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Abstract

Synapses are dynamic molecular assemblies whose sizes fluctuate significantly over time-

scales of hours and days. In the current study, we examined the possibility that the sponta-

neous microscopic dynamics exhibited by synaptic molecules can explain the macroscopic

size fluctuations of individual synapses and the statistical properties of synaptic populations.

We present a mesoscopic model, which ties the two levels. Its basic premise is that synaptic

size fluctuations reflect cooperative assimilation and removal of molecules at a patch of

postsynaptic membrane. The introduction of cooperativity to both assimilation and removal

in a stochastic biophysical model of these processes, gives rise to features qualitatively sim-

ilar to those measured experimentally: nanoclusters of synaptic scaffolds, fluctuations in

synaptic sizes, skewed, stable size distributions and their scaling in response to perturba-

tions. Our model thus points to the potentially fundamental role of cooperativity in dictating

synaptic remodeling dynamics and offers a conceptual understanding of these dynamics in

terms of central microscopic features and processes.

Author summary

Neurons communicate through specialized sites of cell–cell contact known as synapses.

This vast set of connections is believed to be crucial for sensory processing, motor func-

tion, learning and memory. Experimental data from recent years suggest that synapses are

not static structures, but rather dynamic assemblies of molecules that move in, out and

between nearby synapses, with these dynamics driving changes in synaptic properties

over time. Thus, in addition to changes directed by activity or other physiological signals,

synapses also exhibit spontaneous changes that have particular dynamical and statistical

signatures. Given the immense complexity of synapses at the molecular scale, how can

one hope to understand the principles that govern these spontaneous changes and statisti-

cal signatures? Here we offer a mesoscopic modelling approach—situated between

detailed microscopic and abstract macroscopic approaches—to advance this understand-

ing. Our model, based on simplified biophysical assumptions, shows that spontaneous

cooperative binding and unbinding of proteins at synaptic sites can give rise to dynamic

and statistical signatures similar to those measured in experiments. Importantly, we find
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cooperativity to be indispensable in this regard. Our model thus offers a conceptual

understanding of synaptic dynamics and statistical features in terms of a fundamental bio-

logical principle, namely cooperativity.

Introduction

Chemical synapses are sites of cell–cell contact specialized for the rapid transmission of signals

between neurons and their targets—muscles, glands or other neurons. The vast majority of

synapses in mammals are found in the central nervous system (CNS) where they typically con-

nect the axon of one neuron to the dendrite or soma of another neuron. Structurally, axonal

presynaptic compartments are characterized by clusters of synaptic vesicles facing specialized

regions of the presynaptic membrane, known as active zones (AZs) [1]; these, in turn, are jux-

taposed against electron-dense thickenings of the postsynaptic membrane known as postsyn-

aptic densities (PSD; [2,3]).

The molecular composition of AZs and PSDs is now known in great detail; furthermore,

much is now known on the synaptic molecules themselves and on their interactions with other

synaptic proteins and membranes. In parallel, recent experiments have provided information

on the dynamics of synaptic molecules; these experiments have led to the realization that AZs

and PSDs are not static structures but dynamic assemblies of molecules that move in, out and

between synapses over time scales of seconds to many hours [4,5]. Such extensive spontaneous

dynamics would seem to question the ability of individual AZs, PSDs and synapses in general

to maintain their specific sizes (e.g. areas of PSDs and AZs, volumes of spines and presynaptic

boutons) and functional properties over behaviorally relevant time scales. Indeed, live imaging

studies consistently reveal that instantaneous molecular contents of individual synapses, and

by extension, their functional properties, change continuously in manners that are only par-

tially activity dependent (e.g.[4–14,16–20,23–25,27]).

The dynamics of synaptic molecules and synaptic properties motivated the formulation of

abstract models aiming to describe the properties of individual synapses and synaptic popula-

tions [11,14,15,18,19,21–24,26,28,29]. Many of these models were based on low dimensional

statistical processes in which each synapse was represented by a single probabilistic variable

(e.g. synaptic size; Fig 1A), with causal or deterministic relations emerging at the population

level. Somewhat surprisingly, these descriptive models faithfully capture major aspects of syn-

aptic features: the random-like changes in synaptic sizes along time; the stability and skewed

shape of synaptic size distributions; the scaling of such distributions in response to changes in

network activity as well as other perturbations, and, at the extremes, the dynamics of synapse

formation and elimination [14,15,18,19,23,24].

While these descriptive models are quite successful in reproducing many of the aforemen-

tioned features, they provide little insight on the principles by which such macroscopic fea-

tures might emerge from microscopic molecular dynamics within synapses. Conceivably, such

insights might be obtained by constructing highly detailed dynamical models, which include

all known synaptic molecules, their quantities, their interactions, and the kinetics of all such

interactions (Fig 1C). At present, however, in spite of extensive protein-protein interaction

databases (e.g. [30]), such models are still not feasible, mainly due to the paucity of data con-

cerning binding affinities and kinetics. More importantly, however, even if such high dimen-

sional, realistic models were feasible, it remains unclear if they are capable of providing

intelligible insights on the principles by which microscopic molecular dynamics give rise to the

macroscopic phenomena mentioned above [31].

Cooperativity and synaptic size dynamics
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Fig 1. Modeling levels for studying synaptic dynamics. (A) Macroscopic level. Here each synapse is

characterized by a single variable (S, its momentary size), which changes its value over time according to

some statistical process. (B). Mesoscopic level. A small number of central features are considered, in this

case the presence of a spatially localized patch of synaptic membrane, synaptic scaffold molecules that

continuously bind and unbind to this patch, and the tendency of synaptic molecules to interact among

themselves. (C) Microscopic level. Here, an attempt is made to model the synapse in great detail, considering

the numbers, kinetics and specific interactions of large numbers of synaptic molecules. (Source: http://

bioinformatics.charite.de/synsys/; Pathway:Glutamatergic synapse).

https://doi.org/10.1371/journal.pcbi.1005668.g001
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In the current study, we describe a mesoscopic level exploration that aims to address the fol-

lowing question: Can the spontaneous dynamics exhibited by synaptic molecules give rise to

the key features of individual synapses and synaptic populations described above? If so, what

are the essential aspects of these dynamics that are necessary for such features to emerge?

Mesoscopic level models can be valuable in this respect as they may reveal conceptually tracta-

ble principles which would be difficult to glean from highly detailed microscopic models or

macroscopic descriptive models [31]. To construct a mesoscopic model, we distilled from the

myriad features of synapses and synaptic molecules a small number of key attributes common

to practically all synapses, namely a spatially localized patch of membrane, molecules that con-

tinuously bind and unbind to this patch, and the strong tendency of such molecules to interact

among themselves (Fig 1B). We then use these components to formulate several mesoscopic

models of increasing complexity and test their ability to recapitulate major features of synaptic

size dynamics, distributions and organization. We show that these macroscopic features

emerge naturally from a simple biophysical process based on stochastic binding and unbinding

of proteins to spatially confined patches of membrane and to each other, as long as both bind-

ing and unbinding have significant cooperative components.

Results

Rationale and approach

The emerging view of the synapse as a dynamic molecular assembly implies that at any given

moment its size, composition, microscopic organization and ultimately its function, reflect the

outcome of myriad processes in which synaptic molecules are assimilated or removed. This

applies not only to relatively mobile constituents such as neurotransmitter receptors [5] and

synaptic vesicles [7,25, 32,33], but also to synaptic building blocks known as scaffolding mole-

cules. These molecules are generally believed to confer a degree of stability to the sizes and

function of synaptic assemblies [4,34]; Moreover, pre- and postsynaptic scaffold molecule con-

tents strongly correlate with functionally important measures of synaptic size, namely AZ and

PSD area, respectively (e.g.; [6,16,35–38]). Both PSD molecule content (e.g. [35]) and PSD area

(e.g. [36,39]) strongly correlate with dendritic spine volume, which has been repeatedly shown

to correlate positively with synaptic strength (e.g. [40–44]); reviewed in [45,46]). Intriguingly,

when scaffold molecule contents are followed at individual synapses over time (hours, days)

they are found to change considerably (e.g. [6–9,13,16–19,23,25,27]), reflecting in all likeli-

hood, fluctuations in synaptic sizes (e.g. PSD areas, spine volumes) and strengths.

Experimental studies (e.g. [14,18,19,23]) have given rise to several key observations regard-

ing these fluctuations and their consequences. The first is the observation that whereas sizes of

individual synapses fluctuate significantly in time (Fig 2A and 2B), distributions of synaptic

sizes in a network are very stable over time (Fig 2D). The second is that these fluctuations are

state dependent, namely they depend on the momentary size of the synapse: small synapses

tend to grow larger and large synapses to become smaller (Fig 2C), thus supporting the stable

population distribution. The third is the observation that these stable size distributions are

non-Gaussian and rightward skewed (Fig 2D). Fourth, perturbations of network activity can

modify synaptic size distributions while preserving distribution shapes, resulting in the col-

lapse of the different distributions one onto each other when plotted in scaled units (Fig 2E)

[18,23,47–50]. Finally, very recent studies based on super-resolution imaging techniques

have revealed that PSDs and AZs consist of multiple nanodomains which seem to be dynamic

and short lived [51–57].

Can this set of observations be effectively explained by a minimal biophysical model, which

views the synapse as the net product of continuous, spontaneous assimilation and removal of

Cooperativity and synaptic size dynamics
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Fig 2. Experimentally measured synaptic size dynamics and statistical properties. (A) A portion of the

dendritic tree of a rat cortical neuron grown in culture expressing PSD-95 (a major scaffold protein of the

postsynaptic densities of glutamatergic synapses) tagged with green fluorescent protein (GFP). The right

hand panels show images at 4-hour intervals of a dendritic segment enclosed in the rectangle on the left. The

images are maximum intensity projections of 9 sections. Note that in such experiments, measurements were

obtained only from dendritic spines that remained well defined and persisted throughout the analysis period.

Bars: 10μm (left), 5μm (right). (B) 24 hour long traces of fluorescence intensities measured from 10 synapses

in rat cortical neurons expressing GFP-tagged PSD-95 (PSD95:EGFP). Data is shown after smoothing with a

5 time point window to decrease the effects of measurement noise and after normalizing to average synapse

fluorescence of each cell. (C) Changes in the fluorescence of individual synapses as a function of their initial

fluorescence. Each dot represents one synapse. ΔF represents the change in fluorescence after 24 hours.

Data were normalized as in B. Solid line is a linear regression fit; 1087 synapses from 10 neurons in 5

separate experiments. (D) Probability density function (PDF) of PSD-95:EGFP fluorescence values at 10 hour

intervals. Inset: same data on semi-logarithmic axes. (E) Scaling of synaptic size distributions following the

suppression of spontaneous activity. Plots are cumulative distributions of synaptic sizes belonging to a single

neuron, before (blue), and 24 hours after (red) pharmacologically suppressing network activity. Inset: Same

distributions after scaling. Original images and data plotted in panels A and B were taken from experiments

described in [96]; Panels C-E taken from [23].

https://doi.org/10.1371/journal.pcbi.1005668.g002
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their molecular constituents? Below we test this possibility by examining and progressing

through a set of biophysical models that differ in the modes of assimilation and removal and,

in particular, in the level of cooperativity exhibited by these processes. The feasibility of each

model is then assessed by testing the degree to which its outcomes reproduce the experimental

observations described above.

Our general framework employs a biophysical model in which synaptic size dynamics stem

from binding and unbinding of scaffold proteins to a patch of postsynaptic membrane (Fig

1B). The modeling platform is based on a representation of the postsynaptic membrane as a

matrix composed of M potential binding sites for synaptic scaffold molecules. Synaptic size at

any given time is then estimated as the number of occupied sites, that is, the number of scaffold

molecules bound to the matrix. Scaffold molecule binding and unbinding are in principle sto-

chastic events characterized by probabilities per unit time. Consequently, the number of mole-

cules binding to the matrix per unit time depends on the binding probability and on the

number of vacant sites. Similarly, the number of molecules dissociating per unit time depends

on the unbinding probability per unit time and on the number of bound molecules (= occu-

pied sites). In this stochastic description, the binding and unbinding of proteins result in tem-

poral fluctuations in synaptic size, i.e. in the number of molecules bound to the matrix. An

ensemble of synapses is represented by multiple realizations of this stochastic process, and

thus a distribution of synaptic sizes emerges across a population of synapses modeled in this

fashion.

In the continuum approximation, where fluctuations are neglected, binding and unbinding

are described by rate equations. On average, the change in synaptic size is then the outcome of

the net effect of these two processes, and average synaptic size S follows the continuous equa-

tion:

dS
dt
¼ konðM � SÞ � koff S ð1Þ

where kon and koff are the rate coefficients, the continuous analogs of the binding and unbind-

ing probabilities per unit time, respectively. In general, the binding and unbinding rates are

not necessarily constant, and may depend on interactions between the binding molecules; we

consider below several cases of such interactions. In what follows, we use the continuous equa-

tion to represent the interactions in a compact way and to identify steady states at the level of

synaptic populations. However, as we were primarily interested in studying fluctuations and

their effects, the results below were mainly derived from discrete numerical simulations based

on the stochastic analog of Eq (1). In such simulations, matrices with dimensions of 50x50

were used, with these dimensions loosely derived from measurements of average PSD diame-

ter (360-400nm) and the granularity imposed by widths of canonical PSD molecules and gluta-

mate receptors (5-20nm) [3,58–60]. Monte Carlo simulations were used to determine the

occurrence of binding and unbinding events, using a random number generator and the prob-

ability per unit time of the relevant event and the current state of binding sites in the matrix

(further details are given in the Methods section). Whenever possible, numerical simulation

results were compared to continuum approximations, or to the master equation and its solu-

tions (for a review on the relation between continuum and stochastic descriptions, see [61]).

The Langmuir model: Independent binding and unbinding

In the simplest model of binding and unbinding, the rate coefficients kon and koff in Eq (1) are

constant in space and time: kon = α, koff = β. In terms of individual molecular events, this

implies that scaffold proteins bind to and unbind from the matrix independently from each
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other and that there are no interactions between molecules (Fig 3A). This model is known in

physical chemistry as the Langmuir adsorption model and is used to describe the kinetics of

gas adsorption and desorption on a solid surface where interactions between molecules are

negligible [62].

Stochastic simulations of the Langmuir model show that the distribution of synaptic sizes

in a population is symmetric and well approximated by a normal (Gaussian) distribution (Fig

3B). This is expected in light of the Central Limit Theorem, which states that the sum of a large

number of independent, identically distributed random variables is approximately normally

distributed, regardless of underlying variables. Since site occupancies are independent random

variables, and since synaptic size is a sum of thousands of such variables (2,500 in the simula-

tion), its distribution will be indistinguishable from a normal distribution. These simulation

results are corroborated by direct solutions of the master equation in the Fokker-Planck

approximation (S1 Appendix, Section 2.2).

As mentioned above, one hallmark of synaptic populations is the broad and highly skewed

distribution of their sizes (e.g. Fig 2D). This observation rules out a model of independent

binding and unbinding of scaffold molecules at the synaptic site, not a surprising conclusion

Fig 3. Synaptic size distributions for the Langmuir model. (A) Illustration of independent binding and

unbinding from the matrix. (B) Synaptic size distributions (semi-logarithmic scale) obtained from the Langmuir

model for three values of kon, with koff set to 0.5. Parabolic shape of the curves corresponds to Gaussian-like

distributions. Simulated data for 3,500 synapses. See Methods for the rest of the simulation parameters used

here.

https://doi.org/10.1371/journal.pcbi.1005668.g003
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in light of the multitude of interactions among synaptic proteins. This being so, we next exam-

ined whether molecular interdependency might defeat the Central Limit Theorem and give

rise to the skewed distributions observed experimentally.

Cooperative models

Cooperativity is a key organizing principle in biology that represents a fundamental mecha-

nism for accomplishing molecular interdependencies [63–69]. We here define cooperativity as

the dependence of the binding affinity of one molecule on the state of the matrix in terms of

other molecules already bound to it. In its most simple form, cooperativity could stem from

the fact that many (if not all) synaptic molecules have multiple interaction sites through which

they are capable of interacting simultaneously with other synaptic molecules; consequently,

the presence of other molecules already bound to the matrix may increase the probability of an

unbound scaffold molecule to bind as well. Conversely, their presence would be expected to

reduce the probability of dissociating from the matrix due to a multiplicity of interactions with

neighboring molecules. To examine whether this or other forms of cooperativity can give rise

to the experimentally observed synaptic size dynamics and statistical features, we introduce

unidirectional and then bidirectional cooperativity into the model as described next.

The Contact Process: Cooperative binding, independent unbinding

A well-studied model of cooperative binding, which appears to extend the Langmuir model

only slightly, is the Contact Process [70,71]. In this model, binding proceeds with a probability

that increases with the number of occupied neighboring sites such that

kon ¼ lonw ð2Þ

Here λon is a constant that indicates cooperative binding strength (maximal value of kon)

and 0<χ<1 is the fraction of occupied nearest neighbors (with the definition of nearest neigh-

bors depending on matrix geometry as illustrated in Fig 4A). Specifically this implies that the

probability of a molecule to bind the matrix at a given site increases if that site has neighboring

sites that are already occupied. In contrast to binding, unbinding in the Contact Process is not

cooperative and occurs independently from occupancy, consequently, koff = β. The introduc-

tion of cooperative binding changes the behavior of the model dramatically, and results in a

transition between two qualitatively different phases. In the supercritical phase, (λon/β is larger

than a threshold critical value), the system approaches a stationary state. The resulting distri-

bution of synaptic sizes in this phase still converges to a normal distribution (See S1 Appendix,

S4 Fig). In the subcritical phase (λon/β is below this threshold), all realizations fall into an

absorbing state in which all sites are vacant. A similar model was previously used to address

the question of how synapses persist even though their molecular constituents continuously

enter and leave the synaptic assembly [22]. It was found that this model extends the expected

lifespan of the synaptic assembly relative to the timescales of single molecule binding and

unbinding; yet, as expected, assembly sizes ultimately collapse to zero.

To drive the system away from this absorbing state, that is, to obtain steady states at which

assemblies have non-zero sizes, an additive constant term α can be incorporated into the bind-

ing rate, such that

kon ¼ lonwþ a ð3Þ

Biophysically, α represents low affinity binding to unoccupied matrix sites (Fig 4A), serv-

ing, at the extreme, to seed synapse formation on an empty matrix. The additive component α
thwarts the collapse into the absorbing empty state, resulting in stable limiting distributions.

Cooperativity and synaptic size dynamics
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Fig 4. Synaptic size distributions in the Contact Process model. (A) Illustration of the Contact Process:

Binding is cooperative with a rate that increases with the fraction of occupied neighboring sites (representing

interactions with nearby bound molecules) whereas the unbinding rate is a constant, β, insensitive to the

numbers of occupied neighboring sites. Binding is also affected by a small, constant and non-cooperative

component (α) representing weak, non-specific binding to the matrix. (B) Synaptic size distributions for

different λon/β ratios. All distributions were determined numerically through simulations (3500 synapses, 1500

time steps; see Methods for further details). Note the semi-logarithmic scale. (C) Same distributions as in (B)

after scaling by subtracting the mean and dividing by the standard deviation. See Methods for the rest of the

simulation parameters used here.

https://doi.org/10.1371/journal.pcbi.1005668.g004
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Unfortunately, as the stochastic simulations show, when α is large and dominant, limiting dis-

tributions of synaptic sizes become approximately Gaussian; this might be expected, as a major

contribution comes from independent binding. Conversely, if α is relatively small, slightly

skewed distributions can be found, but only for small values of λon/β (Fig 4B and 4C). How-

ever, in this case, the mean synaptic size is very close to zero (Fig 4B).

Although mean synaptic size in our simulations has no particular biological meaning, the

very low occupancy fraction found at steady states obtained by adding α to the Contact Pro-

cess, would seem to imply very sparse occupancy of the postsynaptic membrane. This does not

agree with what is known from quantitative ultrastructural studies [58–60] reviewed in [3] as

well as others [51–57]. Furthermore, distribution skewness in this case is essentially the result

of proximity to the lower limit on synaptic size, S = 0.

Collectively these findings indicate that unidirectional cooperativity in the form of the Con-

tact Process, even with the addition of spontaneous binding to the matrix (α), fails to robustly

account for the experimental observations described above, due to the inevitable tradeoff

between distribution skewness and mean size.

Bidirectional cooperativity model: Cooperative binding and unbinding

The inadequacy of unidirectional cooperative binding to capture the statistical features of syn-

aptic populations led us to examine bidirectional cooperativity. In fact, although the Contact

Process has been studied extensively, from a biophysical standpoint it is highly unlikely that

binding is cooperative while unbinding is not.

In the bidirectional cooperativity model, the number of occupied neighboring sites modu-

lates both binding and unbinding probabilities (Fig 5A). As the occupancy of neighboring sites

increases, the probability of binding increases and the probability of unbinding decreases.

Thus, the binding rate coefficient kon and the unbinding rate coefficient koff are expressed as

follows:

kon ¼ lonwþ a and koff ¼ loff ð1 � wÞ ð4Þ

where χ is the fraction of occupied neighboring sites as before, and λoff is the constant for

cooperative unbinding (the maximal value of koff).
Stochastic simulations of the bidirectional cooperativity model reveal that, in contrast to

the models described above, skewed synaptic size distributions can be obtained which are

remarkably similar to those observed in experimental measurements (compare Fig 5B and 5C

with Fig 2D). For a given parameter set, these model distributions are stable over time (Fig

5B). Moreover, synaptic size distributions in the model exhibit scaling similar to that observed

experimentally (Fig 2E): Increasing the cooperative binding coefficient λon leads to a broaden-

ing of synaptic size distributions, which approximately collapse one on another after scaling

(Fig 5D and 5E). Similar scaling is also observed when λoff is modified.

We sought to identify the parameter regime that gives rise to such stable and skewed distri-

butions in our model. Analysis of the continuum approximation of the model suggests that a

stable distribution will be reached under the condition α< λoff −λon (see S1 Appendix, Section

1). To identify conditions for the emergence of skewness, we considered a simplified version

of the bidirectional cooperativity model in which cooperativity acts globally on the entire syn-

apse (see S1 Appendix, Section 2.1). This model still retains the main ingredient of cooperativ-

ity in both binding and unbinding processes but allows for solving the master equation, an

equation for the probability for obtaining a certain occupancy state over time. The solution

highlights a parameter combination that crucially affects the skewness of the steady-state dis-

tribution (see S1 Appendix, Sections 2.2,2.3). This is the cooperativity ratio C which

Cooperativity and synaptic size dynamics
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characterizes the strength of cooperative binding and unbinding relative to the strength of the

non-cooperative processes. In the model discussed here it is

C ¼
lon þ loff

a
ð5Þ

(In S1 Appendix, a more general version is considered of which this is a special case). Fig

6A shows the steady-state synaptic size distributions for the global cooperativity model over a

wide range of this parameter. As intuitively expected, when C is small, binding and unbinding

are dominated by non-cooperative processes and steady-state distributions are symmetric,

narrow and Gaussian-like (orange distributions). When C is large, binding and unbinding are

dominated by cooperative processes, and broad and skewed distributions can arise as observed

Fig 5. Synaptic size distributions in the bidirectional cooperativity model. (A) Illustration of the model:

Both binding and unbinding are cooperative, with rates that depend on the fraction of occupied neighboring

sites. Binding is also affected by a small, constant and non-cooperative component (α) representing weak,

non-specific binding to the matrix. (B) Synaptic distributions are skewed and stable. Three distributions

plotted at intervals of 500 simulation time steps. See Methods for simulation parameters. (C) Same

distributions as in (B) plotted on a semi-logarithmic scale. (D,E) Size distributions at different parameter

values show scaling: Cumulative distributions of synaptic sizes for different values of λon (D) in physical units,

and the same distributions after scaling (E).

https://doi.org/10.1371/journal.pcbi.1005668.g005
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in experiments (blue distributions). Fig 6B depicts the same distributions in scaled units,

highlighting the skewness as a dimensionless shape characteristic. These results are congruent

with simulations of the bidirectional cooperativity model where interactions between scaffold

molecules are local (S1 Fig). To summarize, skewed distributions are obtained as long as coop-

erative binding is dominant relative to non-cooperative processes.

We examined whether the bidirectional cooperativity model also captures the dynamic

properties of synaptic ensembles shown in Fig 2. Stochastic simulations show that sizes of indi-

vidual synapses exhibit fluctuations that qualitatively resemble those observed for real synapses

(Fig 7A; compare with Fig 2B). The scatter plot of changes in synaptic size as a function of

their original size shows the same dependence observed experimentally (Fig 7B; compare with

Fig 2C). Moreover, when plotting synaptic sizes as a function of their original sizes at increas-

ingly greater time intervals (Fig 7C and 7D) the slopes and offsets of linear regression lines in

such plots gradually decrease and increase respectively (Fig 7E), just as observed for excitatory

[23] and inhibitory [19] synapses. Similarly, the coefficient of determination, or R2, gradually

decreases (Fig 7F), suggesting a gradual “deterioration” of synaptic configurations as previ-

ously shown for excitatory and inhibitory [19] synapses.

Spatial patterns of the bidirectional cooperativity model

The findings described so far suggest that introducing bidirectional cooperativity allows the

model to recapitulate the experimentally observed statistical properties of synaptic sizes in a

population of synapses. In addition to these properties, recent experiments show that synapses,

both inhibitory and excitatory, are not uniform structures but are organized as “nanoclusters”

that change over time [51–57,72]. Does the same model recapitulate this dynamic internal

organization of individual synapses? To test this, we examined the spatial patterns of bound

molecules in our simulations and the changes in these patterns over time. We found that

bound molecules do organize into nanocluster-like patterns (Fig 8A); moreover, “time-lapse”

sequences revealed that these patterns “morph” in manners reminiscent of dynamics displayed

by nanoclusters in glutamatergic synapses [51–53]. In fact, we note that spontaneous binding

Fig 6. Stable stationary distributions in the global cooperativity model. Solutions of the global bidirectional

cooperativity model, obtained by the Fokker-Planck approximation to the master equation (for details, see S1 Appendix,

Section 2). (A) Distribution of synaptic sizes scanning a range of cooperativity parameter C (right-hand axis). For C<<1,

we find stationary distributions very close to Gaussian (orange distributions). In this limit we approach a situation similar to

the Langmuir model. For C>>1, when cooperative processes dominate, skewed distributions are found as observed

experimentally (blue distributions). (B) Same stationary distributions as in (A), but scaled by subtracting the mean and

dividing by the standard deviation. For technical reasons, a weak non-cooperative unbinding rate βwas added (see S1

Appendix for a detailed justification); here β = α, and other parameters as in Methods.

https://doi.org/10.1371/journal.pcbi.1005668.g006
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Fig 7. Synaptic size dynamics in the bidirectional cooperativity model. (A) Sizes of 5 simulated

synapses over 50 simulation time steps. Note the fluctuations in simulated synapse size over the course of the

simulation. (B) Scatter plot of changes in synapse size as a function of initial size after 50 time steps (3,500

synapses). (C,D) Changes over time of synaptic sizes for the same synapses after 5 (C) and 50 time-steps

(D). Dashed red lines represent linear regression fits, with fit coefficients shown in the figure. (E) Slopes and

offsets of linear regression lines in plots such as those of C and D for 300 consecutive time steps. Offsets

were normalized to mean synaptic size during this 300 time-step window. (F) Coefficients of determination

(R2) in plots such as those of C and D for 300 consecutive time steps. All data were obtained after mean

synaptic size plateaued at ~225 bound molecules (after about 900 steps). See Methods for simulation

parameters.

https://doi.org/10.1371/journal.pcbi.1005668.g007
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to the matrix (through the parameter α) creates transient “seeds” which can potentially nucle-

ate nanocluster formation through cooperative binding to such seeds.

To further quantify this clustered organization, we used autocorrelation analyses (as in

[56]) to characterize the degree of spatial heterogeneity in the simulated synaptic structures.

The spatial autocorrelation function g(r) provides a measure of the molecular density at a dis-

tance r from a particular molecule relative to the average molecular density of the whole struc-

ture. Thus, when molecules are randomly distributed on the matrix, g(r) = 1. The extent to

which g(r) exceeds 1 is related to the degree of clustering. As shown in Fig 8B, synaptic struc-

tures exhibit a much higher heterogeneity compared to randomly scattered molecules, indicat-

ing a high degree of clustering, in common with experimental observations [55,56].

We also quantified the number of nanoclusters formed in these simulations using the

algorithm employed in [56] for identifying nanoclusters of synaptic scaffold proteins. As

shown in Fig 8C, the average number of nanoclusters per synapse calculated by this method

was 3.4±1.5 which is comparable to the number of PSD-95 nanoclusters observed experimen-

tally (1.86 ± 0.07 per PSD) [56]. While the number of clusters in the model clearly depends on

matrix size and model parameters, we note that these were initially chosen according to experi-

mental observations as described above, giving roughly several hundred scaffold molecules per

synapse. With the same parameters, the resulting numbers of clusters are also comparable with

observed values.

Fig 8. Spatial patterns of bound molecules and their evolution in the bidirectional cooperativity

model. (A) “Time-lapse” images of molecules bound to the matrix. In the top panel, clusters are marked in red

while sparse molecules in gray. In the bottom panel, clusters were separated using a hierarchical clustering

algorithm (see Methods) with each cluster colored separately, allowing individual clusters to be followed over

time. Time difference between consecutive frames is 10 steps. (B) Autocorrelation functions of synaptic

structures obtained from the bidirectional cooperativity model and randomly distributed molecules. (C)

Distribution of “nanocluster” numbers per synapse. See Methods for simulation details.

https://doi.org/10.1371/journal.pcbi.1005668.g008
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Discussion

In this study, we present a mesoscopic-level model, which provides an effective description of

synaptic size dynamics. The basic premise of our approach is that the myriad microscopic pro-

cesses that drive these dynamics can be effectively described as the net outcome of continuous,

cooperative and stochastic assimilation and removal of synaptic (scaffold) proteins at a patch

of postsynaptic membrane. We show that the introduction of cooperativity to both processes

is indispensable and sufficient for generating distributions and dynamics qualitatively similar

to those measured experimentally. Specifically, we show that the bidirectional cooperativity

model captures the random-like changes in synaptic sizes, the non-Gaussian shape and long-

term stability of synaptic size distributions, their scaling following various perturbations and

the internal organization of synaptic molecules in nanoclusters. Our model thus points to the

potentially fundamental role of cooperativity in dictating synaptic remodeling dynamics. Fur-

thermore, our model offers a conceptually tractable understanding of synaptic remodeling

dynamics, bridging the gap between non-intuitive, highly detailed molecular descriptions and

abstract, low-dimensional statistical approaches. Although these conclusions were mainly

based on Monte Carlo simulations, they are fully supported by analyses of the master equation

for a simplified model of bidirectional global cooperativity (S1 Appendix).

Limitations and robustness of the mesoscopic bidirectional cooperative

model

The bidirectional cooperative model described here captures many features of synaptic

dynamics previously observed in real neurons. Nevertheless, this mesoscopic model is

undoubtedly simplistic and based on premises whose biological correctness is not obvious.

Furthermore, its sensitivity to implementation details is not obvious either. Hence, matters of

appropriateness and robustness warrant some discussion.

The first matter concerns the existence of a matrix as a binding substrate. At first sight, this

would seem to be an entirely artefactual construct. The concept of a matrix, however, finds

substantial justification when considering the fact that synapses form at contacts between pairs

of elongated structures, that is axons and dendrites or dendritic spines; such contacts define

and circumscribe regions within which axonal and dendritic molecules can interact across the

synaptic cleft while simultaneously interacting with intracellular molecules such as scaffold

molecules [73–75]. Thus, an axodendritic contact defines a specialized membrane patch that is

effectively the equivalent of a matrix. The dimensions and geometry of such membrane

patches undoubtedly vary, yet it is notable that our model produces broad and skewed distri-

bution of synaptic sizes, even for uniform matrix sizes. Our results were not particularly sensi-

tive to matrix size, as long as α was maintained at sufficiently low values such that non-

cooperative binding did not become dominant, and only small numbers of “nanoclusters”

were formed. For any given value of α, increased matrix size was associated with reduced

skewness, which can be understood when considering that in these cases, synaptic size was the

sum of sizes of many nanoclusters formed independently of each other, reducing the domi-

nance of cooperativity and increasing the dominance of the independent binding. Interest-

ingly, nanocluster numbers in real synapses tend to be very low [55,56] in agreement with this

observation and its expected effects. As to other possible matrix geometries (such as hexagonal

matrixes), alternatives were not explored; we did find, however, that smaller numbers of neigh-

bors did not qualitatively affect our results (S2 Fig).

A second matter concerns the model’s simplicity—a single molecule type and only two

types of interactions (Fig 5A). Real postsynaptic densities contain hundreds of different mole-

cule types [76] which typically bind to multiple other molecules, creating a bewilderingly
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complex interaction network [2,30,76]. The dynamics arising from such rich and complex col-

lections of interacting molecules remain unknown, yet we tentatively suggest that the princi-

ples we outline here may hold in general: the more molecules bound to the postsynaptic

matrix, the higher the probability of recruiting additional molecules to the same matrix. Con-

versely, the greater the number of molecules a particular molecule is bound to, the lower its

probability of dissociating from the matrix. Indeed, in-vivo measurements of PSD-95 molecu-

lar dynamics [9] suggest that large PSDs capture more free PSD-95 and retain it for longer

durations as compared to small PSDs. We thus expect that this form of cooperativity (some-

times referred to as avidity [64]) will give rise to qualitatively similar dynamics and population

properties.

A third matter concerns the linear dependence of binding and unbinding rates on the

number of bound neighbors. The exact description of binding kinetics and their relation to

physical interactions is a highly nontrivial aspect of surface science, even for relatively simple

physical interactions [77]. Energy considerations and detailed balance impose some con-

straints but do not define the kinetics uniquely. All the more in our model, which is highly

abstract and provides no more than a simplified sketch of a synaptic molecule assembly. We

used linear dependence since it provided a simple realization of the principle of cooperativity

as described above. Moreover, it enabled us to analyze a corresponding global cooperativity

model, and obtain solutions of its master equation (S1 Appendix). Nevertheless, we cannot

exclude the possibility that our findings may not apply universally to all possible cooperativ-

ity models.

A final matter concerns the parameter regimes used here. We noted that this regime is con-

strained by several considerations. We found that it is important to keep non-cooperative

binding rates much smaller than cooperative rates in order to obtain skewed distributions of

synaptic sizes; this is in line with the large number of interaction partners most synaptic mole-

cules have. Additionally, values of λon very close to those of λoff were required in order to

obtain “reasonable” mean synaptic sizes (in terms of matrix occupancy; S3 Fig). At first sight,

this requirement would seem to question the model’s robustness. We note, however, that from

a biophysical standpoint, λon encompasses not only particular binding kinetics but also the

concentration of free molecules that can potentially bind to the matrix; put differently, the

rates at which molecules bind to the matrix are also proportional to free molecule concentra-

tions. In our treatment so far, this dependence was not made explicit, and free molecule con-

centration was encapsulated in λon. Separating λon into these two components, however, gives

rise to an interesting observation (S4A Fig): For a broad range of total molecule concentra-

tions, λon settles on values that are very close to those of λoff. Consequently, even when total

molecule concentrations are changed several fold, the condition λon�λoff is maintained and

distributions of synaptic sizes remain skewed and stable. These same changes, however, affect

mean synaptic size dramatically, (S4B Fig). In summary, changing total molecule concentra-

tions (readily realized by altering protein synthesis or degradation rates, for example) changes

mean synaptic sizes and drives synaptic size distribution scaling (as previously suggested, e.g.

[48,50]), yet only minimally affects λon, which remains very close to λoff. Consequently, the

parametric regime λon�λoff is very reasonable in the context of our model.

Significance to synaptic remodeling dynamics and population properties

Mesoscopic models in which the synapse is described as an assembly of dynamic molecules

have been put forward in several prior studies. Thus, for example, Shouval [22] in an approach

already mentioned, depicted the synapse as a matrix to which neurotransmitter receptors can

be added or removed. In a second study [21] the synapse was modeled as a three layer system
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divided laterally into synaptic and extrasynaptic regions. It was shown that cooperative inter-

actions between synaptic molecules could give rise to persistent postsynaptic sites, which tran-

siently trap receptors as they diffuse laterally in the plasma membrane. In a third approach

[11], a model based on reaction-diffusion equations for scaffold proteins and receptors was

shown to give rise to postsynaptic domains (via a Turing mechanism), that coexist with rapid

receptor diffusion in the cell membrane plane. All these studies were aimed at explaining the

long-term persistence of synapses in face of continuous diffusion, exchange and turnover of

their molecular constituents. Very recently, a mesoscopic biophysical model based on diffu-

sion, aggregation and removal of receptors and scaffold proteins in the membrane was used to

explain the statistics of PSD molecule clusters [72]. None of these models, however, examined

how such molecular dynamics may give rise to spontaneous synaptic remodeling or popula-

tion properties such as size distribution shapes or their scaling. Conversely, the mesoscopic

model described here shows how these properties emerge naturally from simple well-known

biological processes, namely cooperative binding and unbinding, and by doing so provides a

conceptually tractable explanation of these phenomena. Clearly, as mentioned above, it is an

enormously simplified description of the postsynaptic specialization. However, its main ingre-

dients—a postsynaptic membrane, dynamic molecules that continuously bind and unbind,

and a strong tendency of such molecules to interact with multiple other molecules—are now

well established facts. We thus carefully suggest that the nanoscale organization of synaptic

scaffolds, the spontaneous, size dependent fluctuations in synaptic sizes, the gradual erosion of

synaptic configurations, the skewed distribution of synaptic sizes and their scaling in response

to global changes in synaptic molecule concentrations, are all likely to be driven, at least in

part, by spontaneously occurring cooperative assimilation and loss of synaptic molecules. Nat-

urally, real synapses will have many additional means of control through which they might

change specific binding and unbinding affinities, the repertoire and abundance of synaptic

molecules and the supply of metabolic energy required to fuel some of these reactions. Never-

theless, we conjecture that these additional means are layered upon foundations consisting of

principles exposed by our simplistic model.

Cooperativity as an organizing principle

Cooperativity is a ubiquitous and crucial regulation mechanism in a large variety of processes,

including molecular recognition, enzyme catalysis, membrane transport, protein folding, and

self-assembly of supramolecular complexes [63–69]. In the context of synaptic biology, coop-

erativity plays key roles not only in the formation of multi-molecular scaffolds (e.g. [78–83])

but also in synaptic function, where it is mostly appreciated in relation to neurotransmitter

release [84]. Along these lines it is intriguing to note the considerable functional variability in

space and time exhibited by presynaptic boutons as well as the skewed shape of various presyn-

aptic property distributions (e.g. [85–89]; reviewed in [90]). Interestingly, skewed distributions

[91,92] as well as nonstationary properties (e.g. [93,94]; reviewed in [95]) feature prominently

in neuronal functional and structural features.

As a final note we wish to remark that our model, in its most generic and abstract sense,

concerns the dynamics and statistical outcomes of stochastic, cooperative construction and

deconstruction processes; consequently, the study’s conclusions are not necessarily limited to

synaptic, neuronal, or, for that matter, biological settings. In fact, it is reasonable to expect that

when collections of multiple instantiations of cooperative constructive and deconstructive pro-

cesses are examined, these might exhibit features similar to those described here, that is, state

dependent fluctuations in the properties of individual instantiations, and, at the same time,

skewed and stable distributions of the same properties in populations of such instantiations.
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Methods

Simulations

All simulations were performed using scripts written in Matlab (MathWorks, MA, USA). A

number of simulations were also repeated using code written in C. Monte Carlo simulations

were performed to assess the dynamics and statistics that result from each one of the three

models and test their congruence with experimental measurements. Specifically, for each

model, the trajectories of 3500 synapses were simulated over 1500 time steps. At each time step

and for each site, the fraction of occupied nearest neighbors χ was calculated by counting the

number of occupied nearest neighbors and dividing it by the total number of nearest neigh-

bors. The binding and unbinding probabilities for vacant and occupied sites, respectively,

were determined by the mode of interactions presented by each model. A site changed its

binding state if the probability calculated for this site was larger than a random number sam-

pled from a uniform distribution between 0 and 1.

Unless stated otherwise, we used the following parameter values: λoff = 0.5 t−1, λon = 0.493

t−1, α = 0.0007 t−1 (t stands for time). The geometry of the postsynaptic density was chosen, for

reasons of simplicity, to be a 50x50 square matrix, giving a total of M = 2,500 sites. In this

geometry, the maximal number of nearest neighbors is 8 and the fraction of occupied nearest

neighbors χ was calculated accordingly. Parameters were chosen to give roughly several hun-

dred scaffold proteins per synapse as observed for glutamatergic synapses in the mammalian

central nervous systems [3].

Simulations were performed using a time step of 1 (arbitrary units). Results were not signif-

icantly altered when time steps were decreased by factors of 2 to 100.

Code used for all MATLAB simulations is provided as S1 Code.

Spatial autocorrelation analysis

Spatial autocorrelation analysis was used to quantify the clustering of synaptic proteins. The

autocorrelation function g(r) is a measure of bound protein density at a distance r away from a

given bound protein relative to the density of the whole matrix. The density at a certain dis-

tance r was calculated by averaging the number of occupied sites at distance r from each occu-

pied site and dividing it by the total number of sites at distance r. The autocorrelation function

was then obtained by performing the same calculation for different values of r and normalizing

it by the density of the whole matrix. The case r = 0 was not considered due to its trivial contri-

bution. For a higher precision, this analysis was performed for 3500 synapses and the autocor-

relation function was taken as their average.

Cluster analysis

The number of nanoclusters in the bidirectional cooperativity model was calculated using

agglomerative hierarchical clustering algorithm as employed in [56] for analyzing scaffold pro-

teins nanoclusters. Occupied sites were partitioned into sub-clusters using MATLAB functions

pdist(), linkage() and cluster(). The node height cut-off of the dendrogram was determined by

the mean of nearest neighbor distances between occupied sites + 2 standard deviations. This

analysis was performed for each time point to measure the morphing of clusters in time.

Supporting information

S1 Fig. Dependence of synaptic size distribution skewness on α in the bidirectional coop-

erativity model. Simulations were run using increasing values of α. At the end of each simula-

tion, the distribution of synaptic sizes was calculated for the last time point and its skewness
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was computed. Values of all other parameters were kept constant and set to the values listed in

Methods. Note the sharp decrease in skewness as α becomes greater. Averages and standard

deviations of 5 repeats.

(PDF)

S2 Fig. Synaptic size distributions obtained when considering four or eight nearest neigh-

bors. (A) Illustration of the bidirectional cooperativity model in which only four nearest

neighbors (shaded) are considered for the calculation of χ. (B) Synaptic size distributions for

simulations considering four and eight nearest neighbors. Skewed distributions are obtained

for both cases. (C) Scaled versions of the distributions shown in B) show that their shapes are

very similar.

(PDF)

S3 Fig. Dependence of synaptic size average and size distribution skewness on λon. Simula-

tions of the bidirectional cooperativity model were performed for different values of λon while

holding values of all other parameters, and in particular, λoff, fixed to values mentioned in

Methods. (A) Mean synaptic size is dramatically smaller for values of λon that are very far from

λoff. This is consistent with relationships between mean synaptic size and λon resolved analyti-

cally in the mean-field treatment (S1 Appendix). (B) The skewness is not sensitive to the value

of λon until its value becomes very close to λoff. The decrease of skewness in this case stems

from the finite size effect of the matrix that becomes more significant for larger means. Aver-

ages and standard deviations of 10 repeats.

(PDF)

S4 Fig. The condition λon�λoff is maintained over a large range of total molecule concen-

trations. (A) To examine how λon is affected by changes in cellular molecule concentration,

simulations were performed as described in the main text except that here, it was assumed that

all synapses belong to the same cell and share a common pool of molecules. In addition, the

dependence of binding rates on free molecule concentration was made explicit such that at

every time point, λon_effective = Nfree�λ�on, with Nfree representing the momentary concentration

of free molecules. Consequently, in these simulations kon = Nfree � (λ�on � χ + α). At each step of

the simulation, Nfree was updated by subtracting the numbers of molecules bound to all synap-

ses from the predefined number of total molecules such that Nfree = Ntotal−Nbound. This simula-

tion was run for 1,500 steps for 1,000 synapses; in each run Ntotal was set to a different value

whereas λ�on, λoff and α were kept the same (5�10−6, 0.5 and 0.0007 respectively, as in Figs 3–5,

7 and 8). At the end of each simulation, λon_effective was calculated based on Nfree and its values

for the last 10 simulation steps were averaged. Average λon_effective was then plotted against Nto-

tal. Note that >4-fold changes in Ntotal barely affected λon which settled on values very close to

those of λoff. (B) Mean synaptic size in the same simulations as a function of Ntotal. Note the

nearly linear increase in mean synaptic size with increasing values of Ntotal.

(PDF)

S1 Appendix. This appendix contains analysis of several binding and unbinding models

using a master equation approach. In particular the bidirectional cooperativity model with

global cooperativity, found to display similar statistical properties to the local cooperativity

model describe in the main text, is analyzed. Formulas are developed for the steady-state distri-

bution in the Fokker-Planck approximation for this case, which allow the efficient scanning of

parameter space and the identification of parameters relevant for the skewness of the distribu-

tion.

(PDF)
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S1 Code. Source code (Matlab) used for simulations.

(ZIP)
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