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Abstract

Background: Disease comorbidity is popular and has significant indications for disease progress and management.
We aim to detect the general disease comorbidity patterns in Chinese populations using a large-scale clinical data set.

Methods: We extracted the diseases from a large-scale anonymized data set derived from 8,572,137 inpatients in 453
hospitals across China. We built a Disease Comorbidity Network (DCN) using correlation analysis and detected the
topological patterns of disease comorbidity using both complex network and data mining methods. The comorbidity
patterns were further validated by shared molecular mechanisms using disease-gene associations and pathways. To
predict the disease occurrence during the whole disease progressions, we applied four machine learning methods to
model the disease trajectories of patients.

Results: We obtained the DCN with 5702 nodes and 258,535 edges, which shows a power law distribution of the degree
and weight. It further indicated that there exists high heterogeneity of comorbidities for different diseases and we found
that the DCN is a hierarchical modular network with community structures, which have both homogeneous and
heterogeneous disease categories. Furthermore, adhering to the previous work from US and Europe populations, we
found that the disease comorbidities have their shared underlying molecular mechanisms. Furthermore, take
hypertension and psychiatric disease as instance, we used four classification methods to predicte the disease occurrence
using the comorbid disease trajectories and obtained acceptable performance, in which in particular, random forest
obtained an overall best performance (with F1-score 0.6689 for hypertension and 0.6802 for psychiatric disease).

Conclusions: Our study indicates that disease comorbidity is significant and valuable to understand the disease
incidences and their interactions in real-world populations, which will provide important insights for detection of the
patterns of disease classification, diagnosis and prognosis.

Keywords: Disease comorbidity, Complex network, Network medicine

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: liuby@mail.cintcm.ac.cn; ynzhang@nwpu.edu.cn;
xzzhou@bjtu.edu.cn
†Mengfei Guo, Yanan Yu and Tiancai Wen contributed equally to this work.
4China Academy of Chinese Medicine Sciences, Beijing 100070, China
3School of Computer Science, Northwestern Polytechnical University, Xi’an
710129, Shanxi Province, China
1School of Computer and Information Technology and Beijing Key Lab of
Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044,
China
Full list of author information is available at the end of the article

Guo et al. BMC Medical Genomics 2019, 12(Suppl 12):177
https://doi.org/10.1186/s12920-019-0629-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-019-0629-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:liuby@mail.cintcm.ac.cn
mailto:ynzhang@nwpu.edu.cn
mailto:xzzhou@bjtu.edu.cn


Introduction
Disease comorbidity reflects the shared molecular mecha-
nisms or environmental factors between diseases, which
would be important for improving the knowledge and man-
agement of diseases in real-world clinical settings [1–3]. It
has become a major problem in treatment [4, 5], because
patients with comorbidity diseases have a higher probability
of hospitalization and mortality [6, 7]. Furthermore, treating
patients with multiple diseases is complicate and time -
consuming, as it requires consideration of longer hospital
stays and more expert consultations [8, 9]. For example,
when a patient suffers from multiple diseases, the treating
is particularly complicate [10] because it involves uncer-
tainty in diagnosis and treatment. If the patient takes mul-
tiple drugs at the same time, and the popular therapies with
multiple drugs might cause serious side effects due to their
interactions [11, 12].
Unfortunately, the patterns and the underlying mecha-

nisms of disease comorbidity are far from fully eluci-
dated [13]. Therefore, recently, it has become a hot
research topic on disease comorbidity both from clinical
observations and molecular network mechanisms. Re-
lated studies explained the mechanism of the disease co-
morbidities of specific diseases. For example, studies
have been conducted on the comorbidities of diabetes of
adults [14]. Also, some of the related studies focus on
the relationship between diseases of genes, using Relative
Risk and Φ-correlation to measure the correlation be-
tween two diseases [15, 16]. And there exists a study
based on complex network including several diseases,
for 613 nodes and 3277 edges in its network from 3,354,
043 patients [17]. However, in most cases, these studies
are derived from the data in Europe and United States.
In addition, it is interesting that machine learning
methods are useful for predicting the patterns of bio-
medical entities, such as genes and proteins [18–20],
when utilizing the meaningful features involved in bio-
medical data.
Here, we utilized a large-scale clinical data and conducted

our research across the full range of diseases in China popu-
lation. We built a large-scale disease comorbidity network
(DCN) and obtained the topological properties and their re-
lationships by complex network measurements. In addition,
we validated the shared molecular mechanisms of the clinical
disease comorbidities and investigated the possibility to pre-
dict the disease occurrence using the disease trajectories by
machine learning methods. The results have implications for
the disease comorbidity patterns and would be helpful to
manage the chronic diseases conditions in clinical settings.

Methods
Data sources
Our main data were derived from the hospital discharge
data held in the Data Center of the China Academy of

Chinese Medical Sciences, which only includes two attri-
butes, namely diagnostic codes and the encounter se-
quential identifiers of patients. This made our study
strictly preserved the privacy of patients.
After removing of the records with missing diagnosis

codes, we obtained 8,572,137 high-quality clinical re-
cords from 453 different hospitals in China. The diag-
nostic codes were recorded by ICD10 (the 10th revision
of the International statistical classification of diseases
[21]) and we deal with them in the form of four-digit
ICD10 codes for further analysis.
Disease-gene associations were derived from the Mala-

Cards database [22], which resulted in 64,245 disease-
gene associations with 3193 diseases and 8616 genes.
Meanwhile, we collected the pathway information (in-
cluding 325 pathways and 7253 genes) from the KEGG
Database [23]. We further obtained the disease-pathway
associations with 175,167 records by linking 3118 dis-
eases and 324 pathways by combining the above two
data sets.

Data analysis methods
Correlation analysis
We used Relative Risk (RR) and Φ-correlation [15, 16]
to measure the correlations between disease pairs. When
two diseases di and dj co-occur more frequently than ex-
pected by chance, we would have RRij > 1 and Φij > 0.
The RR of observing a pair of di and dj affecting the
same patient is given by

RRij ¼ CijN

PiP j
ð1Þ

where Cij is the number of patients affected by both dis-
eases, N is the total number of patients in the population
and Pi and Pj are the prevalence of diseases i and j. The
Φ-correlation can be expressed as:

ϕij ¼
Cij−PiP j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PiP j N−Pið Þ N−P j
� �

q ð2Þ

We constructed the DCN with those disease pairs with
RR > 1.0 and Φ > 0.0 and the weights of disease pairs
(links) were set as the co-occurrences of the correspond-
ing diseases.

Network analysis
We constructed the DCN with nodes for the diseases of
the comorbidity patterns extracted before. When two
diseases co-occur on a patient, there’s an edge between
them. The weight of the edge is the co-occurrence times
which represents the relationships between the two dis-
eases. The weights of disease pairs of which the two dis-
eases co-occur frequently will be large.
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We used four topological measurements, namely, de-
gree, betweenness centrality (BC), clustering coefficient
(CC1) and closeness centrality (CC2), to evaluate the
centrality of nodes in the network. Diseases with larger
degree have more relationships with other diseases in
the network [23]. BC reflects the diversity of disease
connection and the complexity of the disease. CC1 is
used to measure the closeness of the neighbors to each
other [24]. That is, if disease d1 interacts with disease d2
and disease d2 interacts with disease d3, the possibility of
the d1 interacting with d3 is also great. CC2 is an index
of distribution of single-source shortest distance based
on node, which vividly describes the importance of
node’s position in the network.
However, basic topological properties cannot fully cap-

ture the full characteristics of DCN. For example, the
degree of a node only focuses on first-order connected
nodes, but ignores the relationships beyond the neigh-
boring nodes. The CC1 considers the closeness of adja-
cent nodes, but ignores the size of adjacent nodes.
Therefore, we calculated the correlations between some
topological measurements to identify the coupling and
hierarchical patterns underlying the DCN.

Classification methods
It is well recognized that the dynamic networks of dis-
ease comorbidities would contribute to the outcome of
patients [15, 16]. Here, we investigating the feasibility of
predicting disease (e.g. hypertension and psychiatric dis-
eases) occurrence based on the comorbid trajectories of
patients using four machine learning algorithms, namely
Logistic Regression (LR), SVM, Random Forest (RF) and
Neural Network (NN). The main framework including
the preprocessing of the data set is depicted in Fig. 1.
We curated patient cases that have at least two in-

patient encounters. After that, for a particular disease
which is diagnosed at a specific encounter for a given
patient, we would consider the past histories of diseases
as the predictor variables for that particular disease. In

addition, we randomly selected a set of negative samples
into the benchmark for classification methods. Now we
described the main steps of disease prediction task as
follows.

(a) We extracted totally 427,939 visits from the
database based on the identifiers of a patient, which
includes the whole comorbid trajectories of each
patient;

(b) Transform the data records into datasets with
features and classification labels. Diseases that the
patient had in the previous visits were considered as
the feature (excluding the target disease), and
diseases that the patient had in the current visit
were considered as classification label. To predict
the occurrence of a specific target disease, we set to
1 if the target disease appears, and set to 0 for the
other diseases.

(c) Train the classification models with the
preprocessed data.

(d) Validate the classification model (using 10-fold
cross validations) and obtain the significant associ-
ated disease risk factors for a given disease.

(e) Use the classification model to predict the disease
risks.

Results
Basic properties of the disease comorbidity network
We constructed the DCN with diseases whose co-
occurrence > 5, RR > 1.0 and Φ-correlation > 0.0. For
these comorbid diseases filtered by the above two corre-
lations, they actually obtained clinical meaningful rela-
tionships. For example, we found that the RR and Φ for
hypertension and atherosclerotic heart disease is 2.53
and 0.2760, respectively. While the RR and Φ for hybrid
asthma and atherosclerotic heart disease only got 1.3368
and 0.0002 respectively. The DCN has 5702 nodes and
258,535 edges with average degree 90.717(see Fig. 2a for
degree distribution) and average edge weight 12,

Fig. 1 The framework to predict disease occurrence using the comorbid trajectories of patients
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904.494(see Fig. 2b for weight distribution). In addition,
the average path length is 2.528 and the average CC1 is
0.629 (see Fig. 2c for CC1 distribution), which indicated
that DCN is a highly clustering network, with the neigh-
bors of a disease closely connected.
The power law distribution of degree and weight (Fig. 2a

and Fig. 2b) showed that DCN is a scale-free network [25],
which means that some diseases (e.g. hypertension, athero-
sclerotic heart disease) have very high comorbidities in
China population. We obtained the three disease lists,
which are ranked as the top 10 diseases of degree, between-
ness centrality and CC1 (Fig. 2f). It showed that hyperten-
sion, anaemia, other disorders of lung and other disorders
of glycoprotein metabolism are the top 4 diseases included
in all these rank lists.

Hierarchical modular structures of disease comorbidity
network
To identify the more elucidated patterns in the DCN, we
calculated the correlations between several pairs of

network topological measurements (Fig. 3a-f). We found
that there exists negative correlation between degree and
CC1 (Pearson correlation coefficient (PCC) = − 0.398, see
Fig. 3a) in DCN, which indicated that DCN is a hier-
archical modular network [26]. Furthermore, consist-
ently, we found that there exists negative correlation
between CC1 and CC2 (PCC = -0.155, see Fig. 3b). These
two results showed that in DCN, the neighbors of dis-
eases located in the center of the network (easier to get
to other nodes) have large diversity and diseases with
less CC2 tend to occur simultaneously with diseases in
the same module.
Furthermore, the positive correlation between CC2

and degree (PCC = 0.596, see Fig. 3c) indicates that the
data is reliable, because both the degree and close cen-
trality reflect the centrality of a node.
The BC can reflect the diversity of disease connota-

tion. There exists negative correlation between BC and
CC1 (PCC = -0.181, see Fig. 3f), which shows that neigh-
bors of the disease with large CC1 are not connected

Fig. 2 Basic properties of the network. a Distribution of degree. b Weight distribution of edges. c Distribution of CC1. d Distribution of BC. e
Distribution of CC2. f The top 10 diseases with the highest degree, CC2 and BC, respectively
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closely as a hub node. For example, as a hub node in
DCN, hypertension has high BC and degree (BC = 0.093,
degree = 1926), which reflects its diverse mechanisms
and comorbid phenotypes. Also, the relationships be-
tween its neighbors are sparse (CC1 = 0.051), which indi-
cate that there exist potential subtypes of hypertension
disorder. For disorders of choroid (H31.8), its BC is 0. It
has much fewer neighbors (degree = 12) but is more
closely related to them than hypertension (CC1 = 1).
That is to say, the number of the comorbidity diseases of
the disease is few, but their relationship between their
comorbid diseases is strong.

Disease comorbidity communities
To identify the disease comorbidity groups from the
DCN, we applied BGLL community detection method

[27] to find the communities, which resulted in 10 com-
munities with denser comorbidity links between the dis-
eases other than random expectations (see Fig. 3g-h).
There are both homogeneous and heterogeneous comor-
bidity diseases in the same communities. Meanwhile,
there exist branching relationships between categories.
For example, a specific disease comorbidity community
(see Fig. 3h), includes 157(accounting for 74.8%) eye related
diseases, which are caused by cataracts (H25-H26) and also
contains 53(25.2%) diseases from other categories. Ocular
comorbidity diseases are common in people with cataracts
in real-world clinical settings [28]. This would be insightful
for the refinement of disease classification.
We found several common disease comorbidity pat-

terns from 5702 diseases, such as diabetes and obesity
[29]. Hypertension occurs most frequently in the DCN.

Fig. 3 The relationship between topological properties and the network structure. a Degree and CC1; b CC2 and CC1; c Degree and CC2; d BC
and CC2; e Degree and BC; f CC1 and BC; g Modules in the network; h One specific disease comorbidity module in the network
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It has significant disease comorbidity patterns with ar-
teriosclerosis heart disease (RR = 2.53, co-occurrence =
475,649), diabetes (RR = 2.56, co-occurrence = 383,436),
cerebral infarction (RR = 2.70, co-occurrence = 367,144),
hyperlipidemia (RR = 2.24, co-occurrence = 205,967) and
heart failure (RR = 5.97, co-occurrence = 201,495). This
is consistent with the popular prevalence of hyperten-
sion, which can lead to a variety of complications (e.g.
cardiovascular disease [30, 31], diabetes [32, 33], renal
failure [34] and obesity [35, 36]) and cause damage to
organs, such as the heart, brain and kidneys. It is well
known that hypertension is a serious threat to the hu-
man health. The treatment of hypertension can reduce
the occurrence of cardiovascular disease and alleviate its
symptom. We also find other disease comorbidity pat-
terns, such as Alzheimer disease and atherosclerotic

heart disease, which can be supported by the evidence
that cardiovascular and arterial disease is considered an
important risk factor for Alzheimer’s disease [37]. It is
similar for the findings of the relationship of diabetes
and senile cataracts. Discovering these disease relation-
ships is beneficial to the prevention of concurrent dis-
ease while discovering the primary disease.

Shared molecular mechanisms of disease comorbidities
To validate the correlation between disease comorbidity
and their underlying shared molecular mechanisms [16]
in our data, we calculated PCC between the number of
shared genes and pathways and the strength of disease co-
morbidity (RR and Φ-correlation) in 258,543 disease pairs.
We found that although the correlation is weak, there
does exist significant positive correlation between comor-
bid diseases and their underlying molecular mechanisms
(Table 1), which indicates that if two diseases share genes
or pathways, it will tend to have disease comorbidities.
In addition, we observed that the degree of disease co-

morbidity would be higher as their molecular correlation
(shared genes and pathways) increased (see Fig. 4a and b).
With the increase of molecular correlation, the degree of

Table 1 PCC between the disease comorbidity and shared
molecular mechanisms

Shared genes Shared pathways

RR 0.05312(P < 2.2e-16) 0.008511 (P = 0.01193)

Φ-correlation 0.23688(P < 2.2e-16) 0.037891 (P < 2.2e-16)

Fig. 4 The shared molecular mechanisms of disease comorbidity. a The relationship between shared genes and intensity of disease comorbidity
b. The relationship between shared pathways and intensity of disease comorbidity c. Disease comorbidity of Alzheimer’s Disease and
Arteriosclerotic Heart Disease
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disease comorbidity gradually increases. Compared with
the two diseases that do not share genes, the degree of dis-
eases comorbidity of diseases sharing more than 20 genes
has increased nearly five times. That is to say, the more
genes the two diseases shared, the more likely there exists
a disease comorbidity relationship. As the number of
shared pathways increases, the comorbidity relationship
becomes stronger. However, the impact is relatively weak,
and there is a downward trend in the first two intervals.
Therefore, we need to prevent the disease from happening
while treating its comorbidity disease if they have shared
genes or pathways.
We further applied two commonly used similarity

measures, namely Jaccard and Cosine measures, to iden-
tify the relationship between shared genes and pathways.
We calculated the similarity and PCC between them.
The positive correlation of them (see Table 2) indicates
that if the similarity of two diseases increases, the num-
ber of shared genes and pathways will increase as well.
Furthermore, we found that several pairs of diseases not

only have correlation at the gene level, but also show im-
portant disease comorbidity relationship, such as Alzhei-
mer’s disease and atherosclerotic heart disease (see Fig. 4c).
There is a significant disease comorbidity relationship be-
tween them (RR = 2.585, Φ-correlation = 0.017), and they
have shared genes (ACE, AOPE and NOS3). This shows
that the existence of shared genes may lead to the co-
occurrence of two diseases, which may be the direct reason
of the disease comorbidity of them.

Disease prediction using the comorbid trajectories of
patients
To investigate the possibility of using disease comorbid tra-
jectories to predict disease occurrence, we extracted 27,000
cases from our database and generated two benchmark data
sets for two disease cases, namely hypertension and psychi-
atric diseases to demonstrate the feasibility (see Table 3). It
is noted that the coupled negative records were randomly
selected from our database. We applied 4 machine learning
methods (see Table 4 for detailed parameters) to predict
the disease occurrence according to the previous diseases
of a given patient.
Finally, we found that the prediction results of the 4

classification models on two disease datasets (see
Table 5) are acceptable. Among the two data sets, LR
had the highest accuracy (0.6193 for hypertension and
0.6478 for psychiatric diseases) and NN had the lowest

accuracy (0.5919 for hypertension and 0.6306 for psychi-
atric diseases), and RF has the highest recall (0.7534 for
hypertension and 0.7358 for psychiatric diseases).
Altogether, RF has the best F1-score in those four
methods (0.6689 for hypertension and 0.6802 for psychi-
atric diseases). RF reaches the best result because it clas-
sified samples in a more interpretative way than NN and
more complicated than LR. Also, with the limitation of
simple networks and poor interpretability, NN may not
be suitable for this task.
In addition, we found the risk diseases that lead to

hypertension and psychiatric diseases according to the
coefficient in LR, SVM and RF (see Table 6). For ex-
ample, in the RF method, hypertensive heart disease with
(congestive) heart failure (I11.0) is one of the risk factors
of hypertension. If it appeared on a patient, it will be
possible that hypertension appears. Previous study held
the view that hypertension is the common reason of
heart failure, and 50% patients with hypertension may
have heart failure as comorbidities [38]. Also, hyperten-
sion may cause effect to eyes and lead to a series of eye
diseases (such as H35.0 and H52.3) [39]. Similarly, as
one of the risk factors of psychiatric diseases, palpita-
tions (R00.2) appear frequently under the influence of
the side effect of anti-psychotic drugs and effects of pa-
tients’ own heart and disease [40]. For SVM, Aortic
(valve) stenosis with insufficiency (I35.2) is the risk fac-
tor. It appears with hypertension frequently and several
studies counted the comorbidity pattern of them (mor-
bidity = 20%~ 68% [41, 42]). Pulmonary embolism with
mention of acute cor pulmonale(I26.0), other specified
inflammatory liver diseases(K75.8) and alcoholic liver

Table 2 PCC between disease similarity and molecular
mechanisms

Jaccard Cosine

Shared genes 0.1166 (P < 2.2e-16) 0.1312 (P < 2.2e-16)

Shared pathways 0.0705 (P < 2.2e-16) 0.0826 (P < 2.2e-16)

Table 3 Positive and negative sample distribution in the data
set

Data set Positive Negative Total

Hypertension 10,000 10,000 20,000

Psychiatric diseases 3500 3500 7000

Table 4 Settings and parameters for classification methods

Methods Setting

LR using L2 regularization norm
regularization intensity = 1

SVM using the linear kernel function
penalty parameter of the error term = 10

RF Decision tree = 180
Bootstrap Sample
oob_score = true
Feature = Gini coefficient

NN Using multilayer feedforward neural network
learning rate = 0.001
maximum number of iterations = 200
two hidden layers
randomly optimizing the size of mini batches
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disease, unspecified(K70.9) are risk factors. Due to the
influence of anti-psychotic drugs, the burden on the liver
will increase and the liver function will deteriorate.
However, without the use of psychotropic drugs, the
mood of patients will also cause liver failure. Therefore,
patients with psychiatric diseases are more likely to
suffer from lung disease, liver disease and heart disease
complications than ordinary patients [43]. Similarly, Ath-
erosclerotic heart disease (I25.1) as the common cardiovas-
cular diseases [31, 32] have the disease comorbidity
relationships, which is similar to diabetes [33, 34]. In sum-
mary, although some evident cofounders, such as the miss-
ing recording of target diseases in the clinical settings, would

involve target disease induced comorbidities conversely as
the risk diseases, we obtained acceptable prediction results
for the two demonstrating diseases. In addition, we found
that several common diseases, such as, heart failure, cerebral
infarction and lung disease, were filtered by the three classi-
fication methods as the main risk factors for the targeting
disorders (see Table 6). However, high rates of predicted risk
diseases were different among the three methods, which is
partially due to the mutual dependences between the risk
diseases. For example, although the two risk diseases:
E53.9(Vitamin B deficiency) and H35.0(a type of retinopathy
and retinal disorders) predicted by SVM and LR respectively
are different, they are two well recognized disorders with

Table 5 The classification results of the four models on hypertension and psychiatric diseases

Model Hypertension Psychiatric diseases

Precision Recall F1-score Precision Recall F1-score

LR 0.6193 ± 0.0140 0.6837 ± 0.0183 0.6498 ± 0.0127 0.6478 ± 0.0197 0.6900 ± 0.0194 0.6681 ± 0.0178

SVM 0.6038 ± 0.0168 0.7199 ± 0.0152 0.6567 ± 0.0138 0.6334 ± 0.0207 0.7041 ± 0.0192 0.6668 ± 0.0179

RF 0.6034 ± 0.0239 0.7534 ± 0.0373 0.6689 ± 0.0059 0.6386 ± 0.0293 0.7358 ± 0.0774 0.6802 ± 0.0297

NN 0.5919 ± 0.0151 0.6166 ± 0.0118 0.6038 ± 0.0084 0.6306 ± 0.0225 0.6534 ± 0.0275 0.6415 ± 0.0219

The highest values of the related measures are showed in bold values

Table 6 Important diseases for hypertension and psychiatric diseases in classification method0073

LR SVM RF

ICD10 Disease Regression
coefficient

ICD10 Disease Feature
weights

ICD10 Disease Importance

Hypertension H35.0 Background
retinopathy and retinal
vascular changes

1.5174 I35.2 Aortic (valve) stenosis
with insufficiency

1.6055 Z51.1 Chemotherapy session
for neoplasm

0.0326

A15.6 Tuberculous pleurisy,
confirmed
bacteriologically and
histologically

1.4360 A15.6 Tuberculous pleurisy,
confirmed
bacteriologically and
histologically

1.5705 I25.1 Atherosclerotic heart
disease

0.0274

I11.0 Hypertensive heart
disease with
(congestive) heart
failure

1.3145 E53.9 Vitamin B deficiency,
unspecified

1.4400 B18.1 Chronic viral hepatitis
B without delta-agent

0.0188

H52.3 Anisometropia and
aniseikonia

1.2809 E15.X Nondiabetic
hypoglycaemic coma

1.4358 I63.9 Cerebral infarction,
unspecified

0.0184

R10.1 Pain localized to upper
abdomen

1.2530 M89.9 Disorder of bone,
unspecified

1.3565 I50.9 Heart failure,
unspecified

0.0184

Psychiatric
diseases

R00.2 Palpitations 1.6927 I63.1 Polydipsia 1.5527 Z51.1 Chemotherapy session
for neoplasm

0.0323

R62.8 Other lack of expected
normal physiological
development

1.4442 I26.0 Pulmonary embolism
with mention of acute
cor pulmonale

1.5192 C34.9 Bronchus or lung,
unspecified

0.0250

R79.8 Other specified
abnormal findings of
blood chemistry

1.3983 K75.8 Other specified
inflammatory liver
diseases

1.5137 I63.9 Cerebral infarction,
unspecified

0.0236

I63.1 Cerebral infarction due
to embolism of
precerebral arteries

1.3883 K70.9 Alcoholic liver disease,
unspecified

1.4400 G30.9 Alzheimer disease,
unspecified

0.0210

E11.0 Type 2 diabetes
mellitus

1.3871 R79.8 Other specified
abnormal findings of
blood chemistry

1.3510 C78.7 Secondary malignant
neoplasm of liver and
intrahepatic bile duct

0.0189
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physio-pathological associations. Meanwhile, these predicted
different features also means that it could be combined by
more systematic frameworks to obtain more improved re-
sults in the future work.

Discussion
Disease comorbidity holds significant medical insights and
has its underlying molecular mechanisms [15, 16], which
has been a hot research topic in both clinical and network
medicine fields [17]. However, most results were mainly
derived from the analysis of the clinical data in Europe
and United States. Due to the influence from environment
factors, ethnicity and social factors to disease patterns, it is
important to investigate the disease comorbidity patterns
in large-scale populations in China [14, 44].
Our research is carried out across 5702 diseases in 22

categories and 8,572,137 patients with full range of the
age groups. Therefore, the range of our study is more
extensive in both data and scale than most previous
studies in China population, which has great significance
for the study of disease comorbidities. We focus on the
DCN and analyzed the correlation of diseases in the net-
work. Furthermore, we have investigated the relation-
ships between the topological characteristics of DCN
network and found biomedical meaningful patterns (i.e.
the hierarchical structures of DCN). In terms of disease
prediction, the prediction results are greatly influenced
by the data, so the differences among countries, regions
and populations in the data will also become obvious. It
is significant for us to use China’s disease comorbidity
data to predict disease occurrence and detect the risk
factors from comorbid disease conditions.
The major limitation of our research is that the recording

of diseases in clinical data would prone to incomplete diag-
noses. Because clinical practitioners would tend to record
the diseases that they primarily treated rather than all the
diseases of patients. This would particularly induce co-
founders to our prediction results and make them vulner-
able. Many factors (such as age, physical condition and
treatment methods, etc.) will affect the occurrence and devel-
opment of a disease, which have not been incorporated in
our data set. Moreover, our prediction experiments are lim-
ited to the classical supervised learning methods, which
mostly provides a feasible demonstration of the prediction of
disease occurrence with comorbid trajectories. In the future,
we will carry out more dedicated machine learning models
with more systematic clinical features, such as deep learning,
to obtain more powerful predictors, which might result in
practical prediction applications using disease comorbidities.

Conclusion
We constructed a disease comorbidity network derived
from millions of electronic medical records with diag-
nostic codes in China and found interesting topological

patterns (e.g. high clustering and hierarchical modular-
ity) for this network. Furthermore, we identified clinical
meaningful disease comorbidity communities and revali-
dated the shared underlying molecular assumptions of
disease comorbidity. Finally, by formulating the disease
comorbid trajectories into a binary classification prob-
lem, we investigated the feasibility of predicting the dis-
ease occurrence using only the temporal relationships
between disease phenotypes.
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