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The review by Hurst et al. (2020) is a comprehensive article published within this journal about
the use of organotypic culture systems as models to study retinal diseases. The article noted that use
of microfluidic technologies, such asmicroelectrode arrays (MEAs), can be significant inmeasuring
cellular activity within organ culture systems (Hurst et al., 2020). An additional emerging area for
microfluidics is their integration with explants to enrich transplantation strategies used to treat
retinal degenerative diseases.

Progressive vision loss in adults is escalating worldwide, as the incidence of macular
degeneration and diabetic retinopathy are expected to exceed 300 million and 642 million,
respectively, by 2040 (Mitchell et al., 2018; Simo-Servat et al., 2019). The retina consists of a varied
network of neurons that synapse with one another across three nuclear layers. Damage to any
one type of neuron within this intricate network propagates dysfunction to result in progressive
vision loss.

Contemporary cell replacement therapies offer exciting promise to restore vision by replacing
damaged neurons with transplanted stem cells. Numerous platforms have been developed to
elucidate the cellular mechanisms able to promote stem cell integration within mature retinal
hosts (Wu et al., 2018). However, ongoing projects have produced mixed results, including low
stem cell survival and the inability of stem cells to differentiate and/or position themselves
appropriately within the retinal network (Gokoffski et al., 2019). A variety of in vitro and
organotypic platforms have been developed to examine native stem cell behaviors within
microscale environments (reviewed in Greene et al., 2019). Surprisingly, few of these projects
have incorporated microfluidic technologies to model cues from damaged adult retina, such as
fields of injury cytokines and degraded cellular matrixes (reviewed in Vazquez, 2020), that differ
significantly from stem cell environments. A current thrust is to bridge microfluidic technologies
with explanted retina to develop hybrid, quantitative models to examine stem cell behaviors within
adult, organotypic cultures.

Initial hybrid models (Figure 1) cultured retinal explants within micro-scale transwell systems
to measure long-term viability (Rettinger and Wang, 2018), while newer models integrated
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FIGURE 1 | Current hybrid explant systems for studying the retina. (A) An ex vivo chamber for a porcine retina explant capable of maintaining tissue viability for 1–2

weeks to enable long-term investigation of the ex vivo retina (Rettinger and Wang, 2018). (B) A glutamate perfusion system to stimulate retinal neurons with

neurotransmitters to augment the phototransduction process that occurs within the body (Rountree et al., 2017). (C) Retina on a chip microfluidic perfusion assay

system for point access delivery of therapeutics to specific parts of the rat retina (Dodson et al., 2015). (D) Ex Vivo Eye Facsimile (EVES) hybrid explant system

designed for delivery of electrical and chemical stimulation to a whole-enucleated eye explant from mouse (Vazquez et al., 2020).

microfluidic perfusion systems for controlled delivery of
neurotransmitters and therapeutics (Dodson et al., 2015;
Rountree et al., 2017). Most recently, our group developed a
hybrid system called the Ex Vivo Eye Facsimile System (EVES)
to examine how extrinsic factors, such as chemical and electrical
gradients, can promote appropriate stem cell positioning within
retinal hosts (Mishra et al., 2019; Vazquez et al., 2020). Our
system consists of a 3D environment that can be rapidly
prototyped to meet the geometric constraints of enucleated
eyes derived from a variety of animal models. Our preliminary

EVES studies illustrated that combined electrochemical fields
increased the numbers of motile stem cells and the distances
migrated within rodent eye facsimiles. The integration of
microfluidics with organotypic retinal cultures will therefore
produce a new generation of quantitative platforms that enable

newfound applications of external fields to enrich stem cell
replacement strategies.
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