6 1
minute 43 seconds for 4D for the joint segmentation of all eight
scans, representing less than 20% in computational overhead.

DISCUSSION

The presented results show that our novel 4D longitudinal
segmentation algorithm is superior to its 3D counterparts. The
temporal regularization afforded by this new method signifi-
cantly increases the reproducibility of the results without
sacrificing the sensitivity to detect temporal change; in fact, we
found that the reduction in error leads to significantly higher
temporal sensitivity for 4D segmentation.

In Figure 9, we note that the effect of temporal
regularization is more prominent in some patients than in
others; this is likely due to the amount of noise and/or the SNR
in the choroid region for each particular image. If the temporal
measurements obtained with 3D segmentation are reasonably
consistent, there is no reason for the 4D measurements to be
any different. This also highlights the fact that our 4D method
is not biased toward a smaller temporal change. Because the
temporal regularization is achieved with ‘‘hard’’ constraints on
maximum allowed displacement rather than ‘‘soft’’ constraints
that penalize larger displacements (such as the approach
proposed in Ref. 9), the temporal sensitivity of the method is
preserved.

Clearly, to maximize segmentation robustness of the joint
longitudinal segmentation approach, availability of more than
two time points would be beneficial. Nevertheless, it is
noteworthy that the 4D segmentation enjoys substantial
performance improvement compared with the cross-sectional
3D segmentation even with only two time points available, as
demonstrated in the reproducibility experiments.

By definition, the presented algorithm cannot successfully
segment sequences of images that contain larger thickness
changes than what the hard constraints used in the graph
construction to limit temporal change allow. We found that the
value of 72.8 lm was a generous allowance to capture the
choroidal changes observed in AMD. However, this parameter
may need to be adjusted if the algorithm is applied to studies
with dramatic choroidal changes. Additionally, for studies that
involve either very long or uneven intervals between time
points, it may be beneficial to make this parameter a function
of the time elapsed rather than a constant number.

A possible limitation of the algorithm is that it would not be
able to recover from a catastrophic failure in the initialization
step. However, the BM segmentation algorithm has been
previously thoroughly validated and such a major failure is
therefore unlikely.

The longitudinal choroid segmentation presented here is
the first application of our 4D graph-based segmentation
method. Because the choroid region typically has an especially
low SNR, the improvement achieved by the proposed 4D
segmentation method is very pronounced. Nevertheless, we
expect our approach to maintain its superior performance

FIGURE 9. Choroidal thickness plots per subject. For each of the 15 patients in the AMD study, the average choroid thickness (y axis, lm) at each
time point (x axis) is shown using the 3D and 4D quantification methods. Although the overall patterns are similar between the two methods, 4D
measurements are visibly less noisy than their 3D counterparts due to the effective temporal regularization.

FIGURE 10. Average choroidal thickness computed in (a) 3D and (b)
4D. Colors denote individual patients. Both methods capture the
choroidal thinning over the course of the study. Four-dimensional
results show significantly smaller measurement variability over time.
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when segmenting intraretinal layers, which is an extension that
remains as future work. Additionally, the relatively flat
geometry of the choroid makes it straightforward to carry
out synthetic experiments that are crucial for validating the
reproducibility and sensitivity of this approach.
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