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ABSTRACT: Empirical testing of chemicals for drug efficacy costs many
billions of dollars every year. The ability to predict the action of molecules in
silico would greatly increase the speed and decrease the cost of prioritizing
drug leads. Here, we asked whether drug function, defined as MeSH
“therapeutic use” classes, can be predicted from only a chemical structure. We
evaluated two chemical-structure-derived drug classification methods,
chemical images with convolutional neural networks and molecular
fingerprints with random forests, both of which outperformed previous
predictions that used drug-induced transcriptomic changes as chemical representations. This suggests that the structure of a
chemical contains at least as much information about its therapeutic use as the transcriptional cellular response to that chemical.
Furthermore, because training data based on chemical structure is not limited to a small set of molecules for which
transcriptomic measurements are available, our strategy can leverage more training data to significantly improve predictive
accuracy to 83−88%. Finally, we explore use of these models for prediction of side effects and drug-repurposing opportunities
and demonstrate the effectiveness of this modeling strategy for multilabel classification.

■ INTRODUCTION

Development of molecules with new or improved properties is
needed in many industries, including energy, agriculture, and
medicine. However, the number of possible molecules to
explore, also referred to as chemical space, is exceedingly large.1,2

Even when chemical space is limited to compounds that
conform to “Lipinski’s rule of five”,3 which applies to the subtask
of drug development, there are still as many as 1060 possible
chemical structures.4 Regardless of the available chemical
diversity, the pace of new drug approvals has steadily decreased,
leaving room for new approaches that can improve the current
process.
A promising approach for discovering new drug molecules is

machine learning,5,6 which includes so-called deep learning
using deep neural networks (DNNs).7 Many studies describe
methods for embedding molecules into a latent space and
engineering molecules with desirable properties.8−10 Reinforce-
ment learning has been applied with paired DNNs to design
molecules with desired properties, such as solubility or
transcription factor inhibition.11 A framework for benchmarking
model predictions is available.12 One study used a generative
adversarial neural network architecture to generate molecules
that should induce specific transcriptomic states.13 There are
many ways to represent molecules for machine learning. Many
papers use SMILES strings14−16 as molecular inputs for
embedding, but there is a trend toward the use of molecular
graphs.17−19

A general weakness of DNNs is that they perform best with
large amounts of training data (100 000 to millions of examples,
e.g., ImageNet20). However, DNNs can be used for problems
with small training data sets through transfer learning, where
networks are trained on a large data set for one problem and
adapted for a related problem that has less training data.21−23

For example, transfer learning has been applied to classification
of fewer than 6000 medical ultrasound images,24 only 2000
oceanfront images,25 or fewer than 1000 cellular images,26 even
though these networks were pretrained on images of completely
different objects.
One type of DNN for structured data such as sequences and

images, the convolutional neural network (CNN), has enabled
major advances in image-processing tasks in diverse fields. In
chemistry, several papers have described excellent performance
resulting from the use of two-dimensional images of chemicals
with CNNs. This approach has been used effectively to predict
chemical toxicity27 with regard to the 12 biological toxicity
endpoints in the Tox21 challenge.28 CNNs for chemical images
have also been described as a general-purposemolecule property
prediction tool despite their lack of explicit chemistry knowl-
edge.29 These authors found that augmenting the same deep-
learning architecture with only three additional chemical
properties further improved model performance,30 suggesting

Received: March 18, 2019
Published: September 13, 2019

Article

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 4438−4449

© 2019 American Chemical Society 4438 DOI: 10.1021/acs.jcim.9b00236
J. Chem. Inf. Model. 2019, 59, 4438−4449

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/jcim
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00236
http://dx.doi.org/10.1021/acs.jcim.9b00236
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


that chemical images alone may not entirely capture the
important characteristics of a chemical. Finally, images and
CNNs have been used to predict drug−protein interactions and
outperformed models trained on flattened versions of the
images, which cannot exploit the spatial structure.31

The various ways to measure and represent molecules lead to
a philosophical question about the nature of chemicals,32 and
the related fundamental question of whether a single
representation can completely describe a chemical entity
(reviewed in ref 9). As described above, several chemical-
structure-derived embeddings are often used for cheminfor-
matics, such as chemical images or circular molecular finger-
prints. Alternatively, molecules can be represented by an
analytical measurement33 or by their influence on biological
systems (e.g., transcriptomic or morphological changes).34,35

There are open questions regarding the relative utility of these
various chemical representation strategies for different pre-
dictive tasks relevant to drug development.
In this paper, we use machine learning and chemical-

structure-derived molecule representations to predict specific
medical subheading (MeSH) “therapeutic uses” classes.36 We
first performed the same classification task with the same set of
676molecules previously selected by Aliper et al.34 In contrast to
our chemical-structure-derived models, Aliper et al. used
molecule-induced transcriptome changes from the LINCS
project37 as a proxy molecule representation. We employed
two strategies: (1) chemical images with CNNs and (2)Morgan
fingerprints (MFPs)38 with random forests (RFs)39 (Figure 1).
We chose to use the CNN with images because of extensive
precedent for the effectiveness of this pair, and we chose to use
MFP with RF because we and others have seen excellent
performance of this representation-model pair.40 Our goal was
to assess whether drug function classifier models trained with
readily available chemical structure inputs can outperform
models trained with empirical measures of drug effects. Our
results support the effectiveness of chemical-structure-based
models. Both classification models trained with chemical-
structure-derived features greatly outperform the previous
benchmark based on drug-induced transcriptomic changes.
Furthermore, because we require only a chemical structure, the
models can be greatly improved by training on more than 6000
additional compounds that do not have associated tran-
scriptomic data. Our main contribution is that chemical

structures alone are effective predictors of therapeutic use
classes.

■ METHODS

All Python code for the CNN and RF models and the
preprocessed data sets are available from https://github.com/
jgmeyerucsd/drug-class. The release version 0.1 of the
repository including all Python code and data has also been
archived at Zenodo (https://doi.org/10.5281/zenodo.
3385194).

Data. A primary goal of this work was to compare empirically
derived chemical features, such as the transcriptome-based
model from Aliper et al.,34 with chemical-structure-derived
representations. Therefore, in the first evaluation, we emulated
their framing of the prediction task, which is to predict 1 of 12
MeSH therapeutic use classes of chemicals. The specific version
of the data used by Aliper et al., including training/validation
groups, is unavailable. Therefore, our exact training and
validation sets are different. To make the fairest-possible
comparison, we constructed a data set following the same
guidelines as Aliper et al.
Molecules were selected from PubChem41 on October 2nd,

2018 according to their MeSH therapeutic uses classification
(chemicals and drugs category > chemical actions and uses >
pharmacologic actions > therapeutic uses). Although there are
20 high-level categories, we used only the 12 classes described
previously.34Molecules in these 12 classes were downloaded in a
spreadsheet containing their compound identification numbers
(CIDs). A total of 11 929 CIDs were converted to SMILES
strings using the Python package pubchempy (https://github.
com/mcs07/PubChemPy). SMILES strings with a length of
more than 400 or membership to more than 1 of 12 MeSH
therapeutic classes were excluded, leaving 8372 SMILES. For
this analysis, chemicals in multiple classes were excluded as
described previously to enable direct comparison.34 This final
list was filtered to remove multiple versions of molecules that
differ by only accompanying salts. The final filtered total was
6955 molecules. The distribution of molecules among classes is
given in Table 1. This set of all molecules was divided into five
folds stratified based on the class for cross-validation.
SMILES strings were converted into three-color (RGB)

images with size 500 × 500 pixels or 1024 bit Morgan

Figure 1. Structure-based drug classification pipelines. Chemicals from 12medical subheadings (MeSH) therapeutic use classifications were converted
to either two-dimensional color molecule images orMorganmolecular fingerprints.Molecule images were used to train a convolutional neural network
(IMG +CNN) classifier, and fingerprints were used to train a random forest (MFP + RF) classifier. The models were used separately to predict classes
of drugs using stratified cross-validation.
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fingerprints using the Python package RDKit.42 Images
generated by RDKit always fit the entire molecule structure,
so molecules of different sizes are not problematic. All images
used for training and validation are available on GitHub.
Molecule classes were then split into three subgroups for model
training and prediction: 3-, 5-, or 12-class prediction tasks
according to the groupings described previously by Aliper et al.
(Table 1).
For the comparison with Aliper et al.’s results, we took the list

of molecules in their Table S1 (Supporting Information) and
retrieved SMILES strings from PubChem using pubchempy.
Images were generated as described above. During the removal
of salts from their original set of 678 molecules, we found that
two drugs, one from the anti-infective class and one from the
CNS class, were the samemolecules with different salt pairs. The
copies of these two duplicate molecules were removed. The
numbers of chemicals in this smaller data set are given in Table
1. This set of 676 molecules was split into 10 folds stratified
based on class membership to mimic the methods or Aliper et al.
as closely as possible. However, the dermatological and
urological classes have less than 10 molecules and therefore
are missing validation examples in some folds. For those folds
missing validation examples, the receiver operator characteristic
area under the curve (ROCAUC) and average precision metrics
were not computed.
Images with Convolutional Neural Networks (IMG + CNN):

Single Label.Molecule images with RGB channels were resized
to 150 × 150 pixels and used for retraining and validation of a
CNN with predetermined weights from resnext101_6443

implemented using fastai and pytorch.44 The loss function
used was binary cross entropy, and the output layer was
logsoftmax. A cyclic cosine annealing learning rate was used
during training,45 which decreases from the initial setting toward
0 over a number of epochs. The number of epochs needed to
decay the learning rate to the final value was doubled every cycle.
An example of the learning rate versus batch is shown in Figure
S1 along with the corresponding training loss.
To determine the best hyperparameters for all CNN models

and data subsets, we first performed hyperparameter optimiza-
tion on the small set of 676 compounds. Hyperparameter
optimization was done with nested 10-fold cross-validation
using class-stratified folds. Varied hyperparameters were as
follows: (1) dropout proportions of 20, 40, or 60%, (2)
retraining all weights or only the output layer weights, and (3)
the initial learning rates for cosine annealing ([5 × 10−5, 5 ×
10−4, and 5 × 10−3] or [1 × 10−4, 1 × 10−3, and 1 × 10−2] for

early, middle, and output layers, respectively). Fixed training
hyperparameters were the batch size of 25, seven cycles of cosine
annealing learning rate with decay rate decreased by half each
cycle (totaling 127 epochs), and data augmentation with
random zooms of up to 10% and random horizontal or vertical
image flips. Average accuracy values from each of the
hyperparameter groups tested during the inner loops of nested
cross-validation are given in Table S1. Based on the results of
this hyperparameter search, the hyperparameters that most
often resulted in the best accuracy on the inner loop fold were
used for training all other models, including CNNs trained on
the larger set of 6955 compounds. The tested learning rates had
a minimal effect on accuracy. The largest effect on accuracy
resulted from retraining all weights instead of training only the
output weights. These best hyperparameters from the grid were
(1) 40% dropout, (2) retraining all weights, and (3) the higher
learning rate set of [1 × 10−4, 1 × 10−3, and 1 × 10−2] for early,
middle, and output neuron layer groups, respectively.

Molecular Fingerprints with Random Forests (MFP + RF).
Random forests39 are ensembles of decision trees, where each
tree is learned on a subsample of data points and features (in this
case, bits in a molecular fingerprint). Benchmarking studies
often include MFP + RF models because they are easy to train
and have strong performance on a variety of computational
chemistry tasks.12,40,46−50 The random forest model was
implemented with scikit-learn.51 Separate hyperparameter grid
searches (216 combinations, Table 2) were performed for the

676 and 6955 compound analyses in a nested cross-validation
setting. For each outer loop, the best set of hyperparameters was
selected based on the inner loop cross-validation accuracy.
These hyperparameters were then used to train on all of the
inner loop compounds and assess performance on the outer loop
validation set.

Comparison of Druglike Properties. CIDs were used to
download molecular weight, XLog P, HBondAcceptorCount,
HBondDonorCount, and IsomericSMILES values using pub-
chempy. Compounds were then filtered to include non-
redundant IsomericSMILES values and only drugs with a
single-class label (Table S2). XLog P values are computed52

rather than measured and were not available for all queried
compounds (Table S3). Violin plots were created using ggplot2
(https://ggplot2.tidyverse.org/). For each quantitative feature,
a Welch’s analysis of variance (ANOVA) and Games-Howell
posthoc test (R package userfriendlyscience, https://cran.r-
project.org/web/packages/userfriendlyscience/index.html)
were used to compare differences between chemical features
between drug class groups. This test was selected because it does
not assume a normal distribution, even variance, or equal sample
sizes between groups.53 Adjusted p-values from the Games-
Howell posthoc test are reported in Table S4. Drug-class-level
distribution and pairwise relations of chemical features were
further visualized with Seaborn (https://seaborn.pydata.org/).

Table 1. Summary of Examples across Data Classes and Task
Subgroups

MeSH therapeutic uses # Aliper et al. # total task subgroups

antineoplastic 111 1177 3, 5, 12
cardiovascular 125 788 3, 5, 12
central nervous system (CNS) 172 1139 3, 5, 12
anti-infective 141 2398 5, 12
gastrointestinal 30 258 5, 12
anti-inflammatory 19 373 12
dermatological 6 116 12
hematologic 17 267 12
lipid regulating 19 164 12
reproductive control 16 148 12
respiratory system 11 101 12
urological 9 26 12

Table 2. Hyperparameter Values for the Random Forest
Classifier That Were Explored by Grid Search

parameter values

# estimators 50, 250, 1000, 4000, 8000, 16 000
max features none, sqrt, Log 2
min sample leaf 1, 10, 100, 1000
class weight none, balanced subsample, balanced
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Single-Label Classification Models: Training, Comparison,
and Evaluation. Training data for 676 molecules with
transcriptomic measurements available was split into 10 folds
for cross-validation, and the training data for all 6955 available
annotated molecules in the 12 MeSH classes was split into 5-
folds. When referring to model performance and metrics, all
values are from the held-out folds referred to as validation folds,
and metrics are the average performance of the validation folds
unless otherwise specified. Although it is often recommended to
use chemical-structure-based clustering or more advanced
techniques54 to create cross-validation folds, we randomly split
molecules into folds. We checked the chemical similarity of our
five folds of the larger data set using ChemTreeMap55 and found
the folds to be randomly distributed in chemical space (Figure
S2). Therefore, the validation fold molecules are within the
applicability domain56,57 of the trained models. Consequently,
the evaluation could overestimate the performance of models on
new molecules outside this applicability domain.
Trained models were evaluated using the following metrics

from scikit-learn 0.20.3: accuracy, balanced accuracy, Matthew’s
correlation coefficient (MCC), ROC AUC, and average
precision score. The classification accuracy of the five validation
sets was used as the primary model comparison metric. Class-
specific prediction accuracy of the models was compared using
confusionmatrices for a single representative validation fold.We
also compared our prediction accuracy with the accuracy
previously reported by Aliper et al.34 However, it should be
clearly noted that although we used the same molecules, the
exact training and validation sets were unavailable, so the
accuracies are not perfectly comparable.
IMG + CNN: Multilabel Classification. The set of all

molecules including those with multiple class memberships
(8336 molecules assigned a total of 9885 classes, an average of
1.2 classes per molecule) was used to train additional
convolutional neural networks for multilabel classification
using the fastai package. The data was split into five folds
based on pairwise class co-occurrence using the iterative class

splitter from the skmultilearn package.58 A Jupyter notebook
containing the code used to train the models is available on the
GitHub repository under multiclass_data/multiclass_5foldC-
V.ipynb. Resnet50 was used as the pretrained model and
weights, and 40% dropout was used with image data
augmentation. Training images were 256 × 256 and were
processed in batches of 40. All weights were retrained for each
CNN model for 127 epochs (the same number as for a single
class) using the updated one-cycle policy.59

The multilabel classification was evaluated by computing
thresholded accuracy and Fβ (β of 2.0, the fastai default) using a
default score cutoff of 0.5. ROC AUC and average precision
scores were also computed as described for the single-label
classification models using the weighted average. Finally, a
network of the class relationships was computed using the
pairwise co-occurrence of classes using the networkx (https://
networkx.github.io/) and igraph (https://igraph.org/python/)
Python packages according to the skmultilearn tutorial (http://
scikit.ml/labelrelations.html). Network graphs were visualized
with their edge width proportional to the strength of the node
relationship as defined by the number of co-occurrences of the
classes.

■ RESULTS

Classification with a Small Benchmark Data Set. Two
chemical-structure-derived representations were used for train-
ing and classification with two different model architectures: (1)
IMG + CNN or (2) MFP + RF (Figure 1). Molecules were split
into three subtask sets as described previously.34 Each subtask
set contained 408, 579, or 676 molecules for the 3-, 5-, and 12-
class problems, respectively. Table 3 gives a summary of the
validation set accuracy for the models described here in
comparison with results from Aliper et al. who used a multilayer
perceptron DNN or support vector machine (SVM) with gene
expression changes as the model input. For 5- and 12-class
subtasks, MFP + RF performed best, achieving 64.1% accuracy
on the 12-class prediction task, representing an improvement

Table 3. AverageMetrics for Each of 10Hold-Out Folds fromCross-Validation Using 676Molecules fromAliper et al. Annotated
with Only One of the 12 MeSH Classesa

problem group metric SVM1 DNN2 IMG + CNN3 MFP + RF4

3-class accuracy 0.53 0.701 0.747 ± 0.0657 0.742 ± 0.0692
balanced accuracy 0.739 ± 0.0644 0.715 ± 0.0766
MCC 0.619 ± 0.102 0.612 ± 0.106
ROC AUC 0.870 ± 0.0412 0.894 ± 0.0417
ave. precision score 0.806 ± 0.0592 0.847 ± 0.0588

5-class accuracy 0.417 0.596 0.653 ± 0.0451 0.694 ± 0.0497
balanced accuracy 0.620 ± 0.0509 0.635 ± 0.0661
MCC 0.549 ± 0.0599 0.606 ± 0.0660
ROC AUC 0.867 ± 0.0322 0.892 ± 0.0284
ave. precision score 0.735 ± 0.0568 0.791 ± 0.0471

12-class accuracy 0.366 0.546 0.608 ± 0.0500 0.641 ± 0.0331
balanced accuracy 0.507 ± 0.107 0.504 ± 0.0522
MCC 0.525 ± 0.0620 0.572 ± 0.0388
ROC AUCb 0.863 ± 0.209 0.896 ± 0.0200
ave. precision scoreb 0.672 ± 0.0303 0.751 ± 0.0205

aValues for the gene-expression-based models are from Aliper et al. who used different training and validation folds for 10-fold cross-validation with
a 1support vector machine (SVM) or 2multilayer perceptron deep neural network (DNN) based on pathway activation scores. Values from this
paper using 3molecule images input to a convolutional neural network (IMG + CNN) or 4Morgan molecular fingerprints as the input to the
random forest (MFP + RF). Values for 3,4 are the mean of the validation folds ± standard deviation. bReceiver operator characteristic area under
the curve (ROC AUC) and average precision score were computed as the weighted average of scores across classes and only computed for the first
six validation sets of the 12-class problem due to fewer than 10 examples in the dermatological and urological classes.
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over the expression-based DNN that achieved only 54.6%
accuracy. The IMG + CNNmodel produced accuracy similar to
the MFP + RF for the 3-class subtask but achieved about 4%
points worse accuracy on the 5- and 12-class problems.
However, IMG + CNN models still significantly outperformed
the previous gene-expression-based models in all cases.
Accuracy can be inflated when the class labels are not evenly
distributed (Table 1). Balanced accuracy and MCC are more
robust with skewed classes but were not reported for the gene-
expression-based models. For the IMG + CNN and MFP + RF,
these values are lower than the accuracy but good overall.
Classification with All Annotated Chemicals. A major

limitation of using empirical chemical features generated from
biological experiments, such as gene expression, is that time and
financial costs of experiments limit the size of the training data.
For the drug function prediction task, there are roughly 10×
more molecules available annotated with the 12 MeSH classes
than the number of molecules with transcriptomic data. To
highlight the value of using a chemical-based representation
instead of an empirical representation, we trained additional
models with all available 6955 chemical structures. The use of
more training data was greatly beneficial to both representation-
model pairs resulting in accuracies of 83−88% and ROC AUC
values of more than 0.969 (Table 4). ROC curves for predictions

from the IMG + CNN model are shown in Figure 2, and curves
for the MFP + RF are shown in Figure S3. With this larger
training data set, the five-fold cross-validation evaluation metrics
are quite similar for the IMG + CNN and MFP + RF models.
The MFP + RF model has a slight advantage over the IMG +
CNNmodel when using the metrics that consider the complete
rankings of chemicals by predicted class probabilities (ROC
AUC and average precision).
Model and Representation Comparisons. Given the

unequal stratification among examples within classes in the
training and validation sets, the per-class performance of both
models was compared on one representative validation fold.
Confusion matrices enable this comparison by showing the

fraction of predicted classes for each true class. Confusion
matrices from IMG + CNN model predictions for each subtask
revealed differences in class-wise prediction accuracy (Figure 3).
In the 3-class subtask, the prediction performance was similar
among the three groups. The most difficult class to predict was
cardiovascular drugs; 13% of cardiovascular drugs were
predicted incorrectly as CNS drugs (Figure 3A). In the 5-class
subtask, which includes the 3-class drugs and gastrointestinal
and anti-infective drugs, classification accuracy was generally
worse than the 3-class subtask (Figure 3B). The proportion of
correct predictions roughly followed the number of examples
available with anti-infective drugs predicted at high correctness
(93%). Gastrointestinal drugs are the smallest class but are

Table 4. Average Metrics for Each of Five Validation Folds
from Cross-Validation Using the Full Set of 6955 Molecules
Annotated with Only One of the 12 MeSH Classes

problem
group metric IMG + CNN MFP + RF

3-class accuracy 0.884 ± 0.0108 0.882 ± 0.0142
balanced accuracy 0.879 ± 0.0143 0.870 ± 0.0162
MCC 0.823 ± 0.0168 0.822 ± 0.0217
ROC AUC 0.970 ± 0.0063 0.978 ± 0.00382
ave. precision score 0.950 ± 0.0108 0.978 ± 0.00382

5-class accuracy 0.863 ± 0.0104 0.871 ± 0.00700
balanced accuracy 0.828 ± 0.0167 0.822 ± 0.0183
MCC 0.811 ± 0.0140 0.821 ± 0.00969
ROC AUC 0.972 ± 0.0046 0.981 ± 0.00284
ave. precision score 0.933 ± 0.0093 0.950 ± 0.00582

12-class accuracy 0.834 ± 0.0084 0.838 ± 0.00677
balanced accuracy 0.735 ± 0.0258 0.719 ± 0.0248
MCC 0.793 ± 0.0105 0.797 ± 0.00831
ROC AUCa 0.969 ± 0.0026 0.977 ± 0.00227
ave. precision scorea 0.900 ± 0.0073 0.918 ± 0.00392

aReceiver operator characteristic area under the curve (ROC AUC)
and average precision score were computed as the weighted average of
scores across classes.

Figure 2.Receiver operator characteristic curves from the IMG +CNN
model predictions on the fifth validation set of the (A) 3-, (B) 5-, and
(C) 12-class data sets. Performance on this example fold is
representative of the performance on all five folds shown in Table 4.
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predicted more correctly (78%) than cardiovascular drugs
(76%). In the 12-class prediction task, the correctness for anti-
infective molecules remained the highest (92%), and smaller
classes were generally predicted less accurately (Figure 3C). The
smallest class, “urological agent”, which contains only 26
molecules, was rarely predicted correctly in the validation set
(40%). The difference in class sizes likely contributes to this
deficiency, and we did not directly control for this during
training. Cardiovascular drugs were consistently confused for
CNS drugs across all three subtasks.

The same confusion matrix analysis of per-class validation set
predictions for results from the MFP + RF models showed
overall similar percentages of correct predictions within 5%
points (Figure S4). An interesting observation is that the MFP +
RF made different general errors than the IMG + CNN model,
suggesting that these models learn different features. MFP + RF
more often overpredicted drugs as anti-infective, which may
explain the 97% correct predictions for that class. For example,
the RF and CNN predicted 11 and 0%, respectively, of
hematological drugs as anti-infective. There were also class-

Figure 3. Confusion matrices from IMG + CNN classifiers showing the proportion of each predicted class (x axis) for molecules in each true class (y
axis). Results are from the (A) 3-, (B) 5-, and (C) 12-class task subgroups. Each matrix shows the predictions from the fifth validation set using IMG +
CNN models trained on the large single-class data set.
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specific performance differences. MFP + RF models were better
at predicting CNS agents correctly (MFP + RF: 90% vs IMG +
CNN: 85%) and dermatologic agents (MFP + RF: 57% vs IMG
+ CNN: 52%), but the IMG + CNN models were better at
predicting cardiovascular agents (MFP + RF: 68% vs IMG +
CNN: 73%). Overall, these class-wise analyses of model
predictions with confusion matrixes revealed interesting differ-
ences in model performance.
Chemical Insight into Learned Molecule Properties.

Druglike properties of a compound are related to its chemical
features such as molecular weight, lipophilicity, and the number
of hydrogen bond donors and acceptors (e.g., quantitative
structure activity relationships). Lipinski’s rule of five famously
states that a druglike compound should have no more than five
hydrogen bond donors, 10 hydrogen bond acceptors, a log P
greater than 5 (related to hydrophobicity), and a molecular

weight under 500.3 These properties are directly or indirectly
encoded in the image- and fingerprint-based representations of
chemical structure we used to train models.
To make inferences about what chemical properties our

models may have learned, we computed molecular weight,
Xlog P, and hydrogen bond donors and acceptors for our all
single-class molecules and compared their distributions with
one-way ANOVA andGames-Howell posthoc testing (Figures 4
and S5; Tables S2 and S4). Our IMG + CNN model often
confused respiratory drugs with cardiovascular drugs (30%,
Figure 3), and the chemical property analysis revealed that this
drug class was indistinguishable from cardiovascular drugs with
regard to the four computed properties (Table S4, row 51,
adjusted p-value = 1). The similarity of these properties may
explain the confusion. Conversely, respiratory drugs are
indistinguishable from gastrointestinal drugs across Lipinski’s

Figure 4. Class-level distribution of Lipinski’s druglike properties: (A) molecular weight, (B) Xlog P, (C) hydrogen bond acceptor count, and (D)
hydrogen bond donor count.

Figure 5. Example of a misclassified drug that reveals the mechanism and repurposing opportunities. (A) Structure of trospium, a urological drug
known to act as a cholinergic muscarinic antagonist, which was classified by the model as a CNS agent. (B) Structure of benztropine, a muscarinic
antagonist used to treat Parkinson’s disease.
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properties, but both models can easily distinguish these two
classes. This suggests that there are important structural features
of drugs learned by the classifiers that fall beyond the
conventional framework of how chemists understand druglike
chemical properties.
Other connections between statistically significant differences

in molecular properties and model confusion are less
interpretable. Dermatologic drugs were often confused for
anti-infective (17%) and gastrointestinal drugs (9%) despite all
properties showing significant differences (adjusted p-values <
3.6 × 10−3). However, the MFP + RF model often confused
dermatologic drugs for CNS agents (Figure S4), which is a
mistake that the IMG + CNN model never makes (0%). This
pair of chemical classes is statistically different in only the
number of hydrogen bond donors. Thus, it is possible that the
RF is underweighting this difference, whereas the IMG + CNN
model has learned to use it.
Drug-Repurposing Opportunities and Mechanism of

Action from Misclassification.Misclassification of drugs can
be interpreted in at least twoways: (1) themodel has not learned
enough to accurately predict the true class, or (2) the model has
learned something new about the drugs and classes. Although
the latter is more interesting, the former is the safer and more
likely interpretation. However, cases where the model is wrong
might present opportunities for drug repurposing. In addition,
we hypothesize that those incorrect predictions might be useful
for understanding drugmechanisms. For example, among the six
molecules in the urological drug validation set, the IMG + CNN
model misclassified trospium as a central nervous system (CNS)
agent. This is not surprising, however, because trospium is
known mechanistically as a muscarinic antagonist,60 which is a
common function of CNS drugs. In fact, the structure of
trospium is similar to another muscarinic antagonist used to
treat Parkinson’s disease, benztropine61 (Figure 5).
Multilabel Classification. The same strategy of structure-

based drug molecule function prediction was also extended to
multilabel classification, where more than one MeSH
therapeutic uses class can be predicted for each chemical
structure. When not filtered for molecules present only in a
single class, there are a total of 8336 molecules assigned to these
12MeSH therapeutic uses classes; each molecule has an average
of 1.2 class labels. We trained a separate IMG + CNN model to
learn these drug classes in the multilabel setting and evaluated
the accuracy, Fβ score, ROC AUC, and average precision score
(Table 5). This multilabel prediction model achieved excellent
performance in all computed metrics, but the ROC AUC and
average precision scores show that the multilabel prediction task
is more challenging than the single-label version (Table 4). This

demonstrates the feasibility of extending our structure-based
therapeutic use prediction models for multifunction prediction.
Multilabel predictions were evaluated locally by examining

specific examples. Examples of multiclass molecules that were
predicted perfectly are shown in Figure 6. Each of these
molecules was correctly classified as anti-infective despite very
diverse chemical constituents. Hypocrellin is a round, nearly
planar compound with a significant aromatic electron system
and several types of oxygen functional groups, including methyl
ethers, hydroxyls, and ketones (Figure 6A). Sulfasalazine is often
used as a first-line rheumatoid arthritis treatment and is a long
compound with multiple unique functional groups, including
azobenzene (Figure 6B). Acemannan is a mucopolysaccharide
from aloe vera leaves (Figure 6C). Hypocrellin and acemannan
were also correctly labeled as antineoplastic drugs, and both
sulfasalazine and acemannan were recognized as gastrointestinal
drugs. These examples show that the model has learned to
associate diverse chemistries with drug functions.
Multilabel predictions were also evaluated globally with

network relationship analysis. True and predicted pairwise drug
class memberships were used to generate class connections for
drug class networks (Figure 7). Most of the true relationships
were recovered in the predicted relationships, but the model
underestimated the strength of some relationships in the first
validation fold (e.g., hematologic-cardio). The model also
predicted that some new connections weremissing from the true
network, such as between the “respiratory” class and “urological”
class. This global network analysis enabled a closer look at new
connections between classes in the predicted set that were
absent in the true class labels. For example, PubChem CID
121878 is classified as a cardiovascular drug, but the multiclass
model predicts that this drug also functions on the respiratory
system. PubChem suggests that this molecule is chemically
related to cromakalim (Figure S6), which is a potassium channel
modulating vasodilator known to act as a brochodilator.62

Other examples are less obvious based on expert interpreta-
tion of the chemical structure. For example, model predictions
on validation fold 5 suggest a weak connection between
“reproductive control” and “hematologic” classes (Figure S7B)
that is absent from the true class labels (Figure S7A). Closer
inspection of the class predictions reveals that this was due to
prediction of menadione (vitamin K3) as “reproductive control”
in addition to its true label of hematologic. Although there is no
obvious structural similarity between menadione (Figure S7C)
and common reproductive control agents like estrogen (Figure
S7D), a literature search reveals several connections that validate
this prediction. Menadione is believed to activate extracellular
signal-regulated kinases (ERK) and prevent inhibition of
EGFR.63 Estrogen, a reproductive control agent, also activates
ERK signaling through transactivation of upstream EGFR.64 In
addition, both excess vitamin K and estrogen alter the risk of
venous thrombosis.65,66 Thus, the model has uncovered a
functional relationship that is not apparent from a comparison of
these two molecular structures. Altogether, these global analyses
of drug function relationships helped reveal opportunities for
drug repurposing.

■ DISCUSSION
Here, we report two drug classification models that greatly
exceed a previous benchmark on the same prediction task. Our
models use molecular structures directly as inputs, whereas the
previous study used alterations of the transcriptome as a proxy
for molecules. The results presented here suggest that the

Table 5. Multilabel Classification of the 8336 Molecules with
an Average of 1.2 Classes Assigned to Each Moleculea

problem group metric IMG + CNN

12-class multilabel thresh. accuracyb 0.954 ± 0.00133
Fβ
b 0.635 ± 0.0168

ROC AUC 0.938 ± 0.00353
ave. prec. score 0.837 ± 0.00953

aResults are from fivefold cross-validation with folds determined by
iterative stratification. Accuracy, ROC AUC, and average precision
scores are not directly comparable to the 12-class single-class
formulation (Table 4) because the number of molecules differs.
bClass score thresholds set to 0.5.
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experimental measurement of the influence of a molecule in
biological systemsmay not be needed to accurately predict some
types of chemical properties, such as annotated drug classes.
However, we do not believe this necessarily means that direct
empirical measure of the system is useless. Rather, additional
research is required to determine which types of chemical
prediction tasks require information about the biological state
induced by chemicals and what type of biological state

information is most useful (e.g., omic data, cellular morphology,
etc.). There is likely room to improve effect-based models that
would outperform molecular-structure-derived models, espe-
cially on more complex prediction tasks.
Because the models presented here do not require empirical

measurements of effects of chemicals, they can be broadly
applied to predict drug classes after training; images and MFPs
can be generated directly from the chemical structure for any
chemical. A major limitation of the Aliper et al. featurization, or
any empirically determined featurization, is that it requires new
experiments for each new compound. This restricted the total
data set of Aliper et al. to only 676 drugs for which
transcriptomic data was available, thereby fundamentally
limiting the utility of prediction to fewer compounds. Therefore,
there must be a substantial improvement in predictive
performance to justify the extra cost of using experimentally
derived features in a virtual screening or chemical prediction
setting. We propose that future studies on chemical prediction
tasks that use empirically determined featurizations also use
models that consider only chemical structure features as a
baseline.
Although there are several chemistry problems where DNNs

outperform other shallow machine-learning methods,49,67,68

here theMFP + RF performed best with the small data set of 676
molecules in the 5- and 12-class predictions. However, in the 3-
class task with the small data set and all of the tasks with the large
data set, the two models produced accuracies that were nearly
indistinguishable. Because the performance of our two models
was similar on the larger data set, our results suggest that the
CNN has more difficulty learning many classes from a small
amount of data. This highlights that, in general, more complex
models should be benchmarked against strong standard
machine-learning methods, especially when training data is
limited.
Much can be learned about chemical function from the cases

where we find misclassification of chemical structures. We show
cases where this can be rationalized by chemical properties of the
molecules and cases where these properties that we often use to
define the character of a chemical cannot explain the
classification performance. In the latter case, this may mean
that our models have learned something about chemistry that
may not be recognized by chemists. Still, the class-specific
differences in molecular properties are interesting to compare.
Furthermore, when the models misclassify a structure, we can
interpret this both as suggestive of a shared drug mechanism and
as an opportunity for drug repurposing. Drug repurposing is an
especially important aspect of this work because the application
of an already approved drug is much less costly than de novo
approval of a new chemical.

Figure 6. Examples of correctly predicted multiclass molecules. (A) Hypocrellin is classified as anti-infective, antineoplastic, and dermatologic. (B)
Sulfasalazine is classified as anti-infective, anti-inflammatory, and gastrointestinal. (C) Acemannan is classified as anti-infective, antineoplastic, and
gastrointestinal.

Figure 7. Analysis of multilabel drug classification using the IMG +
CNN model. A network of relationships was computed from the (A)
true class labels or (B) predicted class labels of the first validation fold.
The width of each edge denotes the strength or frequency of co-
occurrence. Red nodes indicate class grouping determined by their co-
occurrence.
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Finally, we show how these models can be used for multilabel
classification of drugs with multiple known functions and
explore how incorrect predictions from multilabel classification
can be used for drug repurposing. Our initial experiments
followed the setting from Aliper et al. that excluded chemicals
with multiple therapeutic uses, but we also extend the concept to
a multilabel predictionmodel. The results show that our strategy
is effective for the more complex multiclass prediction and that
true relationships between drug classes are learned and
recovered even with a relatively small data set of less than 10
000 molecules. We give examples of how these models learn to
associate diverse chemistries with the same predicted function.
In addition, we give examples where the literature supports
misclassification, suggesting that these models may be useful in
predicting off-target effects and repurposing opportunities.
Taken together, our multilabel classification results prove the
feasibility of this strategy with relatively simple modern deep-
learning packages.
Previous studies have demonstrated prediction of other types

of drug classifications, for example, anatomical therapeutic
chemical (ATC) codes (https://www.whocc.no/atc/structure_
and_principles/).69−72 Several types of models and chemical
featurizations have been explored for ATC code prediction.
Future work could apply the strategies described here for MeSH
terms to predict ATC codes.
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Papa, E.; Öberg, T.; Todeschini, R.; Fourches, D.; Varnek, A. Critical
Assessment of QSAR Models of Environmental Toxicity against
Tetrahymena pyriformis: Focusing on Applicability Domain and
Overfitting by Variable Selection. J. Chem. Inf. Model. 2008, 48,
1733−1746.
(58) Szyman ́ski, P.; Kajdanowicz, T. A Scikit-Based Python
Environment for Performing Multi-label Classification. 2017,
arXiv:1702.01460. arXiv.org e-Print archive. https://arxiv.org/abs/
1702.01460..
(59) Smith, L. N. A Disciplined Approach to Neural Network Hyper-
parameters: Part 1 -- Learning Rate, Batch Size, Momentum, and
Weight Decay. 2018, arXiv:1803.0982. arXiv.org e-Print archive.
https://arxiv.org/abs/1803.09820.
(60) Biastre, K.; Burnakis, T. Trospium Chloride Treatment of
Overactive Bladder. Ann. Pharmacother. 2009, 43, 283−295.
(61) Gelenberg, A. J.; Van Putten, T.; Lavori, P. W.; Wojcik, J. D.;
Falk, W. E.; Marder, S.; Galvin-Nadeau, M.; Spring, B.; Mohs, R. C.;
Brotman, A. W. Anticholinergic effects on memory: benztropine versus
amantadine. J. Clin. Psychopharmacol. 1989, 9, 180−185.
(62) Arch, J. R. S.; Buckle, D. R.; Bumstead, J.; Clarke, G. D.; Taylor, J.
F.; Taylor, S. G. Evaluation of the potassium channel activator
cromakalim (BRL 34915) as a bronchodilator in the guinea-pig:
comparison with nifedipine. Br. J. Pharmacol. 1988, 95, 763−770.
(63) Abdelmohsen, K.; Gerber, P. A.; von Montfort, C.; Sies, H.;
Klotz, L.-O. Epidermal Growth Factor Receptor Is a Common
Mediator of Quinone-induced Signaling Leading to Phosphorylation
of Connexin-43: Role of Glutathione and Tyrosine Phosphatases. J.
Biol. Chem. 2003, 278, 38360−38367.
(64) Filardo, E. J.; Quinn, J. A.; Bland, K. I.; Frackelton, A. R.
Estrogen-Induced Activation of Erk-1 and Erk-2 Requires the G
Protein-Coupled Receptor Homolog, GPR30, and Occurs via Trans-
Activation of the Epidermal Growth Factor Receptor through Release
of HB-EGF. Mol. Endocrinol. 2000, 14, 1649−1660.
(65) Stephenson, J. FDA Orders Estrogen Safety Warnings. JAMA, J.
Am. Med. Assoc. 2003, 289, 537.
(66) Merli, G. J.; Fink, J. Vitamin K and Thrombosis. Vitam. Horm.
2008, 78, 265−279.
(67) Korotcov, A.; Tkachenko, V.; Russo, D. P.; Ekins, S. Comparison
of Deep Learning With Multiple Machine Learning Methods and
Metrics Using Diverse Drug Discovery Data Sets. Mol. Pharmaceutics
2017, 14, 4462−4475.
(68) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van
Vlijmen, H. W. T.; Kowalczyk, W.; IJzerman, A. P.; van Westen, G. J. P.
Beyond the hype: deep neural networks outperform established

methods using a ChEMBL bioactivity benchmark set. J. Cheminf.
2017, 9, No. 45.
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