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Abstract

Motivation: CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, bio-
technology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are
thus predictable. However, existing prediction methods are dependent on both feature and model engineering,
which restricts their performance to existing knowledge about CRISPR/Cas9 editing.

Results: Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were
used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON
(CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automat-
ically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell
genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting
1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of
CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to as-
sess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target
genes: the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-
induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consider-
ation when designing widely applicable gRNAs.

Availability and implementation: https://github.com/vli31/CROTON.

Contact: zzhang@flatironinstitute.org or ogt@genomics.princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) is a revolutionary gene-editing
technology that has broad applications in basic biology, biotechnol-
ogy and medicine (Hsu et al., 2014). CRISPR/Cas9-mediated gen-
ome editing follows two major steps: (1) the induction of a double-
stranded break (DSB) in a target DNA sequence and (2) the activa-
tion of cellular DNA-repair pathways. CRISPR/Cas9 is a ribonu-
cleoprotein that consists of a guide RNA (gRNA) that defines a
target DNA sequence and the dual DNA endonuclease Cas9 which
induces a DSB around 3 base pairs (bps) upstream of an ‘NGG’ pro-
tospacer adjacent motif (PAM). Following DNA cleavage, a DSB
can be repaired by three DNA repair pathways: template-free non-
homologous end-joining (NHEJ) and microhomology-mediated end
joining (MMEJ), as well as template-directed homology-directed

repair (HDR). HDR can be used to introduce precise DNA modifi-
cations, but it is inefficient, especially in non-mitotic cells, and often
generates unwanted byproducts. In contrast, NHEJ and MMEJ
were believed to trigger random repair outcomes. However, recent
research has shown that NHEJ and MMEJ repair outcomes are de-
pendent on features on target DNA sequences (Molla and Yang,
2020).

Since a range of DNA sequence factors, such as GC content and
microhomology length and position, may contribute to repair out-
comes, accurate prediction of template-free CRISPR/Cas9 editing
outcomes is a challenging bioinformatics question. Three machine
learning (ML) models, inDelphi, FORECasT and SPROUT, which
utilize neural networks and k-nearest neighbors, multinomial logis-
tic regression, as well as gradient-boosting decision trees, respective-
ly, have been designed to tackle this question. However, these ML
methods require both feature and model engineering and are thus
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limited by existing knowledge about CRISPR/Cas9-induced DSB re-
pair (Allen et al., 2019; Leenay et al., 2019; Shen et al., 2018).

A potential alternative ML framework is deep convolutional
neural networks (CNNs), which have attracted attention in compu-
tational biology because they excel at pattern recognition. Indeed,
many state-of-the-art ML models capable of predicting specific mo-
lecular phenotypes from raw DNA sequences utilize deep CNNs
(Eraslan et al., 2019; Zhang et al., 2021). Since deep CNNs process
raw sequences, manual feature engineering is not required for CNN-
generation, which can expedite model creation. Furthermore, CNNs
can detect and process important, but not well-understood, parts of
an input, rendering it potentially more effective and versatile relative
to other ML methods. Effective model architectures are essential for
CNN performance, but CNN architecture design requires a substan-
tial amount of ML knowledge and time. Recently, neural architec-
ture search (NAS), a state-of-the-art method for finding good neural
network architectures has been developed to automate model-engin-
eering. NAS is a form of automated machine learning (AutoML)
that has been shown to generate CNNs with comparable efficacy to
manually engineered models (Zhang et al., 2021; Zoph and Le,
2017).

Herein, CROTON (CRISPR Outcomes Through cONvolutional
neural networks), a novel deep learning framework based on deep
CNNs and NAS, has been created to predict CRISPR/Cas9 editing
outcomes. By leveraging CNNs and NAS, CROTON fully auto-
mates the tasks of predicting 1 bp insertion and deletion probability
as well as deletion and frameshift frequency from raw sequences
alone and without any prior knowledge (Fig. 1). We demonstrate
that CROTON, which was trained on a synthetic construct-based
dataset, outperforms existing approaches on a held-out, independent
endogenous T-cell dataset. CROTON was then utilized to evaluate
the effect of single nucleotide variants (SNVs) on the CRISPR/Cas9-
mediated genome editing outcomes of four clinically relevant target
genes: ACE2, CCR5, CTLA4 and PDCD1. The differences in pre-
dicted SNV-induced editing outcomes suggest that SNVs should be
considered when designing widely applicable gRNAs.

2 Materials and methods

2.1 Acquisition and pre-processing of CRISPR/Cas9

editing outcome datasets
The datasets used to train CROTON were acquired from two previ-
ous works that produced the models FORECasT and SPROUT
(Allen et al., 2019; Leenay et al., 2019). To reconcile the two data-
sets, we compiled 60 bp genomic sequences as the model inputs.
Specifically, for each gRNA in the FORECasT dataset, we aligned
the PAM sites at 33 nt so the cut site was at the center (30 nt) of all
input sequences. The pseudo-letter ‘N’ was padded to the
FORECasT sequences if they were shorter than 60 bp after PAM re-
alignment. To obtain DNA sequences for SPROUT, retrieved gen-
omic coordinates were mapped to the human genome build 38
(hg38). Subsequently, sequences from FORECasT and SPROUT
were one hot encoded to 4� n matrices for each DNA sequence,
where n¼60 was the sequence length, the nucleotide ‘A’ was repre-
sented by the array [1, 0, 0, 0], ‘C’ was represented by [0, 1, 0, 0],

‘G’ was represented by [0, 0, 1, 0], ‘T’ was represented by [0, 0, 0,
1] and ‘N’ was represented by [0.25, 0.25, 0.25, 0.25].

To compile the editing outcomes, CIGAR (Compact
Idiosyncratic Gapped Alignment Report) strings were processed for
the FORECasT and SPROUT datasets. For each gRNA, we com-
puted the following editing outcome statistics: (1) 1 bp insertion fre-
quency, (2) 1 bp deletion frequency, (3) deletion frequency, (4) 1 bp
frameshift frequency, (5) 2 bp frameshift frequency and (6) total
frameshift frequency. (Given I is the total number of insertions, D is
the total number of deletions and IþD is the total number of inser-
tions or deletions (indels), the first three metrics were defined as fol-
lows: (i)

I1bp

IþD ; (ii)
D1bp

IþD and (iii) D
IþD. The next three frameshift

frequency statistics were defined as the proportion of indel outcomes
that induced a frameshift of 1 bp, 2 bp or the union of both).

We leveraged the large-scale FORECasT data to train the model
and held out the SPROUT dataset as an independent dataset for per-
formance evaluation. Within the FORECasT data, samples were
randomly split into training, validation and testing datasets in an
8:1:1 ratio. The FORECasT training dataset had 28 105 datapoints,
and both the FORECasT test and validation datasets had 3512 data-
points. In addition, the SPROUT dataset, which we utilized for
cross-cellular testing, had 1603 datapoints. The validation dataset
was used to monitor model training convergence and early-stopping,
while the testing datasets were held-out as independent, unseen
datasets to evaluate the trained model performance.

2.2 Automated deep learning interface for CRISPR/Cas9

editing outcome prediction
CROTON is a deep CNN that predicts CRISPR/Cas9 editing out-
comes from raw one hot encoded DNA sequences. Given a one-hot
encoded input sequence of shape xi 2 R

4�60, the task for CROTON
was to learn a function fx;að�Þ with trainable parameters x under a
fixed architecture a that mapped a sequence xi to a vector of six
indel and frameshift-related probabilities yi ¼ fyij 2 ½0;1�
jj ¼ 1; 2; . . . ;6g, such that yi ¼ fx;aðxiÞ. To search for expressive
architectures a and learn fx;a, AMBER (v0.1.0), a framework for
CNN architecture design for genomic sequence processing, was uti-
lized to automatically design the CROTON model architecture. In
AMBER, CROTON’s input and output stems were fixed to fit the
input sequences and output labels, while its middle eight convolu-
tion layers were searched (Zhang et al., 2021).

We first describe the fixed input and output stems for
CROTON. The input layer contained a 4�60 matrix xi, followed
by a linear stem convolution layer with kernel size 8 that expanded
the 4-channel DNA sequence into 32 channels. The top of the model
employed global average pooling that flattened convolution layers
to a fully connected layer with 32 hidden units, and the final outputs
of the model were multi-tasking predictions for each of the six edit-
ing outcome statistics. We used binary cross-entropy as the loss
function to update x for predictions of the six indel and frameshift-
related probabilities on a set of N training datapoints:

Lðx; x; yÞ ¼ 1

N

XN

i¼1

yT
i � logðfx;aðxiÞÞ þ ð1� yiÞT � logð1� fx;aðxiÞÞ:

Next, we describe the model search space for the variable layers
of CROTON. Specifically, the middle eight convolution layers were
variable, and their computational operations and residual connec-
tions were searched by AMBER (Zhang et al., 2021) to build an op-
timal CNN architecture. For each layer, AMBER searched for six
candidate computational operations: four convolution layers with
Rectified Linear Unit (ReLU) activation, kernel size 2 f4; 8g and
dilation rate 2 f1; 4g, as well as the maximum and average pooling
layers with pooling size ¼ 4 and stride size ¼ 1. Convolution opera-
tions across all layers had 32 filters, consistent with the input stem
linear convolution. A special operation, identity mapping, was also
added at each layer to potentially reduce model complexity. For any
layer t, the computation operation was sparsely encoded by
ao

t 2 ½1;7�. Residual connections for the tth layer were encoded as
binary tokens ar

t 2 f0; 1g from each of the preceding layers

Data Acquisition
and Preprocessing

Feature Model Model Evaluation
and Deployment

inDelphi

FORECasT

SPROUT

Convolutional Neural Network
and Neural Architecture Search

CROTON

Engineering Engineering

Data Acquisition
and Preprocessing

Model Evaluation
and Deployment

Fig. 1. The CROTON ML pipeline is highly automated. Unlike the three existing

models for CRISPR/Cas9 editing outcome prediction, CNN and NAS-based

CROTON is based on automated feature and model design, which creates an end-

to-end ML pipeline from data acquisition to model deployment
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1; 2; ::; t � 1. For brevity, we let a ¼ fao
t ; a

r
t jt ¼ 1; 2; . . . ;Tg be

CROTON’s model architecture tokens for both computation opera-
tions and residual connections in the T¼8 model space, such that a
set of architecture tokens a fully specifies a model architecture for
CROTON. In total, this eight-layer model space hosted 1:54� 1015

viable model architectures.
Therefore, the architecture search problem was formulated as a

sparse classification for the selection of computation operations,
and binary classifications for residual connections, respectively.
AMBER leverages a recurrent neural network (RNN) with parame-
ters h as a controller model to generate CROTON’s model architec-
tures a with log-likelihood pða; hÞ. A detailed explanation of the
AMBER workflow can be found in our published work (Zhang
et al., 2021).

Formally, let ao
t denote the computation operation, and ar

t denote
residual connections for the tth layer; let ht denote the hidden states
of the controller model at the tth layer. At each layer t, ao

t and ar
t

were sampled probabilistically from multinomial and binomial dis-
tributions, respectively; subsequently, the sampled tokens were fed
as inputs to the next layer tþ1. In particular, the controller model
predicted the ao

t by first updating the hidden state through a long
short-term memory (LSTM) cell ht ¼ fho

ðao
t�1; ht�1Þ, then sampling

from the multinomial distribution of softmax function rð�Þ trans-
formed ht by weight Wo:

Pðao
t Þ ¼ rðWo � fho

ðao
t�1; ht�1ÞÞ ¼ rðWo � htÞ:

The residual connection for the tth layer from the rth layer,
1 � r < t, was sampled from the binomial distribution whose
probability was determined by an attention mechanism between the
query layer’s hidden state ht and the previous layer’s hidden state hr,
with trainable weights v, Wr1 and Wr2:

Pðar
tÞ ¼ rðvT � tanhðWr1 � ht þWr2 � hrÞÞ:

Thus, the total trainable parameters for the controller model
were h ¼ fho;Wo;Wr1;Wr2; vg, and the log-likelihood for selecting
a set of architecture tokens a under the parameters h was pða; hÞ. We
employed reinforcement learning to optimize h. Following the previ-
ously established REINFORCE rule (Williams, 1992), the policy
gradient for h was obtained to maximize the average multi-tasking
Spearman’s correlation coefficient R on the validation dataset over a
batch of m sampled architectures, with an exponential moving aver-
age of rewards b to stabilize the reward signals:

1

m

Xm

k¼1

rhpðak; hÞðRk � bÞ:

Finally, the optimal AMBER-searched CNN architecture, which
was defined as the best reward architecture in the last controller
step, was scaled in width by a scaling factor. Dropouts were then
added after each searched layer before the architecture was re-
trained from scratch. We performed a simple grid search for these
two additional hyperparameters and reported the best performing
model with width scaling factor ¼ 6 and dropout rate ¼ 0.4.
Training convergence was defined as validation loss not decreasing
for at least 50 epochs.

2.3 Performance comparisons
We sampled CNN architectures from the same model space without
training the AMBER controller model to benchmark the quality of
the automatically designed model architecture. In particular, com-
putational operations were sampled uniformly from the model
space; residual connections were sampled at the same density as
CROTON. A total of n¼50 models with sampled architectures
were trained with identical width-scale factor and optimization con-
figurations to robustly evaluate an uninformed, null distribution of
performance in the model space. Subsequently, the testing perform-
ance for every CROTON prediction task was compared to that of
the sampled model cohort.

We also evaluated CROTON’s predictions by classifying each
individual task’s predicted probability as high (larger than the

observed median value) versus low (lower than the observed median
value), and calculated area under the curve receiver operating char-
acteristics (AUC-ROC) for this binary classification problem.

Furthermore, we applied the trained CROTON model on the
held-out SPROUT T-cell dataset as an independent, cross-cellular
benchmark. Existing methods were benchmarked against
CROTON, including inDelphi (Shen et al., 2018), FORECasT
(Allen et al., 2019) and SPROUT (Leenay et al., 2019). For inDelphi
and FORECasT, we used the publicly available trained models
(https://github.com/maxwshen/inDelphi-model and https://github.
com/felicityallen/SelfTarget) to generate predictions for all sequen-
ces in the SPROUT dataset. The Pearson’s correlation between pre-
dicted and observed values was then utilized to compare the
performance of inDelphi and FORECasT to that of CROTON.
Since inDelphi had different models for different cell lines, we
reported values from the best performing inDelphi cell-line/model.
For the SPROUT model trained on the SPROUT dataset, we com-
pared CROTON’s performance to the published metrics (Leenay
et al., 2019) under the criteria defined by SPROUT (i.e. Kendall’s
tau for 1 bp insertion and deletion probabilities, and Pearson’s cor-
relation for deletion frequency).

2.4 In silico saturated mutagenesis analysis for model

interpretation
To interpret how the CNNs made their predictions, in silico satu-
rated mutagenesis was performed using the Selene framework (Chen
et al., 2019). In silico saturated mutagenesis is a perturbation-based
base importance analysis method in which CNNs evaluate DNA
sequences with single nucleotide polymorphisms (SNPs). In an SNP,
a nucleotide at a specific position along a DNA sequence is changed
to another, for instance, ‘ACC’ is a perturbed sequence of ‘GCC’. In
in silico saturated mutagenesis, the model runs on every possible one
hot encoded sequence that can be perturbed from the original se-
quence. The final interpretation output is a matrix with the same
shape as the input (4�60) in which every matrix entry represents a
base importance score calculated as the difference between the pre-
dictions of the reference sequence and the altered sequence. In sum-
mary, in silico saturated mutagenesis evaluates how important every
base pair position is to a CNN by computing the deviation of its pre-
dictions for sequences with SNPs at that position from the original
unperturbed sequence. Herein, sequences with model predictions
within 0.05 of true values were utilized for in silico saturated muta-
genesis analysis.

2.5 Variant effect analysis for frameshift gRNA design
The human genome-wide variants dbSNP build 151 VCF file was
downloaded from NCBI (ftp.ncbi.nih.gov/snp/organisms/human_
9606_b151_GRCh38p7/VCF/). For all annotated coding exons in
Gencode V35, we scanned potential PAM sites (‘NGG’) in the hg38
genome before aligning them to the CROTON 60 bp window.
Then, bedtools (v2.29) was used to intersect the PAM sequences to
the variants. For each PAM site with variants in the four representa-
tive genes (ACE2, CCR5, CTLA4 and PDCD1), CROTON pre-
dicted editing outcome probabilities for sequences with reference
and alternative alleles. The differences between reference and alter-
native alleles were subsequently calculated for each of the individual
tasks. In addition, to find the least variant gene-editing targets, the
absolute differences between the reference and alternative
CROTON predictions were computed across all statistics for all
SNVs at a particular potential target location. Then these targets
were ranked by the mean of their absolute differences to elucidate
the gene targets with the least impactful SNVs.

3 Results

3.1 Automated model architecture design for CROTON
CROTON was built on data from FORECasT because it produced
the largest CRISPR/Cas9 editing outcome dataset relative to those of
inDelphi and SPROUT (Allen et al., 2019; Leenay et al., 2019;

i344 V.R.Li et al.

https://github.com/maxwshen/inDelphi-model
https://github.com/felicityallen/SelfTarget
https://github.com/felicityallen/SelfTarget
http://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/VCF/
http://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/VCF/


Shen et al., 2018). FORECasT data was split into training, valid-
ation and testing datasets and all metrics presented are from model
performance on the testing dataset, which CROTON was unex-
posed to during training. CROTON was designed to predict 1 bp in-
sertion and 1 bp deletion probability, as well as deletion, 1 bp
frameshift, 2 bp frameshift and overall frameshift frequency. Since
these features were interrelated, we chose to utilize a multi-task
learning framework.

Multi-task learning can outperform single-task learning by lever-
aging features derived for multiple prediction tasks (Zhang and
Yang, 2018). In addition, manually tuning a CNN would be time-
consuming and limited in scope. Thus, we utilized NAS to automat-
ically create a multi-task deep CNN framework for CRISPR/Cas9
editing outcome prediction. The NAS model search space contained
dilated and non-dilated one-dimensional convolutional layers with
kernel sizes four and eight (dconv4, dconv8, conv4 and conv8) as
well as the maximum pooling (maxpool), average pooling (avgpool)
and identity layers (Methods). To assess the efficacy of automated
model engineering, the final NAS architecture was compared to 50
randomly sampled model architectures from the search space. The
final NAS-designed CROTON model outperformed all randomly
selected model architectures, indicating that NAS is an effective
strategy for deep-CNN design. The final CROTON architecture
achieved Pearson’s Correlations (RP) greater than 60 for all predic-
tion tasks and RP greater than 70 for deletion frequency, 1 bp inser-
tion probability and 1 bp deletion probability prediction (Fig. 2A).

We also analyzed the average layer selection probabilities for the
NAS run. Interestingly, across all model layers, convolutional layers
were consistently favored over pooling layers, indicating that precise
feature locations were conserved in our model. In addition, a dilated
convolutional layer of size 8 was favored for all layers after Layer 1.
Dilated layers allow the receptive field to be enlarged without losing
resolution or coverage, further suggesting that spatial relationships
between features were important for CRISPR/Cas9 outcome predic-
tion (Fig. 2B; Yu and Koltun, 2016).

3.2 Croton accurately predicts CRISPR/Cas9 editing

outcomes across cell lines and outperforms other

predictors
The efficacy of CROTON was also assessed by computing whether
it made accurate predictions above or below the median value in
each task dataset. Using this evaluation strategy, the area under the
curve (AUC) was calculated to measure CROTON’s performance.
On the FORECasT data, CROTON achieved AUCs of greater than
80 for all prediction tasks and greater than 90 for the deletion fre-
quency and 1 bp insertion tasks (Fig. 3A). Since FORECasT data
was based on synthetic gRNA-CRISPR target constructs, it was im-
portant to test CROTON on an endogenously generated gene-edit-
ing dataset (Allen et al., 2019). To this end, CROTON was tested
with the held-out, independent SPROUT CRISPR/Cas9 editing

outcome dataset. This dataset was derived from primary human T
cells, which are widely utilized in therapeutic cell engineering
(Leenay et al., 2019; Wang et al., 2020). On the SPROUT dataset,
CROTON’s performance was conserved with AUCs similar to those
measured with the FORECasT dataset, indicating that large-scale
synthetic construct based datasets are effective for endogenous
CRISPR/Cas9 predictions (Fig. 3B).

CROTON’s predictive accuracy on the SPROUT dataset was
then compared to that of existing ML-based CRISPR/Cas9 editing
outcome predictors: SPROUT, FORECasT and inDelphi. For
inDelphi, metrics for the best performing model on the HEK293 cell
line were reported. Overall, CROTON substantially outperformed
all models on all but one task. CROTON was only less effective
than FORECasT at frameshift frequency prediction but outper-
formed FORECasT with wide margins on other prediction tasks
such as deletion and 1 bp insertion frequency (Tables 1 and 2).
Notably, CROTON performed on par or even outperformed
SPROUT, which was trained on the SPROUT dataset.

3.3 In silico mutagenesis revealed local sequence

determinants for diverse editing outcomes
Since CROTON is an effective CRISPR/Cas9 editing outcome pre-
dictor and does not utilize any manual feature engineering, it was
important to elucidate how CROTON made predictions from a raw
input sequence. Thus, we conducted in silico saturated mutagenesis
for CROTON on all prediction tasks for both the FORECasT and
SPROUT datasets. These plots display the average importance val-
ues computed over multiple sequences in these test datasets
(Methods). Across FORECasT and SPROUT data, saturated muta-
genesis plots for the same prediction task were very similar.
Representative in silico saturated mutagenesis plots based on
FORECasT data are shown in which larger text is indicative of
nucleotides with greater importance to CROTON prediction
(Fig. 4).

A B

Fig. 2. NAS designs effective multi-task deep CNN architectures. (A) CROTON

outperforms models with sampled architectures from the model search space.

CROTON achieves RP of > 60 for all prediction tasks and RP of 87.96 and 90.79

for deletion frequency and 1 bp insertion probability prediction, respectively. (B)

The layer selection probabilities for the best CROTON architecture

A B

Fig. 3. CROTON makes accurate CRISPR/Cas9 editing outcome predictions across

cell lines. (A) AUC-ROC curves for CROTON’s predictions on the testing

FORECasT dataset. (B) AUC-ROC curves for CROTON’s performance on the

held-out, primary T cell-derived SPROUT dataset. Across cell lines, CROTON

achieved AUCs > 0.75 for all prediction tasks and AUCs > 0.90 for deletion fre-

quency and 1 bp insertion prediction

Table 1. Performance comparison of CROTON, inDelphi and

FORECasT by Pearson’s correlation (RP)

CROTON inDelphi FORECasT

Deletion frequency 81.12 51.00 73.17

1 bp insertion 82.42 52.40 75.10

1 bp deletion 57.51 21.45 30.36

1 bp frameshift frequency 73.84 54.69 66.71

2 bp frameshift frequency 64.30 42.40 50.04

Frameshift frequency 55.56 51.54 57.94

CROTON i345



Consistent with prior reports, the base pairs upstream of the
PAM sequence were the most important for CROTON’s template-
free CRISPR/Cas9 editing outcome predictions (Fig. 4; Leenay et al.,
2019; Shen et al., 2018). In particular, our analyses support cross-
cell line and cross-organism studies that have shown that the nucleo-
tide 4 base pairs upstream of the PAM has the greatest effect on
CRISPR/Cas9 DSB repair (Fig. 4A and C; Molla and Yang, 2020).
Thus, our study confirms that the positions of nucleotides relative to
the PAM site are important to CRISPR/Cas9 editing outcomes.
Notably, 1 bp deletion and frameshift frequency had determinants
across the entire input sequence (Fig. 4B and D), suggesting that
they are more complex prediction tasks.

3.4 Croton reveals the effects of SNVs on CRISPR/Cas9-

mediated genome editing
There are approximately 10–15 million common human SNVs,
which can impact the efficacy of CRISPR/Cas9 editing (Chen et al.,
2020; Eichler et al., 2007). Since CROTON accurately predicts 1 bp
insertion probability with the best performance (Tables 1 and 2), we
utilized 1 bp insertion probability to analyze the effect of SNVs on
CRISPR/Cas9 editing outcomes. CROTON was applied across the
coding regions of the gene bodies of 4 clinically relevant gene editing
targets: ACE2, CCR5, CTLA4 and PDCD1. ACE2 and CCR5 are
receptors for the SARS-CoV-2 virus and the human immunodefi-
ciency virus (HIV), respectively, and have been considered as thera-
peutic targets for viral infection (Michauld et al., 2020; Vangelista
and Vento, 2018). CTLA4 and PDCD1 are immune checkpoint
inhibitors that can be targeted for cancer immunotherapy (Shi et al.,
2017; Stadtmaue et al., 2020; Wang et al., 2020). Indeed, several
ongoing clinical trials utilize CRISPR/Cas9 to delete PDCD1,
including one that has been deemed safe and feasible for late-stage
non-small cell lung cancer (NSCLC) patients (ClinicalTrials.gov
NCT02793856; Lu et al., 2020; Wang et al., 2020).

Notably, CROTON’s analysis revealed that there were SNVs
that altered the 1 bp insertion probability by � 30% in all four clin-
ically relevant genes (Table 3). We have also tabulated the top ten
least variant gene target locations for each of these genes
(Supplementary Tables S1–S4). Since 1 bp insertions result in frame-
shift mutations that will likely inactivate the target gene, these find-
ings indicate that personalized genomic variants should be properly
considered for these PAM sites for genome-editing applications in
patients. We further analyzed PDCD1 because it is involved in the
greatest number of ongoing interventional CRISPR/Cas9 clinical

trials (Wang et al., 2020). 1 bp insertion probability in PDCD1
varies considerably across the coding regions of the gene body.
Notably, the two gRNAs which were used in the NSCLC trial, here-
after referred to as gRNA1 and gRNA2, had a high and low 1 bp in-
sertion probability, respectively (Fig. 5; boxed in orange). These
differences indicate that gRNA1 by itself is more likely to create a
loss of function mediated by a 1 bp insertion than gRNA2.
CROTON’s predictions indicate that SNVs may be important fac-
tors to consider in CRISPR/Cas9 genome editing, especially in clinic-
al trials with patients that harbor these variants.

4 Discussion

CRISPR/Cas9 is a transformative gene-editing technology that has
been widely applied in basic and translational biological research
(Hsu et al., 2014; Wang et al., 2020). Recently, the creation of ML
models capable of predicting the repair outcomes of CRISPR/Cas9
editing has highlighted the potential of predictable and precise tem-
plate-free genome editing paradigms (Molla and Yang, 2020).
However, existing ML prediction methods are all dependent on fea-
ture and model engineering, which may restrict their performance to
current knowledge about CRISPR/Cas9 editing (Allen et al., 2019;
Leenay et al., 2019; Shen et al., 2018). Notably, deep CNNs and
state-of-the-art NAS have been used to generate computational
models based on genomic sequences (Eraslan et al., 2019; Zhang
et al., 2021; Zoph and Le, 2017). In this study, we created
CROTON, a novel framework that leverages both multi-tasking
deep CNNs and NAS to predict CRISPR/Cas9 editing outcomes.
CROTON predicts 1 bp insertion and 1 bp deletion probability, as
well as deletion, 1 bp frameshift, 2 bp frameshift, and overall frame-
shift frequency directly from raw DNA target sequences. CROTON
is highly automated relative to existing ML prediction methods and
it outperforms them on a primary T cell-based genomic editing data-
set. These results highlight the potential for CNNs and NAS for the
precise prediction of genomic editing outcomes. A CROTON web
interface has been made publicly available at the following link:
https://github.com/vli31/CROTON.

The efficacy of NAS-designed models implies that NAS has sig-
nificant potential in genomics and can design models that accurately
predict molecular phenotypes from raw sequence alone.
Furthermore, in silico saturated mutagenesis of CROTON showed
that nucleotides upstream of the PAM were important to CNN pre-
diction, which aligns with previous reports (Molla and Yang, 2020).
Currently, although CROTON was built on the synthetic construct-
based FORECasT dataset, when tested on the endogenous genomic
SPROUT dataset, CROTON’s accuracy was largely conserved and
it outperformed existing models. CROTON’s effectiveness between
these two datasets indicates that utilizing synthetic constructs is an
effective strategy to generate the large-scale data necessary for ML.

CROTON is highly effective in predicting 1 bp insertion prob-
ability, which can result in a frameshift mutation that inactivates a
target gene. However, similar to other CRISPR/Cas9 editing out-
comes predictors, CROTON is less effective in predicting overall
frameshift frequency, which may limit its usage for loss-of-function
gRNA design. CROTON’s accurate 1 bp insertion probability pre-
dictions were applied to 4 clinically relevant target genes to assess
how SNVs affect genome editing outcomes. On all four genes,
ACE2, CCR5, CTLA4 and PDCD1, CROTON found variants that
caused a significant difference in 1 bp insertion probability. To our
knowledge, this is the first study that considers how naturally occur-
ing variants affect CRISPR/Cas9 gene editing outcomes. We found
that genomic loci with SNVs that have large effects on CRISPR/
Cas9 editing outcomes should be avoided in widely applicable
gRNA design. Further analysis of two gRNAs that were utilized in
an NSCLC clinical trial revealed differential 1 bp insertion probabil-
ity. Future studies may reveal whether this difference has a signifi-
cant impact on genome editing outcomes in patients and whether
there are better gRNA pairs for effective PDCD1 genome editing. A
CRISPR editing outcome predictor sensitive to genetic alterations at
base-pair resolution like CROTON could be critical for designing
effective gene therapies tailored to individual patients.

Table 2. Performance comparison of CROTON and SPROUT

CROTON SPROUT

Deletion frequency (RP) 81.12 77

1 bp insertion (K Tau) 65.22 62

1 bp deletion (K Tau) 43.81 40

A

C

1 bp Insertion

Deletion Freq.

1 bp Deletion

Frameshift Freq.

B

D

Fig. 4. The importance assigned by CROTON to every nucleotide on the input se-

quence In silico saturated mutagenesis plots for 1 bp insertion probability (A), 1 bp

deletion probability (B), deletion frequency (C) and frameshift frequency (D)
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In addition, CROTON may be further developed to predict a
more complete spectrum of DNA repair sequences. Notably, tem-
plate-free CRISPR/Cas9-based correction of genetic diseases has
been performed in Hermansky-Pudlak syndrome and Menkes dis-
ease with 88% and 94% efficiency, respectively (Shen et al.,
2018). If CROTON can predict specific DNA sequences resulting
from template-free repair of a CRISPR/Cas9-induced DSB, it may
also be utilized to design gRNAs capable of restoring normal gene
function.

Furthermore, CROTON may be adapted to elucidate the funda-
mental cellular and molecular alterations induced by CRISPR/Cas9
editing. CROTON can be used to form a deep learning pipeline
with existing algorithms that can predict transcription, splicing and
polyadenylation from raw DNA sequences (Bogard et al., 2019;
Jaganathan et al., 2019; Zhou et al., 2018). This CROTON-based
platform would allow CRISPR/Cas9 to be used for precise manipu-
lation of the transcriptome, thus creating a novel paradigm for func-
tional genomics and biomedicine.

Table 3. SNVs with a High Impact on 1 bp Insertion Probability

Gene Variant Reference Pred. Alternate Pred. Absolute difference

PDCD1 rs1284638279 0.576 0.110 0.466

ACE2 rs1482922566 0.656 0.222 0.434

ACE2 rs370610075 0.056 0.489 0.432

PDCD1 rs535799968 0.029 0.429 0.399

PDCD1 rs141119263 0.202 0.601 0.398

PDCD1 rs769685838 0.130 0.524 0.394

PDCD1 rs371902970 0.132 0.515 0.382

PDCD1 rs370660750 0.116 0.497 0.381

PDCD1 rs1021665035 0.110 0.475 0.365

PDCD1 rs1185044781 0.399 0.036 0.363

CCR5 rs1032906612 0.060 0.422 0.362

CCR5 rs139737901 0.190 0.552 0.362

CCR5 rs767205045 0.546 0.186 0.360

PDCD1 rs368550965 0.184 0.537 0.353

PDCD1 rs749023157 0.039 0.388 0.350

CCR5 rs768195565 0.583 0.248 0.336

CTLA4 rs1461208141 0.420 0.098 0.322

ACE2 rs148036434 0.472 0.149 0.322

PDCD1 rs1422265917 0.015 0.336 0.321

ACE2 rs748076875 0.077 0.393 0.317

CTLA4 rs1444367175 0.221 0.537 0.316

ACE2 rs1395782023 0.083 0.398 0.314

PDCD1 rs146642159 0.033 0.346 0.313

PDCD1 rs1485118790 0.389 0.080 0.309

PDCD1 rs1329281649 0.398 0.095 0.303

PDCD1 rs774374376 0.019 0.321 0.302

PDCD1 rs1371267560 0.512 0.212 0.300

PDCD1 PAM Index

Fig. 5. SNVs affect CRISPR/Cas9 editing outcomes. The distribution of CROTON’s 1 bp insertion probability predictions on all 211 PAM sites across the five PDCD1 coding

regions. The orange boxes indicate gRNA1 (left) and gRNA2 (right), which were utilized in an NSCLC clinical trial that used CRISPR/Cas9 to inactivate PDCD1. The black

horizontal line indicates the 1 bp insertion probability prediction for the reference sequence, while circles (color-coded by exon) indicate the 1 bp insertion probability predic-

tions for sequences with alternative alleles
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