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Abstract: Age-related macular degeneration (AMD) is the primary cause of central blindness among
the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pig-
ment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers
and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also
oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also
potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products
are increased in RPE lipofuscin granules. The purpose of the present study was to determine if
these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid
oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman
spectroscopy and time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis identified
the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluores-
cence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that
bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their
diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain
cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation
products are a likely aggravating factor in the pathogenesis of AMD.

Keywords: age-related macular degeneration; retinal pigment epithelium; lipofuscin granules; bis-
retinoid fluorophores; bisretinoid oxidation products; cytotoxic carbonyls; hydrophilicity;
amphiphilicity

1. Introduction

Age-related macular degeneration (AMD) is a chronic eye disease characterized by
damage to the macular region and progressive central vision loss [1]. AMD is a complex
disease with multiple risk factors and disease pathologies [2]. Oxidative stress is central to
the development of AMD [2–5]. It is characterized by increased levels of reactive oxygen
species (ROS) resulting in damage or modification of cellular proteins, lipids, and DNA,
impairing their physiological functions [5]. Lipofuscin granules (LGs) are one of the sources
of ROS in retinal pigment epithelium (RPE) cells. Light exposure induces ROS formation
in LGs, initiating oxidative stress in RPE cells [6,7]. Therefore, development of AMD is
associated with progressive accumulation of LGs in the RPE [8]. LGs are therefore a risk
factor for degenerative processes in the retina and RPE [9–13].

LGs accumulate in RPE cells with age [14–16]. This process is increased in several
retinal degenerative diseases, especially AMD [17–19]. LGs are formed by incomplete lyso-
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somal degradation of photoreceptor outer segment (POS) debris following phagocytosis of
shed POSs by RPE cells [20,21]. LGs are considered membrane-bound residual bodies of
the lysosomal compartment of the RPE cell [8]. They contain bisretinoids fluorophores (Bis-
Rets), which are byproducts of all-trans retinal modifications [22]. N-retinyl-N-retinylidene
ethanolamine (A2E) is the most widely studied BisRet [23–25]. BisRets and their derivatives
are major sources of LG fluorescence [8,9].

The features of BisRets, such as photosensitizers, have been studied in detail [6,7,26–28].
However, in the presence of oxygen, BisRets themselves can be photo-oxidized to form
various products, consisting primarily of epoxides, peroxides, aldehydes, and ketones,
which are potentially cytotoxic [29–35]. Importantly, the processes of BisRet oxidation in
LGs by non-lipofuscin ROS in the absence of light has not been fully investigated. For
example, mitochondrially generated ROS in RPE cells [36] can lead to BisRet oxidation
and degradation. This could be exacerbated by mitochondrial damage in the RPE, which
contributes to the pathogenesis of AMD [2,37].

The cytotoxic properties of photooxidation and photodegradation products (BisRet-
OX) in LGs have not been fully investigated. The role of these compounds in pathological
processes of the RPE remains controversial. Some studies have suggested that highly
reactive cytotoxic carbonyl compounds, aldehydes and ketones, are formed during photo-
oxidation of BisRets in LGs [38–40]. By contrast, other studies [41,42] suggest BisRet-OX;
interacts with itself or with A2E, forming products with a higher molecular weight inside
LGs. Most of these compounds are also hydrophobic and remain inside LGs, resulting in
the concomitant diminution of its reactivity in vivo [41,42].

Clarifying the roles of BisRet-OX is important to delineate the mechanisms of patho-
logical ocular diseases, especially AMD. Our prior findings have demonstrated that LG
BisRet-OX content is higher in AMD eyes than in normal eyes, which was indicated by
changes in the characteristics of LG fluorescence spectra and in the parameters of fluores-
cence decay kinetic curves [9]. Specifically, the fluorescence excitation at 488 nm of samples
from eyes with AMD increases the fluorescence intensity of the band at 556 nm, and the
contribution of BisRet-OX to total fluorescence increases. However, the pathophysiological
or protective properties of these products remain controversial, as prior studies have sug-
gested conflicting roles [41,42], and as BisRet-OX could also potentially become a neutral
product eventually. Investigating the potential release of BisRet-OX from LGs into the RPE
cell cytoplasm and the assessment of their toxicity to cellular structures is thus fundamental
to understanding the pathogenesis of retinal diseases.

The present study aimed to characterize the physicochemical characteristics of BisRet-
OX products and their potential release from LGs into the RPE cell cytoplasm. To obtain
BisRet-OX, two LG oxidation models were used, including irradiating LGs with visible
light (photo-oxidative destruction of BisRets), and exposing LGs to superoxide radicals
(oxidative destruction of BisRets).

2. Results
2.1. Effect of Light and Superoxide Radicals on the Fluorescent Properties of Lipofuscin
Granules (LGs)

The composition of LG fluorophores from human RPE cells includes approximately
20 BisRets and other all-trans retinal derivatives, which undergo photo-oxidative destruc-
tion under light exposure [31,43,44]. BisRet-OXs with increased hydrophilicity were pre-
viously thought to leave LGs and enter RPE cell cytoplasm [34], directly damaging cell
structures [45].

In the present study, BisRet-OX formation was evaluated by measuring the change
in the fluorescence spectra of samples before and after irradiation with visible light, as
well as after exposure to superoxide radicals. During BisRet oxidation, the absorption
and fluorescence spectra of fluorophores shifted to the short-wave region [31,46]. We
used buffer solution with LGs (subsequently referred to as LG suspension), the sediment
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from the LG suspension (subsequently referred to as LG sediment), and the supernatant
(subsequently referred to as supernatant).

Three wavelengths of 340, 365, and 488 nm were used to excite fluorescence. The
488 nm wavelength is traditionally used clinically to assess fundus autofluorescence [47].
Two other wavelengths (340 and 365 nm) were used for a more complete study of the
spectral properties of LG fluorophores, most of which absorb in the short-wave region,
especially the oxidation products.

Irradiation of the LG suspension with visible light or exposure to superoxide radicals
caused increased fluorescence intensity in the short-wave region of 450–550 nm, which
indicated increased BisRet-OX contents [31,46] The spectral changes under different LG
fluorophore oxidation conditions varied (Figure 1).
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Figure 1. Fluorescence spectra of lipofuscin granule (LG) suspensions (A), LG sediments (B), and
supernatants (C). 1—control: LG suspension before light irradiation or incubation with superoxide
radicals; sediment and supernatant obtained from this suspension. 2—LG suspension after 60 min
visible light irradiation; sediment and supernatant obtained from this suspension. 3—LG suspension
after 60 min incubation with potassium superoxide; sediment and supernatant obtained from this
suspension. The wavelengths of fluorescence excitation were 365 nm (left) and 488 nm (right).

Importantly, in the supernatant obtained from the original LG suspension, the fluo-
rescence intensity was very low, indicating a low content of hydrophilic oxidized forms
of LG fluorophores (Figure 1C, spectra 1 at fluorescence excitations of 365 and 488 nm).
However, after oxidation of the LG suspension, the fluorescence intensity of the super-
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natants increased sharply in the short-wavelength region of the spectrum (450 nm, Ex.
365 nm; 550 nm, Ex. 488 nm). This was particularly apparent in LG suspension exposed to
superoxide radicals (Figure 1C, spectra 3, fluorescence excitations 365 and 488 nm).

This suggested that when the LG suspension was irradiated with visible light or
exposed to superoxide radicals, BisRet-OXs were formed, some of which had hydrophilic
properties and could potentially diffuse from LGs into RPE cell cytoplasm.

Not only hydrophilic compounds, but also substances with amphiphilic properties,
can pass into the aqueous phase. Therefore, to study the nature of fluorophores diffusing
into aqueous medium in more detail, chloroform was added to the supernatants (Figure 1C).
Figure 2 shows the fluorescence spectra of chloroform extracts from the supernatants (A)
and the aqueous fractions (B) of the same samples. Both the water and chloroform fractions
had fluorescent properties, suggesting that supernatants from oxidized LG suspensions
contained both hydrophilic and amphiphilic fluorophore oxidation products.
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Figure 2. Fluorescence spectra of chloroform (A) and aqueous (B) fractions of the supernatants during
extraction. 1—control: supernatant fractions from the original (control) lipofuscin granule (LG)
suspension, 2—supernatant fractions from LG suspension irradiated for 30 min, and 3—supernatant
fractions from LG suspension oxidized with superoxide. The wavelengths of fluorescence excitation
were 340 nm (left) and 488 nm (right).

2.2. High-Performance Liquid Chromatography (HPLC) and Mass Spectrometry Analyses of
Lipofuscin Granule BisRets and BisRet-OX

To determine the nature of supernatant compounds, we performed a comparative
HPLC analysis (Figure 3) of the chloroform fractions from all samples presented in Figure 1:
LG suspensions (A), LG sediments (B), and supernatants (C).
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Figure 3. HPLC analysis of chloroform extracts from the studied samples in Figure 1. (A) lipofuscin
granule (LG) suspension, (B) LG sediment, and (C) supernatant. Vertical dotted lines indicate groups
of peaks: (gr1), group of peaks corresponding to BisRet-OX, containing mono- and bis-oxy A2E;
and (gr2), group of peaks corresponding to bisretinoids and their oxidized forms. Detection at
wavelengths of 430 nm (1) and 365 nm (2).

HPLC analysis of samples obtained from original non-oxidized LG suspensions re-
vealed that almost all detectable products were present in the first group of peaks (gr1)
on the chromatogram pass from LGs into the supernatant (Figure 3C, original sample).
We postulate that these products could correspond to BisRet-OX [31,33]. Moreover, in
the supernatants, products belonging to the second group of peaks (gr2) were present,
corresponding to BisRets and their oxidized forms, identified in prior studies [32,41,42,48].

Importantly, the products formed after exposure of LG suspensions to photo-oxidation
or superoxide absorbed primarily in the shorter wavelength range of the spectrum (365 nm),
and passed into the supernatant (Figure 3C, sample exposed to visible light, and superoxide-
oxidized sample). A2E, its iso-form, and ox-A2E were detected in trace amounts at both 430
and 365 nm in chloroform extracts from the supernatants of all samples (Figure 3C). This
indicates that A2E and its slightly oxidized forms (ox-A2E) [33] practically do not diffuse
from LGs into the aqueous medium of the supernatants.

Mass spectrometry analysis confirmed the HPLC data (Figure 4). A2E (m/z = 592) and its
slightly oxidized forms (singly oxidized A2E m/z = 608; doubly oxidized A2E m/z = 624) [33]
(Figure 4A) were nearly absent in supernatants (Figure 4B,C). This suggested that A2E and
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its minimally oxidized forms did not significantly diffuse through the LG membranes into
the RPE cell cytoplasm.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 15 
 

 

and 504) [38,39]. This suggested that both the oxidation and destruction of bisretinoids 

occurred during irradiation.  

The HPLC data thus revealed that most of the products in the chloroform extracts of 

LG suspensions detected at 365 nm were BisRet-OX, which have amphiphilic properties 

and can potentially diffuse through the LG membrane into the RPE cell cytoplasm. 

 

Figure 4. Mass spectrometry analysis of A2E and its singly and doubly oxidized forms (A), super-

natant from the original lipofuscin granule (LG) suspension (B), and supernatant from LG suspen-

sion irradiated for 60 min (C). 

2.3. Analysis of Thiobarbituric Acid (TBA)-Active Product Content in Lipofuscin Granule (LG) 

Suspensions and Supernatants  

Fluorescence spectroscopy and HPLC analyses suggested that hydrophilic and am-

phiphilic BisRet-OX could contain cytotoxic active carbonyl compounds, especially alde-

hydes and ketones. This assumption is also supported by studies that identified glyoxal 

formation during A2E oxidation [45]. 

We applied Raman spectroscopy analysis (BCARS) of LG suspensions before and af-

ter visible light irradiation to determine if free-state aldehydes and ketones were present 

in the LGs. Raman spectra identified bands of aldehydes and ketones such as ~1415, ~1465, 

~1685, and ~1730 1/cm [49] (Figure 5A). After light irradiation, these bands were clearly 

present, including the ratio of C=O bands (1685 and 1730 1/cm) relative to aromatic C=C 

bands (~1600 1/cm, which we propose should not essentially change) [50], which has 

grown by about 1.5–2 times. Thus, exposure to light increased the contents of free-state 

aldehydes and ketones.  

The formation of oxygen-containing products, such as aldehydes and ketones, was 

also assessed by time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis of 

characteristic fragment ions containing carbonyl groups (m/z = 29: CHO+ ion; m/z = 43: 

C2H3O+ ion; m/z = 60: C2H4O2+ ion; m/z = 69: C4H5O+ ion). These ions accumulated during 

light irradiation (Figure 5B). This was consistent with prior findings [29,40]. Therefore, the 

BCARS and ToF–SIMS data revealed that aldehydes and ketones accumulated in LGs in 

the free state.  

Figure 4. Mass spectrometry analysis of A2E and its singly and doubly oxidized forms (A), super-
natant from the original lipofuscin granule (LG) suspension (B), and supernatant from LG suspension
irradiated for 60 min (C).

Importantly, supernatant BisRet-Ox content increased after irradiation of the LG
suspension (Figure 4C). For example, the amounts of both newly formed BisRet-OX and
the contents of existing BisRet-OX in the sample increased after irradiation (Figure 4C).
These BisRet-OX products had lower masses than A2E (m/z = 422, 432, 438, 448, 464, 470,
488, and 504) [38,39]. This suggested that both the oxidation and destruction of bisretinoids
occurred during irradiation.

The HPLC data thus revealed that most of the products in the chloroform extracts of
LG suspensions detected at 365 nm were BisRet-OX, which have amphiphilic properties
and can potentially diffuse through the LG membrane into the RPE cell cytoplasm.

2.3. Analysis of Thiobarbituric Acid (TBA)-Active Product Content in Lipofuscin Granule (LG)
Suspensions and Supernatants

Fluorescence spectroscopy and HPLC analyses suggested that hydrophilic and am-
phiphilic BisRet-OX could contain cytotoxic active carbonyl compounds, especially alde-
hydes and ketones. This assumption is also supported by studies that identified glyoxal
formation during A2E oxidation [45].

We applied Raman spectroscopy analysis (BCARS) of LG suspensions before and after
visible light irradiation to determine if free-state aldehydes and ketones were present in the
LGs. Raman spectra identified bands of aldehydes and ketones such as ~1415, ~1465, ~1685,
and ~1730 1/cm [49] (Figure 5A). After light irradiation, these bands were clearly present,
including the ratio of C=O bands (1685 and 1730 1/cm) relative to aromatic C=C bands
(~1600 1/cm, which we propose should not essentially change) [50], which has grown by
about 1.5–2 times. Thus, exposure to light increased the contents of free-state aldehydes
and ketones.
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Figure 5. (A) Averaged Raman spectra for lipofuscin granule (LG) suspensions before (solid line)
and after (dotted line) visible light irradiation for 100 min. Three independent experiments were
conducted. In each experiment, 25 spectra were obtained (p < 0.05). (B) Time-of-flight secondary ion
mass spectrometry (ToF–SIMS) analysis of LG suspensions before irradiation (1) and after visible
light irradiation for 2 (2), 10 (3), 40 (4), 100 (5), and 160 (6) min. On the abscissa axis, the numbers
correspond to the mass of positive fragment ions, containing carbonyl groups (29: CHO+; 43: C2H3O+;
60: C2H4O2+; 69: C4H5O+). On the ordinate axis, the relative intensities of the corresponding positive
fragment ions are plotted as relative units. Data are presented as means ± SD from nine independent
experiments. * p < 0.01.

The formation of oxygen-containing products, such as aldehydes and ketones, was
also assessed by time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis of
characteristic fragment ions containing carbonyl groups (m/z = 29: CHO+ ion; m/z = 43:
C2H3O+ ion; m/z = 60: C2H4O2+ ion; m/z = 69: C4H5O+ ion). These ions accumulated
during light irradiation (Figure 5B). This was consistent with prior findings [29,40]. There-
fore, the BCARS and ToF–SIMS data revealed that aldehydes and ketones accumulated in
LGs in the free state.

We used TBA-active product (reactive carbonyls) registration in the supernatants to
determine the ability of aldehydes and ketones to diffuse through the LG membrane into
the RPE cell cytoplasm (Figure 6). Exposure of LG BisRets to visible light or superoxide
radicals resulted in significant accumulation of TBA-active products in the supernatants
(Figure 6A).

Interestingly, the fluorescence intensities of the supernatants after LG suspension
irradiation with visible light or oxidation by superoxide radicals (Figure 6B, spectra 2 and
3) did not correlate with the content of TBA-active products in these samples (Figure 6A).
This suggested that the composition of the oxidized products was not identical in the
supernatants from the LG suspensions exposed to visible light irradiation or superoxide.
This potentially suggested that not all fluorescent compounds were TBA-active products
(Figure 6B).

In addition, a comparative analysis of the hydrophilic and amphiphilic TBA-active
product contents contained in the supernatant from the LG suspension irradiated with
visible light was conducted. Aqueous and chloroform fractions of the supernatant were
separately prepared, and the content of TBA-active products was measured. The TBA-
active product contents were nearly equal in both the water-soluble and chloroform
fractions of the supernatant (Figure 6C, columns 2 and 3, respectively). This suggests
that the TBA-active products of photo-oxidized Bis-Ret fluorophores were likely a mix-
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ture consisting of fully oxidized, water-soluble substances and partially oxidized, lipid
affinity-preserving substances.
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Figure 6. (A) Concentrations of thiobarbituric acid (TBA)-active products in samples of the super-
natants from the original lipofuscin granule (LG) suspension (1), LG suspension irradiated with
visible light for 60 min (2), or LG suspension oxidized by superoxide radicals (3). (B) Fluorescence
spectra of the supernatants (the spectrum numbers correspond to the sample numbers in panel A).
The fluorescence excitation wavelength was 365 nm. (C) Supernatant content of TBA-active products
from LG suspension irradiated with visible light for 90 min (1), and in the aqueous (2) and chloroform
(3) fractions. Data are presented as means ± SD from three independent experiments. * p < 0.05.

2.4. BisRet-OX-Induced Protein and Lipid Modification Products

The ability of supernatant products obtained from non-irradiated and irradiated
LG suspensions to induce protein and lipid modifications in the absence of light was
investigated. Photoreceptor outer segments (POSs) from bovine retinas were used as
a protein and lipid substrate. The proposed modification occurs via the interaction of
carbonyl products present in the supernatants with the free amino groups of proteins and
lipids, especially after irradiation of the LG suspension. Fluorescent Schiff bases with
emission maxima at 440–455 nm are formed through this interaction. Importantly, the LG
bisretinoid fluorophores themselves could not contribute to fluorescence in this experiment,
as they were separated from the modified proteins and lipids by dialysis (see Materials and
Methods, Section 4.11).

Figure 7 demonstrates that incubation of the POS suspension with water-soluble
fractions obtained from the LG suspensions significantly increased fluorescence intensity.

A noticeable increase in fluorescence was observed in the POS suspension incubated
with the supernatant from the LG suspension irradiated with visible light (Figure 7A, 3).
However, in the presence of the glycation inhibitor, aminoguanidine, the water-soluble
fraction of the irradiated LG suspension did not significantly increase in intensity of POS
fluorescence (Figure 7A, 4), and in fact had a similar effect of the water-soluble fraction of
the non-irradiated LG suspension. Aminoguanidine reacts with dicarbonyl compounds,
such as methylglyoxal and glyoxal, to form 3-amino-1,2,4-triazine derivatives and prevent
the glycation process by these agents [51].

The dynamics of the increase in the POS fluorescence intensity for all experiments are
shown in Figure 7B. The concentration of fluorescent products in POS samples incubated
with the water-soluble fractions from irradiated LG suspensions (column 3) increased with
incubation time. Importantly, in POS samples containing supernatant from a non-irradiated
LG suspension, an increase in fluorescence intensity was also observed. This is because the
unirradiated supernatant also contained carbonyl compounds, but in lower concentrations
(Figures 5 and 6). In addition, during prolonged incubation of POS suspensions, which
contain abundant polyunsaturated fatty acid residues [52], at 37 ◦C, these fatty acids would
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be expected to undergo auto-oxidation resulting in formation of carbonyl compounds,
which also induce modification of POS proteins and lipids.
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Figure 7. (A) Fluorescence spectra of photoreceptor outer segment (POS) suspensions after 48 h
incubation in the dark with (1) control without additives; (2) supernatant from the original lipofuscin
granule (LG) suspension; (3) supernatant from LG suspension irradiated with visible light for 60 min;
and (4) supernatant from LG suspension irradiated with visible light for 60 min, and in the presence
of aminoguanidine (4 mM). The fluorescence excitation wavelength was 365 nm. (B) Dynamics of
the increase in intensity of POS suspension fluorescence after incubation in the dark for 24, 48, and
72 h. The column designations correspond to the designations of the samples on panel (A). Data are
presented as means ± SD from three independent experiments. * p < 0.05.

3. Discussion

In the present study, the features of LG BisRet-OX from RPE cells were investigated.
BisRet-OXs had both hydrophilic and amphiphilic properties, allowing their diffusion
from the LG into the RPE cell cytoplasm. These products can be formed not only during
BisRet photo-oxidation, but also during the oxidative destruction of BisRets in the dark via
non-lipofuscin ROS.

The experimental data indicate that the hydrophilic and amphiphilic BisRet-OX com-
pounds are TBA-active. Reactive carbonyls are highly cytotoxic, and can cause carbonyl
stress [53,54]. It is important to note that these carbonyl products contain water-soluble am-
phiphilic compounds that can damage not only the water-soluble proteins of the cytoplasm,
but also various membrane structures of the cell. Since carbonyl products are long-lived,
they can bind tightly with long-lived proteins, such as collagen [55] or hemoglobin [56],
under physiological conditions, resulting in the formation of advanced glycation end prod-
ucts. Protein glycation caused by these substances can activate inflammatory processes,
and thus is of great importance in the pathogenesis of many eye diseases, including AMD,
in which LGs accumulate in RPE cells.

Therefore, despite the fact that the BisRet-OX species absorb in the short-wavelength
region of the spectrum (UV) and cannot be photoactive in vivo, they are nevertheless toxic
to RPE cells. Almost all detectable BisRet-OX species have the potential to exit LGs and enter
the RPE cell cytoplasm and can thus damage cellular organelles and macromolecules. There-
fore, formation of BisRet-OX-containing active carbonyls, which accumulate in the LGs of
RPE cells, may play an important role in the pathogenesis of eye disease, including AMD.

4. Materials and Methods
4.1. Tissues and Reagents

Experiments on human cadaver eye tissues were performed in compliance with
officially accepted procedures, specifically the Russian Federation law N 4180-I dated
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22 December 1992, “On human organs or tissue transplantation” (with the most recent
modifications and additions dated 8 December 2020). Human cadaver eyes without oph-
thalmologic disease were obtained from the Eye Tissue Bank of the S.N. Fyodorov Eye
Microsurgery Complex (Moscow, Russia) within 10 h of donor death. Donor age ranged
from 50–75 years. Collection was conducted in accordance with local ethics requirements,
as described in detail previously [31]. Permission was obtained from the chief medical
officer of the S.N. Fyodorov Eye Microsurgery Complex, under a scientific collaboration
agreement between the Complex and the Emanuel Institute of Biochemical Physics dated
11 January, 2011 to perform scientific research in the Laboratory of Physical and Chemical
Bases of Vision at the Institute with RPE from cadaver eyes.

All reagents were purchased from Sigma–Aldrich (St. Louis, MO, USA) and Fluka
(Buchs, Switzerland).

Fresh bovine eyes (Bos taurus) were purchased from a meat processing factory.

4.2. Isolation of Lipofuscin Granules (LGs)

LGs were isolated from the RPE of 40 cadaver eyes as described previously [6]. The
initial LG concentration was 5 × 108 granules/mL. Water-soluble fractions from LG suspen-
sion were obtained as follows. For experiments, LGs were resuspended in 0.1 M potassium
phosphate buffer (pH 7.3) to the concentration of 2.0 × 108 granules/mL. Then suspension
was divided into two samples of equal volume. The experimental sample was irradiated
for 30–160 min (depending on the experiment) with visible light (400–700 nm) of a KGM
24–150 lamp (80 mW/cm2) at room temperature and constant stirring. The control sample
remained all this time in complete darkness. Thereafter, the samples were centrifuged at
15,000× g in a Beckman Allegra 64R centrifuge for 15 min, and the obtained supernatants
were used in the experiments. The sediments containing LGs were homogenized in 1 mL
0.1 M potassium phosphate buffer.

All stages of sample preparation were conducted under subdued lighting.

4.3. Preparation of Photoreceptor Outer Segments (POSs) Containing Rhodopsin

POSs from bovine retina tissue, which was isolated within 3 h after slaughter, were
prepared as described previously [57]. Retinas were added to 50% sucrose solution in
Buffer A comprising 10 mM MOPS pH 7.4, 30 mM NaCl, 60 mM KCl, 2 mM MgCl2, 0.1 mM
phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol, and 0.01% NaN3 (1 mL per
each retina). The suspension was vigorously shaken for 3 min and centrifuged at 2000× g
for 40 min at 4 ◦C. The supernatant was diluted 2.5-fold with Buffer A and centrifuged at
2000× g for 60 min at 4 ◦C. The pellet was resuspended in 25 mL of 40% sucrose in Buffer
A, and 10 mL of Buffer A was layered on top following centrifugation at 25,000× g for
60 min at 4 ◦C on a Beckman Coulter Avanti J30I centrifuge equipped with a JS 24.38 rotor.
The POS fraction was sampled at the buffer-sucrose interface and diluted with Buffer A
to a density of 1.05 g/cm3. POSs were then sedimented by centrifugation at 41,400× g
for 30 min at 4 ◦C on a Beckman Coulter Allegra 64R centrifuge equipped with a F0650
rotor and resuspended with the required amount of 0.1 M phosphate buffer, pH 7.4. All
manipulation of samples containing rhodopsin was carried out under dim red illumination.

4.4. High-Performance Liquid Chromatography (HPLC)

HPLC analysis was conducted using a Knauer chromatograph system (Knauers, Berlin,
Germany) equipped with a Diaspher-120-C18 (4 × 250 mm; sorbent size, 5 µm) column, as
described previously [58]. HPLC analysis (K-2501 detector, Knauer) was performed at the
wavelengths of 365 and 430 nm.

For chromatographic analysis, chloroform extracts from LG suspension or supernatant
samples were prepared using the Folch method [59], followed by drying and subsequently
resuspending in 200 µL methanol, as described previously [58]. Precision for each sample
was determined from two separately measured chromatograms for each individual sample
at each wavelength.
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4.5. Sample Oxidation

For photo-oxidative destruction, the LG suspension in phosphate buffer or A2E in
acetonitrile were irradiated at room temperature under constant stirring using a 150 W
incandescent lamp with a heat filter (KGM 24–150, 400–700 nm). The luminous flux density
irradiating the sample was 80 mWm−2 for visible light (400–700 nm), as determined by a
photometer (Spectra-Physics 407A, Milpitas, CA, USA).

For oxidative destruction, reaction of the samples with superoxide radicals was con-
ducted in the dark by adding an equal mass of dry potassium peroxide (KO2) to each
sample (10–25 mg). Sample incubation with superoxide was conducted for 1 h with
periodic stirring at room temperature.

4.6. A2E Synthesis

A2E was prepared from all-trans retinal and ethanolamine in acetic acid and ethanol,
as described previously [60]. A2E and its photo-oxidation products were identified using
a 7T LTQ FT mass spectrometer (Thermo Electron Corp., Bremen, Germany) equipped
with an electrospray ion source, as described previously [32]. To reliably identify A2E,
we performed MC/MC studies in a linear quadrupole trap, in which molecular ions with
a certain mass-to-charge ratio (M/Z) were isolated from other ionization products and
subjected to collision-induced dissociation (ESI-CID) with subsequent mass spectrometry
analysis of the fragmentation products [39]. Mass spectra were processed and analyzed
using Qual Browser 1.4 software.

A2E purity was monitored by HPLC (see Section 2.3). A2E concentration was deter-
mined spectrally using a Shimadzu UV-1700 spectrophotometer (Shimadzu, Kyoto, Japan)
at a wavelength of 430 nm with ε = 3.1 × 104 M−1 cm−1.

4.7. Fluorescence Spectroscopy

Fluorescence spectra were recorded using an RF-5301 PC fluorometer (Shimadzu,
Kyoto, Japan) equipped with an R955 photomultiplier tube detector (Hamamatsu Photonics
K.K., Hamamatsu City, Shizuoka Pref.430-8587, Japan). Following excitation at 340, 365, or
488 nm, emission spectra were obtained in the regions of 360–660, 380–660, and 500–700 nm,
respectively, at sampling intervals of 1 nm.

4.8. Mass Spectrometry Analysis

Sample mass spectra were obtained using a qTOF mass spectrometer MaXis 4G (Bruker
Daltonics, Bremen, Germany) with an electrospray ion source (ESI) in positive mode. ESI
source parameters were the following: capillary 3.4 kV, nebulizing gas pressure 0.7 bar,
drying gas flow rate 6 L/min, and drying gas temperature 200 ◦C. Samples were dissolved
into a mixture of acetonitrile and water (1:1) and sprayed at a flow rate of 3 µL/min.
Measurements were conducted in the range of m/z 100–1500. Mass spectra were processed
and analyzed using data analysis software (Bruker Daltonics, Bremen, Germany).

To detect BisRet-OXs, such as aldehydes and ketones, dried LG samples were analyzed
by time-of-flight secondary ion mass spectrometry (ToF–SIMS) (ION-ToF, Münster, Ger-
many) using 30 keV Bi3+ primary ions. The analysis area was 300 × 300 µm2 with a primary
ion dose density of ~4 × 1011 ions/cm2. For each sample, at least nine such areas were
analyzed. All spectra were recorded in both positive and negative ion modes. An electron
flood gun was activated to avoid the charging effect during analysis. Mass spectra were
processed and analyzed by SurfaceLab software (ION-TOF, Münster, Germany). Ion yields
were calculated as the number of ions with specific masses divided by total ion counts.

4.9. Raman Spectroscopy Analysis

Raman spectroscopy analysis was conducted using a Broadband coherent anti-Stokes
Raman scattering (BCARS) microspectrometer implemented as part of a femtosecond laser
complex [61] representing a two-pulse collinear scheme for CARS generation [62]. Related
spectra were transformed to Raman bands using the CARS-variation of MEM [63,64]. LG
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sample preparation and experimental conditions have been described in detail in prior
studies [50].

4.10. Determination of Carbonyls

The relative toxicities of products that accumulated from oxidative and photo-oxidative
degradation of BisRets in LG suspensions, LG sediments, and supernatants were assessed
by the content of carbonyls reacting with TBA-active products [65]. The content of TBA-
active products in chloroform extracts was determined after vacuum pump evaporation
of the chloroform (Vacuubrand MZ2C NT+AK+M+D, Wertheim, Germany), followed by
sediment solubilization in 0.1 M potassium phosphate buffer (pH 7.3). TBA-active product
concentration was determined spectrally in photo-oxidized and superoxide-oxidized LG
samples at 532 nm [66] using a Shimadzu UV-1700 spectrophotometer (Shimadzu, Kyoto,
Japan). The original non-oxidized granules were used as controls.

4.11. Determination of Protein and Lipid Modification Products

Protein and lipid modifications were assessed by the formation of fluorescent Schiff
bases in the reaction of aldehydes with the free amino groups of proteins and lipids. POS
suspensions were used as a protein and lipid substrate (see Section 4.3). The incubation
medium contained 0.1 M sterile potassium phosphate buffer, pH 7.4; 0.3–0.6 mg/mL POS
protein, 3–4 mM sodium azide, and 0.4–0.7 mL supernatants from irradiated and non-
irradiated (control) LG suspensions. As additional control samples, we used samples
containing only POS suspensions without supernatants, supernatants without added
proteins, and samples containing a glycation inhibitor, aminoguanidine (4 mM). The
samples were incubated at 37 ◦C in the dark with constant stirring for 24, 48, or 72 h.

After incubation, sample aliquots were dialyzed against phosphate buffer to remove
unreacted low molecular weight molecules. For dialysis we used a Float-A-Lyser cellulose-
ether membrane (SPECTRUM Labs, New Brunswick, NJ, USA), which is permeable to
molecules <3.5 kDa. Dialysis was conducted for 25 h at 6 ◦C. After dialysis, the fluorescence
spectra of the modified proteins and lipids were measured at an excitation wavelength of
365 nm. The modified protein and lipid content was estimated by the magnitude of the
fluorescence amplitude, measured at the emission maximum of 440–455 nm.

4.12. Statistical Analysis

Statistical significance of experimental results was analyzed using a Student’s t-test.
Results with p < 0.05 were considered statistically significant. Data are presented as
mean ± standard deviation (SD).
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