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Chronic low back pain remains a difficult clinical problem,
both to diagnose and to treat. Despite significant investments
in basic and clinical research, the rates of disability and
associated costs continue to escalate.1 Although the prevail-
ing view is that axial back pain arises from sensitized
nociceptorswithin the annulus fibrosus of degenerating disks
(annulogenic pain), there is growing evidence that the end
plates are richly innervated and that innervated end plate
damage may represent a common painful pathology (verte-
brogenic pain).2,3 Properly identifying the pain generator is
requisite for optimal treatment, so distinguishing between
these forms of pain will likely be important for improving
patient outcomes. The goal of this review is to summarize
data regarding normal end plate anatomy, physiologic age-
related end plate changes, and evidence for the role of
pathologic changes as a source of chronic low back pain. In
an effort to cover these topics within a clinical context, we

have focused our summary on the end plates in the human
spine. We refer the reader to the literature for a detailed
comparison of end plate anatomy and biochemistry between
humans and animals.4,5 Related, we acknowledge that it
remains open for debate whether the end plate belongs to
the vertebral body or to the intervertebral disk. Rather than
presenting a specific viewpoint, we consider topics that are
relevant to both its bony and cartilaginous components.6

Structure

The end plate is a bilayer of cartilage and bone that separates
the intervertebral disks from the adjacent vertebrae
(►Fig. 1A to C). During prenatal development, the future
vertebra starts as a cartilage anlagen that arises from chon-
drification centers of the sclerotomes during the sixth em-
bryonicweek (►Fig. 2).7 The anlagen begins ossification at its
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Abstract End plates serve as the interface between rigid vertebral bodies and pliant intervertebral
disks. Because the lumbar spine carries significant forces and disks don’t have a
dedicated blood supply, end plates must balance conflicting requirements of being
strong to prevent vertebral fracture and porous to facilitate transport between disk cells
and vertebral capillaries. Consequently, end plates are particularly susceptible to
damage, which can increase communication between proinflammatory disk constitu-
ents and vascularized vertebral bonemarrow. Damaged end plate regions can be sites of
reactive bone marrow lesions that include proliferating nerves, which are susceptible to
chemical sensitization and mechanical stimulation. Although several lines of evidence
indicate that innervated end plate damage can be a source of chronic low back pain, its
role in patients is likely underappreciated because innervated damage is poorly
visualized with diagnostic imaging. This literature review summarizes end plate
biophysical function and aspects of pathologic degeneration that can lead to vertebro-
genic pain. Areas of future research are identified in the context of unmet clinical needs
for patients with chronic low back pain.
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Fig. 1 (A) Gross morphology of the lumbar intervertebral joint. (B) Histology section showing regions of interest for panels C, D, and E. (C) End
plate detail showing cartilaginous and bony components with hematopoietic marrow elements. (D) Insertion of annular fibers into the end plate
cartilage at the inner annulus junction. (E) Vascular sinusoids in the marrow space adjacent to the end plate. Note for panels A and B, left side is
anterior.

Fig. 2 Schematic representation of vertebral end plate development. (A) At embryonic week 6, the sclerotome begins to segment around the
notochord to form periodic cartilaginous and fibrocartilaginous precursors to the vertebra and disks, respectively. (B) By embryonic week 15, the
notochord atrophies within the vertebra, and ossification begins at the vertebral centers. (C) At embryonic week 25, the ossification centers
expand as the vertebrae lengthen. Columnar cartilage develops at the vertebral ends to form the epiphyseal plates. (D) By age 5 years, the ossified
portions of the vertebra extend to the lateral margins and the epiphyseal cartilage begins to thin. (E) By age 13 years, peripheral ossification
centers outside the epiphyseal plate form the ring apophysis. (F) By age 18 years, the ring apophysis begins to fuse to the osseous mass of the
vertebral body.
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centrum around invading blood vessels.8 This trabecular
centrum is separated from the forming disk by an epiphyseal
plate of columnar cartilage that progressively thins as the
vertebra lengthens. Peripheral to the epiphyseal plate is a
ring apophysis that doesn’t participate in longitudinal
growth, but is rather a traction apophysis by virtue of annular
fiber insertion.9 Yet, the ends of the vertebrae are completely
covered by the same end plate cartilage. By age 18, the
epiphyseal cartilage has thinned and a subchondral bone
plate has formed, thus creating the adult end plate bilayer.
Simultaneously, the ring apophysis fuses to the vertebral
body.

Like articular cartilage, the end plate cartilage consists of
chondrocytes interspersed throughout an extracellular ma-
trix of proteoglycans, collagen (types I and II), and water
(►Fig. 1C). However, the end plate cartilage differs from
articular cartilage in its collagen fiber organization. Although
healthy articular cartilage has zones of differing collagen
orientation, end plate cartilage has collagen fibers aligned
horizontally (parallel to the ends of the vertebrae).10 In the
young disk, the end plate cartilage proteoglycan content is
�300 µg/mg, with water and type I collagen contents being
78% and 0.9 ng/mg, respectively.11 The cartilage end plate is
typically between 0.1 and 2.0 mm thick12,13; however, its
thickness is known to vary with position and level, being
thinner centrally and in the upper levels of the spine than
peripherally and in the lower levels of the spine.13 The nature
of the structural integration between the end plate and the
surrounding tissues also varies with position. Peripherally,
the collagen fibers in the lamellae of the annulus fibrosus are
continuous with the collagen fibers in the end plate
(►Fig. 1D), whereas centrally, the integration between colla-
gen fibers in the nucleus pulposus and the end plate is more
convoluted.13,14 The collagen fibers of the cartilaginous and
bony components of the end plate are completely separate.13

The bony component of the end plate has a structure not
unlike that of the vertebral cortex and resembles a thickened,
porous layer of fused trabecular bone with osteocytes en-
tombed within saucer-shaped lamellar packets.15 Like the
end plate cartilage, the bony end plate thickness varies
depending on spinal level and location and is generally
between 0.2 and 0.8 mm thick.16–19 At a given lumbar level,
the bony end plates are thinner centrally than peripherally;
also, the end plate cranial to a particular disk is thicker and
has higher bone mineral density than does the end plate
caudal to it.18,20 In some individuals, a second, dense layer of
bone exists below the superficial layer.16,19

The bone marrow compartment adjacent to the bony end
plate consists of hematopoietic cells, fat cells, sinusoids (thin-
walled capillaries), and nerves. The vertebral capillaries and
nerves enter via the basivertebral foramen at the posterior
vertebral cortex and small pores in the cortical shell, form an
“arterial grid” at the vertebral centrum, then branch and
terminate just adjacent to the cartilage end plates.21–23 These
sinusoids and nerves provide a continuous bed across the
bone–disk interface (►Fig. 1E).21 Importantly for the disk,
there is an intimate relationship between the effective perfu-
sion of these sinusoids and marrow cellularity type. For

example, perfusion decreases as thicker-walled capillaries
replace the sinusoids, which can occur when the hematopoi-
etic marrow converts to fat.24,25 The cause of this marrow
conversion is unclear, but the increase in bone marrow
adiposity may be related to declining bone mass,26–30 vascu-
larity,29,31 temperature,25 or reduced bone loading.32

End plate subchondral bone is innervated by basivertebral
nerve, the fibers of which reach the bone marrow along with
nutrient arteries that enter the vertebra through the posterior
basivertebral foramen.21,33–35 End plate innervation is com-
parable to that of the peripheral annulus,2,3,36 and it is
increased in areas of bone damage (►Figs. 3 and 4).37

Biophysical Function

The structure of the end plate facilitates important bio-
mechanical and nutritional functions. Biomechanically, the
end plate is subjected to significant loads during activities of
daily living as the trunk muscles contract to stabilize posture.
Lumbar compression forces can be in the range of 800 Nwhile
standing upright to over 3,000 N during active lifting.38 The
nucleus becomes pressurized in response to these forces, the
values of which have been measured to vary from 0.4 MPa
while lying, to 1.5 MPa while standing and sitting, to 2.3 MPa
while lifting.39–41 The end plate distributes these intradiscal
pressures onto the adjacent vertebrae and prevents the
pressurized disk nucleus from bulging into the underlying
trabecular bone.42–44

During spinal compression, the pressurized nucleus causes
the end plate to be stretched, like a drumhead.45 Consequent-
ly, the end plate is most prone to fail in tension. Ultimately,
thickness, porosity, and curvature are important structural
determinants of end plate biomechanical function: thick,
dense end plates with a high degree of curvature are stronger
than thin, porous, and flat end plates.18,46–49

Nutritionally, the end plate is the primary pathway for
transport between vertebral capillaries and cells within the
disk nucleus.50,51 Blood vessels and marrow spaces abut the

Fig. 3 Distribution of protein gene product 9.5 (PGP 9.5)-positive
nerve fibers across the end plates (63-year-old woman, L5–S1).
Compared with the density of nerves in normal end plate regions,
nerve density is higher in end plate regions with damage. Nerve fibers
in this disk were observed in the inferoposterior outer annulus. Note:
left side is anterior.
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cartilage layer (►Fig. 1C, E) and provide channels for glucose
and oxygen to enter the disk and for waste products to exit
the disk. Permeability across the cartilage end plate correlates
with the amount of direct contact between the end plate and
vertebral marrow or vascular buds.50 The typical marrow
contact area (or effective exchange area) is between 10 and
40%,52–54 with the central end plate (adjacent the nucleus)
beingmore permeable than at the periphery.50 The density of
these vascular channels is higher adjacent to the disk nucleus
than the annulus.13,50,55

Once nutrients reach the end plate, movement of small
solutes (glucose, lactate, and oxygen) pass through disk
matrix primarily by diffusion.56,57 Larger solutes may also
be influenced by convective fluid flow created by mechanical
disk compression and recovery. Diffusion into the disk is
driven by the concentration gradient between the blood
plasma and tissue matrix and represents a balance between
supply (capillary density) and demand (disk cell density and
metabolic rate).

Consequently, the end plate must balance conflicting
biophysical demands. It must be strong to resist mechanical
failure but must also be porous to facilitate chemical trans-
port. Thin, porous end plates may favor disk health and thick,
impermeable end plates favor vertebral integrity.18,58 Recent
data indicate that double-layer end platesmayprovide amore
optimal balance between end plate strength and porosity,15

thereby protecting against damage while supporting im-
proved transport to and from adjacent disks.

Physiologic Degeneration

During aging, the cartilage end plate experiences changes in
proteoglycan and collagen, resulting in gradual thinning and
calcification.11,13,59,60 Proteoglycan content decreases from
300 µg/mg at age 2 to 150 µm/mg by age 80. Simultaneously,
water and type I collagen decrease from 78 to 67% and from
0.9 ng/mg to 0.25 ng/mg, respectively.11 Although the specific
mechanisms responsible for the compositional deterioration
are unclear, these age-related changes coincide with degen-
eration in the adjacent disk and are generally consistent with
markers of chondrocyte hypertrophy (e.g., elevated expres-
sion of type X collagen).11,61Hence, it maybe that factors such
as diminished hydrostatic pressure play a role in end plate

deterioration because hydrostatic pressure is a potent regu-
lator of chondrocyte function.62,63

When the spine is compressed, the bony end plate is
subjected to high tensile strains as it deforms into the
underlying trabecular bone.42–45,64 Several factors influence
the susceptibility of the end plate to damage, including the
nature of themechanical loading, the local morphology of the
end plate structure, the tissue material properties, and the
condition of the intervertebral disk. End plates at the cranial
vertebral aspect may be more susceptible to damage than
caudal end plates because they are thinner and supported by
less dense trabecular bone.18 Likewise, damage often occurs
to the central end plate, the thinnest and weakest region.18,65

Accumulation of end plate damage can cause focal weak
points that progress to circumferential fissures.44,66,67 This
potential is exacerbated with age as the central region of the
bony end plate becomes more porous (�60%) and conse-
quently less stiff and weaker as the adjacent disks degener-
ate.12,19,68,69 These deleterious structural changesmay be the
result of adaptive remodeling to decreased disk proteoglycan
content and pressure.70,71 However, disk degeneration also
diverts a greater proportion of the compressive load to the
end plate periphery and vertebral rim,72,73 thereby reducing
tensile and shear strains in the central end plate.45,74

End plate disruptions upset the uniformity of disk stress
distributions.75,76 This, in turn, is thought to precipitate
alterations in disk structure and matrix composition that
typify disk degeneration because abnormal pressures can
inhibit disk cell metabolism and accelerate matrix degrada-
tion.77–80 End plate disruption may also impede nutrient
transport to the cells within the nucleus of the disk or incite
inflammatory responses in the disk or vertebra.50,81–84

Pathologic Degeneration

A theoretical requirement for discogenic pain is pathologic
innervation.85,86 In the normal disk, innervation is restricted
to the outer layers of the annulus.87 By contrast, vertebrae are
well innervated: the periosteum is the most densely inner-
vated bone component, but when the total tissue volume is
considered, the bonemarrow receives the greatest number of
sensory fibers.36,88 This extensive network of nerves may
modulate hemopoiesis and bone metabolism.89 Marrow

Fig. 4 Midsagittal T1-weighted (A) and T2-weighted (B) magnetic resonance (MR) images of an L1–L2 motion segment with poor end plate signal.
(C) Corresponding ultrashort time-to-echo (UTE) MR image showing enhanced end plate signal. Arrows indicate end plate defects shown
in ►Fig. 5A and 5B. (UTE imaging courtesy of Drs. Roland Krug and Misung Han, Department of Radiology, University of California, San Francisco.)
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sensory and sympatheticfibers are frequently associatedwith
blood vessels and consist of both fast myelinated fibers (group
III or A-delta fibers with diameters ranging from 1 to 5 μm)
that transmit sharp pain and slow unmyelinated fibers (group
IVor C-fibers with diameters ranging from of 0.5 to 2 μm) that
transmit dull or aching pain. Nearly all marrow pain fibers
express calcitonin gene-related peptide (CGRP) and coexpress
TrkA and p74 receptors that are sensitized by nerve growth
factor (NGF).90 These marrow fibers are the first to encounter
and presumably become excited by pathologic processes
occurring in the bone space. Consequently, patients can
experience bone pain from elevated interosseous pressures
even when the pathology is confined to the marrow,23 and
this pain can be ameliorated when bone innervation is
ablated, such as after vertebroplasty.91

Provocation diskography (PD) is considered bymanyas the
gold standard for diagnosing discogenic pain.92 The proce-
dure consists of injecting a contrast agent into disks of a
lightly sedated patient whilemonitoring the injected volume,
pressure, contrast distribution pattern, and patient’s pain
response.93 A positive test is based on pain intensity, concor-
dance (similarity to pain before the procedure), degree of
annular disruption, and presence of a negative adjacent
control disk.94 This test can reveal internal disk disruption
and also identify which disks are painful and may be appro-
priate for treatment. Although not without controversy re-
garding its usefulness and safety,95–97 PD results can be quite
accurate (specificity of 0.94 and a false-positive rate of 6%) if
performed using low-pressure technique.93

The theoretical basis for PD-provoked pain is mechanical
stimulation of chemically sensitized nociceptors.98 Sensitized
nociceptors within the outer annulus of the disk can be
stretched by nucleus pressurization if the annulus is weak-
ened byfissures. Nociceptors in the end platemaybe similarly
perturbed if the end plate is weakened by damage.99 For
example, the end plates can deflect comparably to the annu-
lus during diskography (0.3 mm versus 0.5 mm, respectively,
at 75 to 100 psi),99,100 and end plate deflection can increase in
the presence of bone microdamage.101 In support of this
concept are the observations that increased vertebral inter-
osseous pressures: (1) occur during PD as pressures are
transmitted to adjacent disks;102 (2) can cause pain;23,103

and (3) are elevated in chronic low back pain (CLBP) pa-
tients.104 Further, end plates removed from patients with
chronic back pain show proliferation of blood vessels and
CGRP-positive nerve fibers in the subchondral bone that
predominates in areas of end plate damage and are sensitive
to direct mechanical stimulation.37,105,106

Perhaps the best evidence for the role of end plates in CLBP
is the association between PD-confirmed discogenic pain and
vertebral bone marrow abnormalities. Three types of verte-
bral bonemarrow lesions (BML) noted onmagnetic resonance
imaging (MRI) were first described by Modic et al in 1988.107

Type I changes (fibrovascular replacement) show decreased
signal intensity on T1-weighted images and increased signal
intensity on T2-weighted images. Histopathology of type I
changes shows an active inflammatory stage that coincides
with disruption and fissuring of the end plate and vascular-
ized granulation tissue within the marrow. Type II changes
show increased signal intensity on T1-weighted images and
an iso- or slightly hyperintense signal onT2-weighted images.
Type II changes correlate with fatty marrow replacement.
Both types of Modic changes are dynamic in that type I
changes can convert to type II or back to normal marrow,
and similarly, type II can convert back to type I.108–110 Type III
changes are represented by decreased signal intensity on
both T1- and T2-weighted images that correlate with dense
woven bone (sclerosis).

Data from multiple independent studies suggest that
Modic type I and II changes adjacent to the end plate are
among themost specific of allMRI observations for predicting
concordant PD-induced pain (►Table 1). In one prospective
study, moderate to severe Modic type I or II end plate
abnormalities correlated 100% of the time with positive
concordant pain at the adjacent disk.116 Recently, increased
end plate innervation has also been reported for end plates
with Modic changes.117,118 However, the presence of Modic
changes are not very sensitive (15 to 65%) to PD-confirmed
disk pain.111–115 Poor sensitivity may reflect the categorical
and subjective techniques used to classify BML,119 rather than
ones that are quantitative and objective. It may also be that
innervated end plate damage is not well visualized using
standardMRI techniques, because the end platehas a short T2
that shows little signal with pulse sequences that have long

Table 1 Summary of incidence and diagnostic values of Modic changes for diskography-concordant CLBP

Study Subjects Age (y), range
(mean)

Modic incidence,
% (n)a

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV %

Braithwaite et al111 58 21–63 (42) 10.7 (31/290) 23.3 96.8 91.3 46.5

Ito et al112 39 21–57 (37) 8.9 (9/101) 21.7 94.9 55.5 80.4

Kokkonen et al113 36 20–58 (40) 37.9 (39/103) 40.5 63.6 42.9 61.4

O’Neill et al114 143 21–71 (43) 8.0 (37/460) 13.8 98.2 89.2 51.3

Thompson et al115 736 22–78 (43) 12.3 (302/2,457) 25.5 94.8 72.5 70.1

Weishaupt et al116 50 28–50 (42) 22.4 (26/116) 47.9 95.6 88.5 72.2

Abbreviations: CLBP, chronic low back pain; NPV, negative predictive value; PPV, positive predictive value.
aIncidence refers to the number of levels studied.
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echo times. Newer imaging sequences with ultrashort echo
times may therefore help discriminate between patients with
and without end plate pathologies (►Fig. 4).

The precise etiology of BML is not well understood, but it
appears to involve autoimmune and inflammatory responses
to chemicals produced by disk cells. Crock first proposed that
vertebral BML result from inflammatory constituents that
diffuse from the adjacent disks,120 because disk tissue can
trigger an autoimmune response due to secretion of proin-
flammatory and neurogenic factors such as interleukin-1, -6,
and -8; tumor necrosis factor-α, prostaglandin E2, monocyte
chemotactic protein-1, and NGF.121–125 These nucleus-de-
rived chemicals can both sensitize existing nerves and pro-
mote new nerve growth.126–128 Additionally, end plate
nerves can be irritated via accumulated by-products of disk
cell anaerobic metabolism, such as lactic acid.129

A predisposing factor for enhanced communication be-
tween the nucleus and vertebral marrow is end plate damage.
For example, end plate damage has been qualitatively related
to BML that contain pain fibers,105,117 and more directly, end
plate damage significantly increases diffusion between the
vertebra and nucleus.82,130 Not surprisingly, therefore, vari-
ous forms of end plate defects have been clinically associated
with disk degeneration and axial back pain.131–134 These
include Schmorl nodes, fractures, avulsions/erosions, and
calcifications (►Fig. 5). Small end plate defects are difficult
to observe radiographically,58,101 and they are thought to be a
common component of normal aging.135 Schmorl nodes are
large, focal end plate indentations that represent herniations
of nucleus into adjacent vertebrae and are significantly

associated with disk degeneration severity.136 Because it
can be challenging to distinguish between nodes that arise
prior to skeletal maturity (e.g., at sites of cartilage defects that
remain after notochord regression and growth plate closure)
and nodes that form traumatically secondary to age-related
subchondral weakening,137–140 the results from clinical stud-
ies relating Schmorl nodes to symptoms are mixed. For
example, Schmorl nodes are relatively common in asymp-
tomatic individuals.136,141However, in caseswhere the nodes
associate with CLBP, MRI shows evidence of BML and fibro-
vascular bone marrow changes,142,143 which suggests a trau-
matic etiology. A recent cadaveric study relating different
types of end plate defects to back pain history demonstrated a
clear dose effect: larger lesions were associated with more
severe degeneration and more frequent back pain (odds
ratio ¼ 17.88).144

The finding that certain types of end plate defects pre-
dominate at distinct levels and locations in the spine suggests
that end plate defects have unique etiologies (►Fig. 6). Node-
like defects are more common in the central end plates of the
upper lumbar and thoracolumbar spine,131 where trabecular
bone density is lower,145 end plates are less strong,146 and
subchondral softening is more severe.145,147 In contrast,
avulsions/erosions and calcifications are more common at
the vertebral rim in the lower lumbar spine,148–151where the
greater range of motion in flexion and extension could lead to
increased traction at the junction of the annulus and end
plate cartilage.152 Calcification and sclerosis at the vertebral
rim of the lower lumbar levels may be a consequence of
repeated compressive trauma.

Fig. 5 Various end plate defects with hypothesized etiologies. (A) End plate cartilage avulsion resulting from bending motion that causes traction
at the interface between the end plate and inner annulus. (B) Traumatic node with end plate fragment resulting from excessive compression with a
healthy, gel-like nucleus pulposus. (C) Central end plate fracture with exposed trabeculae resulting from excessive compression with a degenerate,
fibrous nucleus pulposus.
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End Plates and Disk Regeneration

There is growing interest in developing novel technologies to
repair or regenerate the degenerated intervertebral disk. These
approaches consist of increasing the signals for cell matrix
synthesis (gene or growth factor therapy) in attempts to rees-
tablishnuclear swelling.153Because thedisk is relativelyacellular
(typically 4,000 cells/mm3 in the nucleus),12 it may also be
critical to augment these approaches by introducing cells.

It is unclear whether endplate permeability and vascularity
in degenerated disks is sufficient to support increases in cell
density andmetabolism (because poor nutrition may have led
to the degeneration in thefirst place). These uncertaintiesmay
ultimately limit or prevent the successful extrapolation of disk
repair technologies from small animals to man. Importantly, if
it proves true that disk cell density and ultimately disk
degeneration are tightly coupled to end plate permeability,
then by definition, disk cellularity cannot be enhancedwithout
commensurate increases in end plate permeability and vascu-
larity (by yet undetermined methods). Similarly, efforts to
increase synthesis rates of existing cells (by gene or growth
factor therapy) may create excessive demands on a tenuous
nutrition supply and thereby promote cell death.

Summary and Future Directions

End plates play a central role in maintaining disk and verte-
bral health. Their structure and composition reflect a balance

between competing requirements for porosity and strength.
As a result, end plates are particularly vulnerable to damage.
End plate regions weakened by damage facilitate communi-
cation between the disk nucleus and vertebralmarrow,which
can cause an adverse combination of end plate nerve prolif-
eration plus chemical sensitization and mechanical
stimulation.

Unfortunately, current diagnostic tools do not depict sub-
tle endplate damage that associateswith neoinnervation, and
consequently, the clinical significance of end plate damage
maybe underappreciated. Therefore,more research is needed
to clarify the role of end plates in accelerated disk degenera-
tion and discogenic pain. Three areas are of particular impor-
tance. First,more data are needed to define the dependence of
disk cell function on the quality of end plate vascularity and
end plate permeability. This information will help establish
individual risk factors that associate with disk degeneration
severity. Second, disk/vertebra structural models with im-
proved fidelity of end plate architecture and composition are
needed to define mechanisms of increased end plate damage
risk. This information may guide development of new diag-
nostic tools that stratify injury risk. Third, the biological basis
for BML and end plate neoinnervation is unknown. Studies
are needed to identify the chemical factors and cellular
participants in the development of innervated, fibrovascular
bone marrow. Ultimately, strong links between clinical ob-
servations in back pain patients and scientific studies on disk

Fig. 6 Prevalence of end plate pathologies in different regions may arise from distinct biomechanical conditions. (A) In the lower lumbar spine,
the prevalence of end plate cartilage avulsions and erosions increases caudally,148–150 mirroring the increase in range of motion (combined
flexion/extension data are shown).152 (B) In the upper lumbar spine, Schmorl nodes increase cranially,131 mirroring the decrease in trabecular
bone mineral density145 and end plate strength.146
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cells and tissues are a necessity given the lack of validated
animal models of discogenic pain.
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