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In this study, we examined the independent contributions of structural and functional
connectivity markers to individual differences in episodic memory performance in
107 cognitively normal older adults from the BIOCARD study. Structural connectivity,
defined by the diffusion tensor imaging (DTI) measure of radial diffusivity (RD), was
obtained from two medial temporal lobe white matter tracts: the fornix and hippocampal
cingulum, while functional connectivity markers were derived from network-based
resting state functional magnetic resonance imaging (rsfMRI) of five large-scale brain
networks: the control, default, limbic, dorsal attention, and salience/ventral attention
networks. Hierarchical and stepwise linear regression methods were utilized to directly
compare the relative contributions of the connectivity modalities to individual variability
in a composite delayed episodic memory score, while also accounting for age, sex,
cerebrospinal fluid (CSF) biomarkers of amyloid and tau pathology (i.e., Aβ42/Aβ40 and
p-tau181), and gray matter volumes of the entorhinal cortex and hippocampus. Results
revealed that fornix RD, hippocampal cingulum RD, and salience network functional
connectivity were each significant independent predictors of memory performance,
while CSF markers and gray matter volumes were not. Moreover, in the stepwise
model, the addition of sex, fornix RD, hippocampal cingulum RD, and salience network
functional connectivity each significantly improved the overall predictive value of the
model. These findings demonstrate that both DTI and rsfMRI connectivity measures
uniquely contributed to the model and that the combination of structural and functional
connectivity markers best accounted for individual variability in episodic memory
function in cognitively normal older adults.

Keywords: multimodal neuroimaging, individual differences, diffusion tensor imaging, resting state functional
connectivity, episodic memory
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INTRODUCTION

Growing interest in using neuroimaging methods to map the
human connectome has led to advances in methods that allow
for in vivo examination of both structural and functional
connectivity throughout the brain. Structural (i.e., physical,
anatomical) connections are typically measured using diffusion-
weighted imaging (DWI), which allows for the visualization of
white matter pathways by quantifying water diffusion properties
in different types of brain tissue. Compared to ventricles and
gray matter regions, which have more unrestricted, or isotropic,
diffusion properties, white matter tracts (made up of myelinated
axons) typically have more restricted, or anisotropic, diffusion
due to the presence of myelin sheaths (Tournier et al., 2011;
Jones et al., 2013; Soares et al., 2013). Diffusion tensor imaging
(DTI) is a modeling technique used to index the direction and
degree of anisotropic diffusion throughout brain tissue in order
to characterize the microstructural properties of the underlying
white matter (Alexander et al., 2007, 2011; Jones et al., 2013;
Teipel et al., 2016).

By contrast, functional connections are typically measured
as co-occurring fluctuations in brain activation patterns across
different brain regions using resting state functional magnetic
resonance imaging (rsfMRI). This technique measures intrinsic
correlations between fluctuations in the fMRI blood oxygenation
level-dependent (BOLD) signal across disparate brain regions
while participants are at rest, in the absence of any cognitive
task (Biswal et al., 1995, 2010; Park and Friston, 2013; Teipel
et al., 2016). Regions exhibiting higher correlations are said
to be functionally connected. Since rsfMRI relies on temporal
dependencies in the BOLD signal and not underlying anatomical
connections, it is possible to have functionally connected regions
in the absence of direct structural connections (Honey et al.,
2009); however, it is generally agreed that structural and
functional connectivity are somewhat correlated (Honey et al.,
2009; Suárez et al., 2020).

A growing body of literature suggests that both structural
and functional connectivity tend to decline during normal aging
and across the Alzheimer’s disease (AD) spectrum (for reviews,
see Ferreira and Busatto, 2013; Contreras et al., 2015; Teipel
et al., 2016; Damoiseaux, 2017; Moody et al., 2021; Yu et al.,
2021). These age- and disease-related changes in structural and
functional connectivity have largely been investigated separately
for each respective modality. Only recently have studies begun
to utilize multimodal neuroimaging methods to simultaneously
examine both connectivity modalities. Moreover, only a few
studies have examined multimodal structural and functional
connectivity markers and their relation to cognition, particularly
episodic memory. In terms of global cognition, Palesi et al. (2016)
found that when combined functional and structural connectivity
graphs were generated using DTI measures as weights for the
functional connection metrics (i.e., edges), poorer cognition in
mild cognitive impairment (MCI) and AD dementia patients,
as measured by the Mini-Mental State Exam (MMSE), was
associated with reductions in functional network measures (e.g.,
global efficiency, local efficiency, and connectivity strength).
Similar results were obtained for memory performance, assessed

with logical memory and spatial ability, as measured by the
Rey-Osterrieth Complex Figure copy test. A recent study (Yu
et al., 2020) also found that combined structural and functional
features from connectomes both independently contributed
to the prediction of MMSE scores and a list learning task
(the Rey Auditory Verbal Learning Test, RAVLT) in MCI
patients. In older adults with normal cognition at baseline, a
longitudinal investigation using stepwise regression revealed that
both structural connectivity change in the cingulum and caudate-
cortical functional connectivity change uniquely contributed to
the explained variance in memory changes over time, indexed
by 5 minute delayed recall performance on the California
Verbal Learning Test (Fjell et al., 2016). Similarly, structural and
functional connectivity in parietal regions both independently
accounted for 12-year changes in memory scores from the Free
and Cued Selective Reminding Task in non-demented older
adults (Edde et al., 2020).

The dearth of multimodal neuroimaging studies examining
the relationship between the connectivity modalities and episodic
memory has left open questions about the potential interplay
between structural and functional connectivity in predicting
individual differences in memory function in older adults. The
present investigation sought to test whether examining the
relative contributions of structural and functional neuroimaging
connectivity measures together might improve the ability to
predict individual differences in episodic memory among older
adults. We utilized hierarchical and stepwise regression to
test whether each modality provided independent, meaningful
information in explaining the variance in memory performance.
Our regression models also included cerebrospinal fluid (CSF)
markers of amyloid (Aβ42/Aβ40) and phosphorylated tau (p-
tau181), along with hippocampal and entorhinal gray matter
volumes, which are recognized markers of AD-related pathology.
We predicted that both structural and functional connectivity
measures would uniquely contribute to individual variation
in episodic memory performance in cognitively normal older
adults, advocating for the utility of both connectivity modalities
as important markers of individual differences in memory
performance in older adults. In contrast, we predicted that the
examined AD biomarkers would not contribute to individual
differences in memory performance, based on our previous work
(Alm et al., 2020) that found CSF markers of Aβ42 and total tau
(t-tau), as well as medial temporal lobe gray matter volumes,
were not significantly associated with delayed episodic memory
performance in cognitively normal older adults. These measures
were included, however, to test whether memory performance is
better explained by the combination of structural and functional
connectivity measures, after accounting for these AD biomarkers.

MATERIALS AND METHODS

Study Design
Data in the current study were derived from a subset of
participants enrolled in the BIOCARD study, an ongoing
longitudinal prospective cohort study aimed at identifying early
biomarkers of AD. As previously described (Albert et al., 2014),
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the BIOCARD study began at the intramural program of the
Geriatric Psychiatry Branch of the National Institutes of Mental
Health (NIMH) in 1995. Participants completed comprehensive
neuropsychological and clinical assessments annually, including
a physical and neurological examination, record of medication
use, and behavioral and mood assessments. MRI scans, CSF
samples, and blood specimens were collected approximately
every 2 years. In 2005, the study was stopped for administrative
reasons, and in 2009, it was re-initiated when a research team
at Johns Hopkins University (JHU) re-established the cohort
and resumed annual assessments. Participants again began to
complete annual cognitive and clinical assessments. Biennial
collection of MRI (including diffusion-weighted imaging and
rsfMRI data), CSF, and amyloid PET data began in 2015.
Collection of tau PET imaging data was initiated in 2020.
The data included in the present investigation were acquired
beginning in 2015, with longitudinal data collection ongoing.

Participants
The original BIOCARD cohort was comprised of 349
participants, who enrolled in the study between 1995 and
2005. At baseline, all participants were judged to be cognitively
normal, as ascertained by cognitive testing, and free of any
significant medical problems [e.g., severe cardiovascular or
cerebrovascular disease (CVD), chronic psychiatric disorders,
or chronic neurologic disorders]. At the time of enrollment,
participants were primarily middle-aged (M = 57.3, SD = 10.4,
range = 20.0–85.8). By design, approximately 75% of the
cohort had a first degree relative with AD dementia. Additional
information regarding the BIOCARD cohort is detailed
elsewhere (Albert et al., 2014).

The current study sample included cognitively normal
participants with DTI, rsfMRI, CSF, and cognitive testing data
available from the same visit. This yielded a sample of 107
participants (60.7% female) with a mean age of 69.01 (SD = 8.53,
range = 34.43–89.08) and mean education of 17.50 years
(SD = 2.09, range = 12–20). Participant characteristics are shown
in Table 1.

These data were collected between January 2015 and January
2017 as part of the ongoing longitudinal assessments of the
larger BIOCARD cohort. All participants in the study sample
were judged to be cognitively normal based on consensus
diagnoses completed by the staff of the JHU BIOCARD Clinical

TABLE 1 | Participant characteristics.

Variable Participants (n = 107)

Age in years, mean (SD) 69.01 (8.53)

Sex, females (%) 60.70%

Education, mean years (SD) 17.50 (2.09)

MMSE score, mean (SD) 29.33 (0.92)

CVLT long delay free recall, mean (SD) 14.25 (2.08)

LM delayed recall, mean (SD) 17.27 (3.08)

MMSE, Mini-Mental State Examination; CVLT, California Verbal Learning Test;
LM, Logical Memory.

Core, which is comprised of neurologists, neuropsychologists,
research nurses, and research assistants. A syndromic diagnosis
was first established (i.e., normal, MCI, Impaired not MCI,
Dementia) based on three sources of information: (1) clinical
data concerning the medical, neurological, and psychiatric status
of the individual; (2) reports of changes in cognition by the
participant and their informants; and (3) evidence of decline
in cognitive performance based on review of longitudinal
neuropsychological assessments of multiple cognitive domains
with comparison to published norms. Participants were deemed
free of other medical conditions that could affect cognitive
function outside of the topic of study. In this study, the
diagnosis of Impaired not MCI typically reflected contrasting
results from the Clinical Dementia Rating (CDR) interview and
the cognitive test scores, with the participant and informant
expressing concerns about changes in cognition in daily life
but no observed impairments on objective neuropsychological
assessment or vice versa. Since participants with a diagnosis
of Impaired not MCI (n = 20) do not meet criteria for MCI,
they were included among the cognitively normal participants,
consistent with prior publications (see Albert et al., 2014 for
additional details). Finally, if a participant was determined to
be not cognitively normal, then an etiologic diagnosis was made
(e.g., AD, Frontotemporal Dementia, Lewy Body Dementia, etc.).
This diagnostic approach is consistent with the guidelines of the
National Institute on Aging – Alzheimer’s Association working
groups (Albert et al., 2011; McKhann et al., 2011) and comparable
to the approach employed at the National Institute on Aging
Alzheimer’s Disease Centers program. All diagnoses were made
without knowledge of the MRI or CSF biomarker measures.

Image Acquisition
Magnetic resonance imaging scans were collected on a 3T
Philips Achieva scanner (Eindhoven, Netherlands). Diffusion-
weighted images were acquired using a spin-echo sequence
(TR = 7454 ms, TE = 75 ms, FOV = 260 mm × 260 mm,
0.81 mm × 0.81 mm × 2.2 mm voxels, flip angle = 90◦,
b-value = 700, number of gradients = 33, 70 axial slices,
275 s scan duration). Resting state BOLD data were
acquired using a gradient-echo sequence (TR = 3000 ms,
TE = 30 ms, flip angle = 75◦, FOV = 212 mm × 212 mm,
3.3 mm × 3.3 mm × 3.3 mm voxels, 48 axial slices, 420 s scan
duration). T1-weighted structural images were also acquired
using a magnetization-prepared rapid gradient-echo (MPRAGE)
sequence for anatomical reference and image registration
(TR = 6.8 ms, TE = 3.1 ms, shot interval = 3000 ms, inversion
time = 843 ms, flip angle = 8◦, FOV = 256 mm × 256 mm,
1 mm × 1 mm × 1.2 mm voxels, 170 sagittal slices,
359 s scan duration).

Image Processing
Diffusion Imaging
Quality control and DTI reconstruction were performed using
MRICloud (Mori et al., 2016)1, which follows the pipeline of
DTIStudio (Jiang et al., 2006) for subject motion and eddy

1https://braingps.mricloud.org
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current correction, as well as tensor fitting. MRICloud offers
a fully automated multi-atlas image parcellation algorithm,
which combines the image transformation algorithm, Large
Deformation Diffeomorphic Metric Mapping (LDDMM;
Christensen et al., 1997; Miller et al., 1997; Grenander and Miller,
1998) based on complementary contrasts [mean diffusivity (MD),
fractional anisotropy (FA), and fiber orientation; Ceritoglu et al.,
2009], and a likelihood fusion algorithm for DTI multi-atlas
mapping and parcellation (Tang et al., 2014). The DTI multi-atlas
template set contains 12 healthy adult brains, and results in the
parcellation of 168 brain structures, from which vectors of DTI
scalar metrics (three eigenvalues) were extracted. Parcellations
for each participant were visually inspected to ensure that the
automated segmentation process yielded accurate delineations of
the structures of interest.

Building on our previous study (Alm et al., 2020), we chose
to focus our analyses on radial diffusivity (RD), as it was
the most sensitive DTI measure in accounting for individual
differences in episodic memory in our earlier findings. RD is
an average of the two minor eigenvalues, reflecting diffusion
perpendicular to the primary axis of diffusion. The absolute
diffusivities, including RD, may be more sensitive to specific
microstructural changes, compared to FA (Alexander et al., 2011).
We also sought to restrict our number of a priori comparisons
in order to minimize inflated false positive rates due to multiple
comparisons. Given our prior findings and other established
links between medial temporal lobe white matter tracts and
episodic memory function, the fornix (restricted to the body
and column due to resolution constraints) and hippocampal
cingulum were selected as the structural connectivity measures
of interest. Region of interest (ROI)-specific RD measures were
obtained by averaging the left and right hemisphere RD values
across all of the voxels within an ROI.

Resting State Functional Magnetic Resonance
Imaging
Standard preprocessing of the resting state BOLD data was
performed using SPM and in-house MATLAB scripts.
Preprocessing steps included slice timing correction,
realignment, normalization to MNI standard space, and
spatial smoothing using a Gaussian filter with a full-width half-
maximum of 4 mm (Hou et al., 2019). Data were detrended and
bandpass-filtered to 0.01–0.1 Hz in order to retain low-frequency
fluctuation components. Motion scrubbing was performed to
discard volumes with a displacement of 0.5 mm or greater
relative to the prior volume (Power et al., 2012, 2014). Volumes
immediately before and after the displaced volumes were also
discarded to account for temporal spread of artifactual signal
resulting from the temporal filtering in the low-frequency
functional signal (Chan et al., 2014).

Preprocessed images were then parcellated into 114 ROIs and
grouped into 7 large-scale resting state functional connectivity
networks based on the parcellation of Yeo et al. (2011).
The functional connectivity networks included 5 cognitive
networks: the executive control network, default mode network,
limbic network, dorsal attention network, and salience/ventral
attention network (henceforth referred to as the salience

network); and 2 sensory-motor networks: the visual network and
somatomotor network. The present study focused only on the 5
cognitive networks.

After regressing out nuisance covariates of whole brain
signal, white matter signal, CSF signal, and six rigid-body
motion parameters, cross-correlation coefficients were computed
between all pairs of ROIs. Fisher-z transformations were
performed in order to transform correlation coefficients into
z-scores, yielding a 114 × 114 pairwise connectivity matrix. To
calculate network-wise functional connectivity, the connectivity
matrix was reduced from 114 × 114 to 7 × 7 by averaging the
z-transformed correlations belonging to the same network.

Volumetric Magnetic Resonance Imaging
Gray matter volumes of interest included the volume of the
entorhinal cortex and hippocampus. These ROIs were derived
from the same MRICloud (see text footnote 1; Mori et al., 2016)
multi-atlas parcellation methods described above. ROI volumes
for the entorhinal cortex and hippocampus were measured by
summing the number of voxels within each ROI and were
averaged across hemispheres.

Cerebrospinal Fluid Assessments
CSF was collected via lumbar puncture during the same visit as
MRI acquisition. 20 ml CSF was collected in the morning between
8 and 10 am after an overnight fast into a 50 ml polypropylene
tube. After mixing and centrifugation at 2000 rpm for 15 min,
500 µl aliquots of CSF were frozen at −80◦C within 60 min
of collection. CSF Aβ42 (picograms/ml), Aβ40 (picograms/ml),
and p-tau181 (picograms/ml) were measured using the Lumipulse
G1200 assay (Fujirebio, Malvern, PA, United States). The ratio of
CSF Aβ42/Aβ40 and p-tau181 were used in the current analyses.
Assays were run in duplicate, and all samples were run in a single
batch. Intra-assay coefficient of variation for this assay was 3.4%
for Aβ42, 2.7% for Aβ40, and 1.8% for p-tau181. Three participants
did not have CSF values available for the visit corresponding to
their neuroimaging data and were therefore treated as missing
cases for the CSF variables in the regression analyses.

Delayed Episodic Memory Composite
Score
A delayed verbal episodic memory composite score was derived
from performance on tasks within the neuropsychological
battery administered during the same visit as MRI acquisition
and lumbar punctures. Specifically, z-scored performance was
computed for the California Verbal Learning Test (CVLT)
long delay free recall and the Wechsler Memory Scale Logical
Memory (LM) delayed recall measures. For each participant, the
z-scored measures were then averaged to yield a single delayed
memory composite score, as used in prior work in this cohort
(Alm et al., 2020).

Statistical Analyses
Statistical analyses were performed using SPSS (Version
27). Hierarchical linear regression was used to examine the
relative contributions of structural and functional connectivity
markers to individual differences in delayed episodic memory
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performance, above and beyond potential contributions of CSF
markers and gray matter volumes.

For the hierarchical regression model, the dependent variable
was the composite delayed episodic memory score, and
independent variables were added in blocks based on the different
categories of variables, with simultaneous variable entry for
each block. Step 1 included demographic variables of age and
sex (years of education was not included, because it was not
found to be a significant predictor of delayed episodic memory
performance in our prior work; Alm et al., 2020). In Step 2,
the ratio of CSF Aβ42/Aβ40 and p-tau181 were added as separate
independent variables. In Step 3, entorhinal and hippocampal
volume measures were added as separate independent variables.
In Step 4, DTI microstructural measures (i.e., mean RD values)
were added as separate independent variables for the fornix
and hippocampal cingulum. In Step 5, network functional
connectivity measures were added as separate independent
variables for each of the following networks: executive control,
default mode, limbic, dorsal attention, and salience network.

Based on the results of this analysis, a secondary analysis
was conducted using stepwise linear regression to assess which
measures entered on their own, rather than in blocks based
on the type of measure, best accounted for individual variation
in episodic memory. Stepwise regression also allowed us to
examine which combination of measures predicted the highest
proportion of explained variance in delayed memory. Unlike
hierarchical regression, in which a block of variables can be
entered simultaneously in a user-determined order, stepwise
regression utilizes a mathematically driven approach to order
of entry, whereby an algorithm determines which set of
variables maximizes the overall proportion of explained variance.
Independent variables were added one at a time to the model
and subsequently removed if they did not statistically improve
the overall model. Again, the dependent variable was composite
delayed episodic memory score. The independent variables
included were age, sex, Aβ42/Aβ40, p-tau181, entorhinal volume,
hippocampal volume, fornix RD, hippocampal cingulum RD, and
salience network resting state functional connectivity.

RESULTS

Hierarchical Linear Regression
In the hierarchical regression model, Step 1 included
demographic variables of age and sex, [R2 = 0.09, F(2,101) = 5.15,
p = 0.007] and revealed that sex was significantly associated
with composite delayed memory score, with females having
higher memory performance than males [β = 0.25, t(101) = 2.63,
p = 0.01; Table 2]. Age was not a significant independent
predictor of delayed memory performance [β = −0.17,
t(101) = −1.74, p = 0.09]. The addition of the CSF markers
in Step 2 did not yield a significant increase in the proportion
of explained variance [1R2 = 0.00, 1F(2,99) = 0.18, p = 0.84],
nor were Aβ42/Aβ40 or p-tau181 significant predictors of episodic
memory [β = 0.06, t(99) = 0.50, p = 0.62 and β = 0.001,
t(99) = 0.01, p = 0.99, respectively]. Sex remained a significant
predictor [β = 0.25, t(99) = 2.54, p = 0.01], but age was not

significantly associated with memory [β = −0.16, t(99) = −1.60,
p = 0.11]. Similarly, the addition of gray matter volumes in
Step 3 did not significantly improve the model [1R2 = 0.01,
1F(2,97) = 0.41, p = 0.66]. Age [β = −0.18, t(97) = −1.74,
p = 0.09], sex [β = 0.21, t(97) = 1.89, p = 0.06], entorhinal
volume [β = −0.05, t(97) = −0.46, p = 0.65], hippocampal
volume [β = −0.08, t(97) = −0.71, p = 0.48], Aβ42/Aβ40
[β = 0.05, t(97) = 0.42, p = 0.67], and p-tau181 [β = −0.01,
t(97) = −0.07, p = 0.94] were not significantly associated with
memory in this model.

By contrast, the addition of DTI microstructural measures
in Step 4 significantly increased the proportion of variance
explained in episodic memory performance [1R2 = 0.10,
1F(2,95) = 5.63, p = 0.005], and both fornix RD and hippocampal
cingulum RD were significantly associated with episodic memory
[β = −0.43, t(95) = −2.93, p = 0.004 and β = 0.31, t(95) = 2.76,
p = 0.007, respectively]. Specifically, lower fornix RD and higher
hippocampal cingulum RD were associated with better delayed
memory performance. Sex was a significant predictor [β = 0.23,
t(95) = 2.16, p = 0.03], but no other variables were significant
(p’s > 0.47). Finally, there was no significant change in the
proportion of explained variance after the addition of the resting
state functional connectivity measures in Step 5 [1R2 = 0.06,
1F(5,90) = 1.54, p = 0.19]. However, resting state functional
connectivity within the salience network was a significant
predictor of episodic memory [β = −0.28, t(90) = −2.36,
p = 0.02], such that lower resting state connectivity values were
associated with better delayed memory performance. Fornix RD
and hippocampal cingulum RD remained significant [β = −0.53,
t(90) = −3.41, p = 0.001 and β = 0.34, t(90) = 2.99, p = 0.004,
respectively], but none of the other resting state networks were
significantly associated with memory performance and no other
variables reached significance (p’s > 0.22; see Table 2). In order
to visualize the magnitude of each variable’s contribution to the
final regression model, standardized regression coefficients from
Step 5 are plotted in Figure 1.

Additionally, we computed partial correlations, controlling for
age and sex, to test for relationships between the 2 structural
and 5 functional connectivity measures. There was a significant
negative correlation between fornix RD and salience network
functional connectivity [r(103) = −0.34, p < 0.001], indicating
that decreased fornix RD was associated with increased salience
network connectivity. There were no significant correlations
between fornix RD and the other functional connectivity
networks (absolute r’s < 0.15, p’s > 0.12) or between hippocampal
cingulum RD and the functional connectivity networks (absolute
r’s < 0.13, p’s > 0.19).

Stepwise Linear Regression
To further explore the potential contributions of the salience
network to individual variation in memory performance, a
stepwise linear regression was conducted with the following
predictors: age, sex, Aβ42/Aβ40, p-tau181, entorhinal volume,
hippocampal volume, fornix RD, hippocampal cingulum RD,
and salience network resting state functional connectivity.
Results are presented in Table 3. Sex, fornix RD, hippocampal
cingulum RD, and salience network functional connectivity
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were selected as significant predictors in the final model.
Moreover, the addition of each one of the variables significantly
improved the model. In Step 1, sex emerged as a significant
predictor [R2 = 0.07, F(1,102) = 7.13, p = 0.01], followed by
significant increases in the proportion of explained variance
after the inclusion of fornix RD in Step 2 [1R2 = 0.04,
1F(1,101) = 4.83, p = 0.03], hippocampal cingulum RD in
Step 3 [1R2 = 0.07, 1F(1,100) = 9.11, p = 0.003], and
salience network functional connectivity in Step 4 [1R2 = 0.04,
1F(1,99) = 4.48, p = 0.04]. Therefore, while the strongest
model included all four variables [R2 = 0.22, F(4,99) = 6.89,
p < 0.001], each variable added unique predictive information to

the model to improve the ability to explain variability in delayed
episodic memory.

Partial regression plots from the final stepwise regression
model (Step 4) are displayed in Figure 2 depicting the
relationships between the structural and functional connectivity
measures with delayed memory. Memory performance was
negatively associated with fornix RD [β = −0.48, t(99) = −4.16,
p < 0.001] and salience network functional connectivity
[β = −0.21, t(99) = −2.12, p = 0.04], such that decreased fornix
RD and salience network connectivity were associated with better
memory performance. There was a positive association between
hippocampal cingulum RD and delayed memory [β = 0.35,

TABLE 2 | Hierarchical regression explaining variability in delayed episodic memory composite.

Delayed memory composite score Independent variables β t-value F 1F R2 1R2

Step 1 5.15** 0.09

Age –0.17 –1.74

Sex 0.25 2.63**

Step 2 2.62* 0.18 0.09 0.00

Age –0.16 –1.60

Sex 0.25 2.54**

Aβ42/Aβ40 0.06 0.50

P-tau181 0.001 0.01

Step 3 1.86 0.41 0.10 0.01

Age –0.18 –1.74

Sex 0.21 1.89†

Aβ42/Aβ40 0.05 0.42

P-tau181 –0.01 –0.07

Entorhinal volume –0.05 –0.46

Hippocampal volume –0.08 –0.71

Step 4 2.94** 5.63** 0.20 0.10

Age 0.02 0.17

Sex 0.23 2.16*

Aβ42/Aβ40 0.05 0.47

P-tau181 –0.05 –0.47

Entorhinal volume –0.08 –0.73

Hippocampal volume –0.06 –0.55

Fornix RD –0.43 –2.93**

Hippocampal cingulum RD 0.31 2.76**

Step 5 2.45** 1.54 0.26 0.06

Age 0.04 0.32

Sex 0.22 1.91†

Aβ42/Aβ40 0.08 0.66

P-tau181 –0.04 –0.30

Entorhinal volume –0.09 –0.84

Hippocampal volume –0.11 –0.93

Fornix RD –0.53 –3.41***

Hippocampal cingulum RD 0.34 2.99**

RS control 0.07 0.60

RS default 0.01 0.12

RS limbic 0.03 0.29

RS dorsal attention 0.13 1.23

RS salience –0.28 –2.36*

†p < 0.06; *p < 0.05; **p < 0.01; ***p < 0.001. RD, radial diffusivity; RS, resting state. Bolded values represent statistically significant findings.
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FIGURE 1 | Regression coefficient betas (absolute values) from the hierarchical linear regression plotted for variables of interest color coded based on entry into the
regression. Error bars are 95% confidence intervals. Demographic variables were entered in Step 1, CSF measures were entered in Step 2, gray matter volumes
were entered in Step 3, DTI measures were entered in Step 4, and functional connectivity measures were entered in Step 5. Fornix RD, hippocampal cingulum RD,
and salience network resting state connectivity were significant predictors of delayed episodic memory performance. *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 3 | Stepwise regression explaining variability in delayed episodic memory composite.

Delayed memory composite score Independent variables β t-value F 1F R2 1R2

Step 1 7.13** 0.07

Sex 0.26 2.67**

Step 2 6.12** 4.83* 0.11 0.04

Sex 0.23 2.48*

Fornix RD −0.21 −2.20*

Step 3 7.44*** 9.11** 0.18 0.07

Sex 0.26 2.84**

Fornix RD −0.38 −3.54***

Hippocampal cingulum RD 0.33 3.02**

Step 4 6.89*** 4.48* 0.22 0.04

Sex 0.26 2.91**

Fornix RD −0.48 −4.16***

Hippocampal cingulum RD 0.35 3.29***

RS salience −0.21 −2.12*

Variables entered into model: age, sex, Aβ42/Aβ40, p-tau181, entorhinal volume, hippocampal volume, fornix RD, hippocampal cingulum RD, salience network functional
connectivity. RD, radial diffusivity; RS, resting state. *p < 0.05; **p < 0.01; ***p < 0.001. Bolded values represent statistically significant findings.

t(99) = 3.29, p = 0.001], indicating that increased RD was related
to better memory performance.

DISCUSSION

This study demonstrated that both structural and functional
connectivity markers uniquely contributed to the explained
variance in episodic memory performance in cognitively normal

older adults. White matter microstructure in medial temporal
lobe tracts of the fornix and hippocampal cingulum, as well
as functional connectivity of the salience network were each
independently associated with delayed memory. Additionally,
a stepwise linear regression model found that the addition
of each of these variables significantly improved the model,
suggesting that the strongest model was one that included both
structural and functional connectivity measures. Taken together,
these findings indicate that a multimodal approach combining
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FIGURE 2 | Visualization of the fornix [restricted to the body and column due to resolution constraints], hippocampal cingulum, and salience network with
corresponding partial regression plots from the stepwise linear regression with standardized residuals depicting the relationships between the structural and
functional connectivity markers with delayed episodic memory performance. Shaded 95% confidence interval bands.

measures from both structural and functional connectivity
modalities best accounts for individual differences in episodic
memory among cognitively normal older adults.

These findings are in line with recent work demonstrating
that both structural and functional connectivity measures
independently contribute to explained variance in longitudinal
memory changes in non-demented older adults (Fjell et al.,
2016; Edde et al., 2020; Pur et al., 2022), as well as within
a cross-sectional sample of MCI patients (Yu et al., 2020).
These findings are also consistent with prior research suggesting
that a multimodal approach combining features from structural

and functional connectivity modalities is better than either
modality alone in discriminating AD dementia patients from
healthy controls (Schouten et al., 2016; but see Dyrba et al.,
2015 where combining modalities did not improve prediction)
and participants with subjective cognitive decline from healthy
controls (Yan et al., 2019; Chen et al., 2022).

In contrast, CSF Aβ42/Aβ40, CSF p-tau181, and gray matter
volumes of the entorhinal cortex and hippocampus were not
significantly associated with variability in delayed memory
performance in this cognitively normal sample. This was also
the case in our previous study on the relationship between
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episodic memory and various brain biomarkers (Alm et al.,
2020). CSF measurements reflect more global changes, while
the significant associations in the present investigation were
localized to particular regions or networks; therefore, it is possible
that the global CSF measures were not sensitive enough to
capture individual differences in memory performance, at least
among cognitively normal individuals. Other cross-sectional
studies have also reported no evidence of relationships between
verbal memory tasks and CSF AD biomarkers among cognitively
normal/non-demented participants (Schott et al., 2010; Li et al.,
2014; Bos et al., 2018; Seo et al., 2021). Similarly, while gray matter
volumes were localized to specific medial temporal lobe regions,
these are considered measures of macrostructure, and may
consequently be unable to detect subtle individual differences
when compared to microstructural alterations of particular white
matter tracts. It is possible that associations between memory
and gray matter volume may emerge in samples that include
participants with MCI or dementia, which are likely to exhibit
more variability in gray matter volume measures.

Functional connectivity within the executive control, default
mode, limbic, and dorsal attention resting state networks were
not associated with delayed memory performance. Only the
salience network demonstrated a significant association with
delayed episodic memory performance. The limited findings
within the resting state modality could be explained by previous
research suggesting that alterations in structural connectivity
seem to emerge earlier during aging than functional connectivity
changes (Wang et al., 2018; Filippi et al., 2020). For example,
Filippi et al. (2020) argued that the early changes in structural
connectivity may be the mechanism that propagates later changes
in large-scale functional connectivity networks. Therefore, in this
cognitively normal sample, alterations in structural connectivity
measures may appear stronger, and prior to, alterations in
functional connectivity measures. It should be noted, however,
that the opposite pattern of earlier changes in functional
connectivity compared to structural connectivity has also been
reported (Palesi et al., 2016; Chen et al., 2022), warranting further
research to clarify the temporal time course of these connectivity
changes. Similarly, when differentiating AD dementia patients
from healthy controls, Schouten et al. (2016) found that stepwise
classification was most improved by the addition of DTI features,
and marginally improved when functional connectivity was
further added. This parallels our stepwise regression findings, in
which DTI measures of the fornix and hippocampal cingulum
showed the largest improvement in our model. However, the
results of this study do not provide a rationale for the salience
network emerging as the sole significant predictor among the
functional connectivity networks examined. It is possible that
alterations in salience network connectivity occur earlier than in
other networks, but this has not been previously reported, and
future studies are needed to explore this possibility.

It has also been suggested that stronger coupling (i.e.,
correlation) between the structural and functional connectivity
modalities may be maladaptive or represent pathological
aging processes. For example, increased coupling between the
modalities has been shown throughout progression along the AD
spectrum (Palesi et al., 2016; Wang et al., 2018; Dai et al., 2019;

Cao et al., 2020). Additionally, increased coupling has also been
shown to be negatively correlated with memory performance
(Wang et al., 2018; Edde et al., 2020), implying an adverse impact
of strengthened structural and functional connectivity coupling
on memory function. It is therefore possible that the relative
lack of functional connectivity findings in this study could
reflect a lack of structural-functional coupling within the ROIs
examined here, among cognitively normal individuals, and that
more pronounced functional connectivity effects could emerge
over time. It is not possible to test this in a cross-sectional study,
warranting future longitudinal investigations.

Interestingly, a significant negative correlation between fornix
RD and salience network functional connectivity was observed
after controlling for age and sex, but no correlations were found
with the other functional networks. Past results in cognitively
normal/non-demented samples have been inconsistent with
respect to the direction of structural – functional connectivity
relationships. Some studies have found positive correlations
between the modalities in older adults, suggesting that higher
white matter integrity is associated with higher functional
connectivity (Andrews-Hanna et al., 2007; Chen et al., 2009;
Teipel et al., 2010; Davis et al., 2012), while others have shown
negative correlations, such that lower white matter integrity was
associated with higher functional connectivity (Fling et al., 2012;
Marstaller et al., 2015; Fjell et al., 2016; Yang et al., 2016). Still
others have found no correlation (Hirsiger et al., 2016; Tsang
et al., 2017), making it difficult to discern the relationship between
these connectivity modalities. Some of these discrepancies could
be related to differences in networks and white matter tracts
examined across studies; future studies are needed to examine the
impact of changes in coupling on cognitive and clinical outcomes.
The fornix – salience network correlation, taken together with the
significant effect of the salience network in our regression models,
may suggest that the salience network is a key early functional
connectivity marker to be further tracked during aging.

Elevated RD is often attributed to myelin loss (Alexander
et al., 2011; Beaulieu, 2011; Tournier et al., 2011; Jones et al.,
2013); therefore, a positive relationship between hippocampal
cingulum RD and memory performance was not expected, nor
was a negative relationship between salience network functional
connectivity and memory performance. Nonetheless, the positive
hippocampal cingulum – memory relationship was seen in our
previous study in this cohort (for a longer discussion on the
direction of this effect, see Alm et al., 2020), and two recent
studies also reported negative correlations between functional
connectivity and memory in non-demented older adults (Edde
et al., 2020), as well as subjective cognitive decline and MCI
patients (Xue et al., 2021). While it is true that RD generally
increases (Lebel et al., 2012; Madden et al., 2012; Chen et al., 2013;
Fjell et al., 2017; Ouyang et al., 2021) and functional connectivity
generally decreases with age (Fjell et al., 2015, 2017; Sala-Llonch
et al., 2015; Damoiseaux, 2017; Tsang et al., 2017), it is important
to note that there are many exceptions to this general pattern (for
reviews, see Ferreira and Busatto, 2013; Antonenko and Flöel,
2014). There have also been reports of increases and decreases
in structural and functional connectivity in older adults within
a single study, depending on the ROI/network (Madden et al.,
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2012; Tomasi and Volkow, 2012; Song et al., 2014; Ouyang
et al., 2021; Xue et al., 2021; Pur et al., 2022) and whether
within or between network connectivity is considered (Betzel
et al., 2014; Song et al., 2014; Damoiseaux, 2017). In fact, Xue
et al. (2021) found that specifically in the salience network, the
direction of the functional connectivity – memory relationship
in subjective cognitive decline and MCI patients depended on
which salience network nodes were examined. Right anterior
insula – left middle temporal gyrus functional connectivity was
positively associated with memory, while right anterior insula –
right superior temporal gyrus and right anterior insula – right
hippocampus functional connectivity were negatively associated
with memory. Thus, it is an oversimplification to assume that
lower RD and higher functional connectivity should always be
considered better, and therefore associated with higher memory
scores. The underlying mechanisms are more complex, and the
relationships with aging and cognition likely depend on a number
of factors, such as the shape and length of connections and the
specific ROIs.

Several limitations should be considered in the present
investigation. First, this study was cross-sectional in nature.
Since longitudinal neuroimaging data collection is underway
for the BIOCARD study, future analyses will enable tracking
of changes in structural and functional connectivity over time,
as well as the examination of how connectivity changes may
relate to longitudinal decline in memory performance. It should
also be noted that the generalizability of these findings may
be limited by BIOCARD cohort characteristics, including that
participants were primarily white and highly educated. One
technical limitation of diffusion imaging is that ROI-based
analyses of small white matter tracts, such as the fornix, are
particularly prone to signal contamination due to partial volume
effects that can arise in regions within close proximity to CSF
(Vos et al., 2011; Metzler-Baddeley et al., 2012). However, it is
known that volume reductions due to atrophy exacerbate partial
volume effects, creating a concern mostly in study samples with
known atrophy, such as MCI or AD dementia patients (Oishi and
Lyketsos, 2014). Future studies should take advantage of recent
methodological advancements in diffusion imaging, including
multi-shell acquisition and higher b-values, to further mitigate
partial volume effects. Finally, the structural and functional
connectivity measures used in this study are qualitatively
different, complicating direct comparisons between the two
modalities. Madden et al. (2020) argue that these differences
in measurement properties may contribute to inconsistencies
in past findings and suggest that graph theory measures may
provide an approach to bring the different modalities into the
same measurement framework.

CONCLUSION

The current findings highlight the importance of multimodal
approaches when considering neuroimaging-related markers of
individual differences in episodic memory function among older
adults. In this study, both structural and functional connectivity
modalities uniquely contributed to explained variance in episodic

memory performance within cognitively normal older adults.
Furthermore, the combination of structural and functional
connectivity markers best accounted for individual variability
in episodic memory, suggesting meaningful information was
gained by examining both connectivity modalities. Future studies
will benefit from adopting a multimodal approach targeting
these connectivity measures as critical markers of potential brain
changes that may precede subsequent cognitive decline and
pathological aging.
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