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Abstract: Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a novel
approach for controlling external devices. BCI technologies can be important enabling technologies for
people with severe mobility impairment. Endogenous paradigms, which depend on user-generated
commands and do not need external stimuli, can provide intuitive control of external devices. This
paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile
robots, and robotic arms. These technologies must be able to navigate complex environments
or execute fine motor movements. Brain control of these devices presents an intricate research
problem that merges signal processing and classification techniques with control theory. In particular,
obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder
output signals can be unstable. These issues present myriad research questions that are discussed
in this review paper. This review covers papers published until the end of 2021 that presented
BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control,
stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user
experience. The paper concludes with a discussion of open questions and avenues for future work.

Keywords: brain–computer interface (BCI); brain–machine interface (BMI); electroencephalogram
(EEG); endogenous; control; motor imagery (MI)

1. Introduction

This paper presents a systematic review of the literature related to online endogenous
electroencephalogram (EEG) brain–computer interfaces (BCIs) for external device control.
Controlling dynamic devices provides unique challenges, since they must be able to reliably
perform actions such as navigating a cluttered space. Endogenous EEG control involves
commands that are generated by actions executed by the users themselves and do not
require external stimuli, as is the case for exogenous EEG control. An example of external
stimuli is flickering lights, which are required for steady-state visually evoked potential
(SSVEP) BCIs.

This review aimed to fill a gap in the literature by focusing specifically on endogenous
BCI control of dynamic devices. BCIs for a variety of devices, including exoskeletons,
robotic arms, mobile robots, quadcopters, and wheelchairs, are discussed. This paper
discusses issues that are particularly pertinent to the area of dynamic device control. It
analyzes how commands are issued through different paradigms and the intuition of
different approaches. It also discusses at length the issue of shared control, which involves
merging data from sensors and commands issued through the BCI to ensure safer and
easier operation. Other challenges addressed in this paper include the stabilization of the
BCI decoder output to ensure reliable operation and methods for expanding the limited
degrees of freedom that endogenous BCIs inherently have. In essence, this paper aimed to

Sensors 2022, 22, 5802. https://doi.org/10.3390/s22155802 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155802
https://doi.org/10.3390/s22155802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5533-4807
https://orcid.org/0000-0003-0436-6408
https://orcid.org/0000-0001-6632-2369
https://doi.org/10.3390/s22155802
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155802?type=check_update&version=2


Sensors 2022, 22, 5802 2 of 36

summarize the state of the art in these key areas, as well as highlight salient gaps in the
literature. This review should give BCI researchers clear indications of options for future
work within the area of dynamic device control.

To increase objectivity, a systematic methodology was used to select which papers
were included in the review. The paper opens with a summary of this methodology and
then discusses the relevance of the review. It then briefly summarizes the proportion of
papers featuring synchronous versus asynchronous BCIs in the literature. The main body
of the review begins with a discussion of the endogenous paradigms used, the devices
controlled through BCIs, and how commands are issued. Shared control methods are
then discussed at length. The paper then reviews stabilization techniques for the BCI
decoder output and methods used for overcoming the low number of degrees of freedom
in endogenous BCIs. It also discusses novel techniques for handling errors in BCIs for
dynamic devices through error-related potentials (ErrPs). Finally, the techniques used
for EEG classification, which consist of traditional machine learning and deep learning
techniques, are discussed, with a special focus on state-of-the-art techniques presented
for dynamic device control. The paper then summarizes the number and type of subjects
included in studies. This is an important issue because many BCIs for dynamic device
control, such as BCI-controlled wheelchairs, are aimed at individuals with disabilities but
are only tested with healthy subjects [1,2]. Testing on subjects with disabilities is also
important because the low uptake of BCIs amongst target populations has been linked
to a lack of understanding of the needs of possible end-users [3], and a fundamental step
toward a better understanding involves including possible end-users in experiments [4].
Finally, this paper discusses the importance of user experience surveys and the results of
these surveys that have been reported in the literature. If BCIs are to be widely adopted,
it is important that researchers understand the subjective experience of users in order to
determine functional areas that need improvement. This is especially important in BCIs for
dynamic devices, since these can be used to navigate complex environments and execute
physical tasks requiring precision, which may increase the mental load on the subject [5].
Results obtained through user-experience surveys could help improve the adoption rate of
such technologies. The paper closes with a discussion of emerging questions and makes
suggestions for future work.

2. Methodology

The PRISMA methodology for selecting papers was used due to its focus on objectiv-
ity [6]. This methodology involves first establishing eligibility criteria, then conducting a
database search, and then selecting papers through a screening process.

2.1. Eligibility Criteria

In order to be included in this review, studies had to be published as journal papers.
Journal papers were considered because they can be expected to contain significant research
of high quality. Papers published through 31 December 2021 were considered, and retracted
papers were excluded. No lower date limit was imposed on the dataset search. Studies
had to test using human subjects and be written in English. The BCI presented had to
include scalp EEG as a recording mechanism and be fully noninvasive, meaning any
studies involving surgical implantation of electrodes were excluded. The papers had to
present a novel BCI implementation and not just tutorials, editorials, or software/hardware
technologies that could be applied to a BCI. Articles that were accepted but still in press
were also reviewed.

Only papers presenting purely endogenous BCIs were considered, thus studies which
used both exogenous and endogenous brain signals were excluded. Exogenous signals
are defined as any brain signals that require an external stimulus to be evoked, such as
SSVEPs or auditory evoked potentials. Furthermore, the studies had to include an online
component to the experimentation, in which brain signals were recorded and processed
in real time. Since the review was focused on paradigms that can be used by subjects
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paralyzed from the neck down, papers that depended on limb-related motor execution
paradigms were excluded. However, paradigms that involved facial movements such as
blinks or jaw clenches were allowed.

Papers had to present an active BCI, meaning that it enabled participants to control an
external device. Passive BCIs designed purely for clinical monitoring or symptom detection
in patients, such as those used for seizure detection or identification of depression, were
not included. The BCI had to control a physical, dynamic device, such as an exoskeleton or
wheelchair, and not just a graphical user interface application or virtual reality avatar.

2.2. Information Sources and Search Strategy

This review was based on database searches conducted in PubMed, IEEE Xplore, and
Scopus. These sources were chosen because of their strong links to engineering and science.
The search terms used for each platform varied slightly due to their different interfaces,
and were as follows:

• PubMed: (EEG) AND ((Brain-Computer Interface) OR (BCI)OR(Brain-Machine Interface)
OR(BMI))AND((Online)OR(Real-Time)). This search was applied to the title/abstract
and text. The following filters were applied to the search results to further refine the
results: “Human Subjects” and “Journal Articles”.

• IEEE Xplore: (“Full Text & Metadata”:EEG AND (“Full Text & Metadata”:“Brain-
Computer Interface” OR “Full Text & Metadata”:BCI OR “Full Text & Metadata”:“Brain-
Machine Interface” OR “Full Text & Metadata”:BMI) AND (“Full Text & Metadata”: “On-
line” OR “Full Text & Metadata”:“Real-Time”)). The search was refined to
“Journal Articles”.

• Scopus: (“EEG”) AND (“Brain-Computer Interface” OR BCI OR “Brain-Machine
Interface” OR “BMI”) AND (“Online” OR “Real-Time”). The search was refined
through the “Type” filter, which was chosen to be “Article”, and the “Source” filter,
which was chosen to be “Journal”.

The final search was carried out on 14 June 2022.
Seven additional papers were considered based on recommendations from peers in

the area of research on which this review paper focused.

2.3. Selection Process

The search results from the databases were downloaded in spreadsheet format, and
duplicate results were identified and removed. The first phase of selection was the abstract
screening process, which involved reading the abstracts of each paper and classifying them
as either ineligible for the review or possibly eligible. Once the abstract screening process
was concluded, reading of the full text of the papers that were deemed possibly eligible
was carried out, and these papers were marked as either eligible or ineligible for the review.
Once this process was concluded, the eligible papers were considered for the review.

Figure 1 shows a breakdown of the selection process. In total, 2557 unique search
results were obtained. In the abstract screening process, 2047 records were excluded. The
full texts of 510 papers were assessed, and papers were excluded for various reasons. Out-
of-scope papers included studies based on exogenous systems, those designed for medical
observation only, those that did not use any scalp EEG data, those related to limb-based
motor execution, studies with nonhuman subjects, studies that were not about BCIs at all,
and pieces that were not research articles. Of the papers recommended by peers, six were
eligible for the study. Following this selection process, a total of 66 papers were included in
the review.
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3. Relevance of this Review

In the database search and screening process, a total of 116 other review papers related
to BCIs were identified. None of these were included in the 66 papers selected for this
review because they did not present novel experimental BCIs. This section lists reviews
that discussed EEG BCIs for dynamic device control, which is the main topic of this review
paper. The relevance of this review within the context of these other review papers is then
discussed. The relevant review papers were:

• Hekmatmanesh, 2021 [7]: Focus on brain-controlled vehicles, covering exogenous
paradigms and endogenous paradigms.

• Wang, 2021 [8]: Review of BCI-controlled wheelchair systems, including electrode
type, modality, and synchronicity.

• Wankhade, 2020 [9]: Focus on different EEG-based BCI paradigms, both exogenous
and endogenous, and the signal-processing techniques used with them, as well as a
brief discussion of online systems.

• Abiri, 2019 [10]: In-depth discussion of different EEG paradigms, including exogenous
paradigms, with some discussion of signal-processing and classification techniques.

• Al-qaysi, 2018 [11]: Focused on EEG-based BCIs that drive wheelchairs, including
exogenous and endogenous brain signals.

In the review paper by Wankhade et al. [9], the section discussing online BCIs was
limited to three papers published in 2019, 2014, and 2010. The paper also had no in-depth
discussion of methods of external device control. Our review paper focused on 66 papers
presenting online BCIs for dynamic device control, and contains extensive discussion on
how different endogenous BCI paradigms can be used to control external devices.

The papers by Al-qaysi et al. [11] and Wang et al. [8] were focused only on BCI-
controlled wheelchairs. The scope of our review paper was wider, with qualifying papers
that presented any kind of BCI-controlled dynamic system being included in the review.
Thus, BCIs related to exoskeletons, haptic robots, orthotics, prosthetics, robotic arms,
pedaling machines, quadcopters, mobile robots, and wheelchairs are all discussed. This
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enabled our review paper to summarize the techniques used and overarching issues that
exist across the entire range of BCI-controlled dynamic devices in the current literature.

The review paper by Hekmatmanesh et al. [7] was largely focused on brain-controlled
vehicles, whereas our review paper also discusses prosthetics, robotic arms, exoskeletons,
and pedaling machines at length. The paper by Hekmatmanesh et al. [7] had a significant
focus on the feature-extraction and classification techniques used, but some deep-learning-
based systems were not discussed at length [2,12], whereas our paper discusses several
deep-learning-based approaches in depth. Furthermore, our paper aimed to distill trends
in the literature related to the mapping of mental activities onto commands, stabilization
of the control signal, shared control (including a taxonomy), the issue of overcoming the
low degrees of freedom in a BCI, and user experience. This level of detail on these issues
was not present in the paper by Hekmatmanesh et al. [7]. Furthermore, the paper by
Hekmatmanesh et al. [7] covered both exogenous and endogenous paradigms, but discus-
sions of endogenous paradigms were largely limited to motor imagery (MI)-based and
facial-expression paradigms, whereas our paper discusses other endogenous paradigms,
including spelling-based and emotion-based paradigms. Moreover, several seminal works
related to mobile robots that are mentioned in our paper [1,5,13,14] were not covered in
Hekmatmanesh et al. [7].

The review by Al-qaysi et al. [11] mostly covered exogenous paradigms and only men-
tioned motor imagery (MI) as an endogenous paradigm in conjunction with an exogenous
signal or another biosignal, such as an electromyogram (EMG). In comparison, our review
paper presents purely endogenous paradigms that include traditional and sequential MI,
facial movement, spelling- and emotion-based paradigms, and mixed paradigms that
combined two or more of these methods.

The review by Abiri et al. [10] had a strong focus on BCI paradigms, covering ex-
ogenous, MI, ErrP, and mixed paradigms. Although some of the endogenous paradigms
mentioned by Abiri et al. [10] are also discussed in our review, our focus was not solely on
the discussion of paradigms. Issues related to obtaining a stable control signal and shared
control, as desired for the control of physical devices, were not discussed at length in the
review by Abiri et al. [10], but they formed key discussions in our paper. Furthermore, the
methods reviewed in Abiri et al. [10] were largely limited to conventional machine learning
approaches, with just two mentions of neural or deep learning techniques. In our review,
seven different neural and deep learning approaches are discussed.

The review presented here is also more current, covering all papers through 2021. In
contrast, the most recent review paper, by Wang et al. [8], did not reference any papers
from 2021. The other review papers were published before 2021.

Finally, the papers in our review were selected using a systematic approach that
facilitated a comprehensive survey of the literature and reduced human bias in the selection
of papers. The reviews of Hekmatmanesh et al. [7], Wang et al. [8], Wankhade et al. [9], and
Abiri et al. [10] did not mention the use of this kind of systematic approach, which lent
added value to our review paper.

4. Overview of the Literature Growth across Time

This section presents a brief overview of how the literature we reviewed was spread
out over the last two decades. Figure 2 contains a bar chart showing how many papers
from each year were reviewed in the period from 2001, when the earliest paper was
published [15], until 2021. The studies of dynamic device control that occurred during
the early 2000s involved mobile robots [16,17] or orthotics/prosthetics [15,18,19]. The
BCI competitions that took place between 2003 and 2008 [20–23] resulted in a substantial
volume of BCI research in offline data throughout the mid-to-late 2000s [20–23]—this focus
on offline processing may be one reason for the dearth of studies of dynamic device control
from 2005 to 2011. Possibly boosted by this research into offline signal processing, the field
of endogenous BCIs for dynamic device control began to pick up from 2012 onward, with a
rapid growth in the literature occurring from 2012 until 2019. There was a sharp drop-off
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in publications in 2021, possibly due to the effects on research of the COVID-19 pandemic
throughout 2020 and 2021.
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5. Synchronous vs. Asynchronous Control

The two main categories of device control were synchronous and asynchronous control.
In synchronous control, the BCI indicates established intervals when the subject can issue a
command. At the end of the interval, the data is processed and the command is executed.
In an asynchronous system, the user can issue a command at any time. The BCI processes
buffered input data and executes commands at regular intervals; for example, every 0.0625 s
(a 16 Hz rate) [13]. Of the papers reviewed, 81% (54 papers) presented results that included
an asynchronous control paradigm, while the rest presented results only for synchronous
control paradigms. Although results generated using synchronous control could achieve
high accuracies [24,25], they increase the latencies experienced by the subject and are not
feasible for many practical BCIs; in particular, for the brain control of dynamic devices.
This is because a synchronous control paradigm would lead to episodic movements in
dynamic devices such as prosthetics, exoskeletons, and wheelchairs, which should ideally
execute commands in real time to ensure smooth movement.

6. BCIs in the Physical World: Applications and Paradigms

Figure 3 shows a breakdown of the different BCI-controlled dynamic devices in
the reviewed papers. The most popular devices were mobile robots and assistive limb-
movement devices (exoskeletons, orthotics, and haptic robots), with each having a share of
24%. The share for mobile robots went up to 38% if powered wheelchairs were included, as
these are a form of specialized mobile robots. The share for assistive limb devices increased
to 51% if prosthetics, robotic arms, and hands were included, representing articulated
devices. The least common devices were unmanned aerial vehicles (UAVs), prosthetics,
and pedaling machines. Most of the UAVs were quadcopters [26–29], with only one study
presenting another type of UAV [30]. UAVs present numerous challenges in terms of
their many degrees of freedom and difficulty in mastering control, even when using a
manual remote controller. Pedaling machines are typically used in stroke rehabilitation
studies [31], which constitute a smaller niche of research. Finally, prosthetics are generally
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aimed at subjects who have amputations but generally have reasonable muscle signals in
the residual (stump) limb, which has led to the development of numerous reliable EMG
devices [32]. These constitute a viable alternative to BCI-controlled prosthetics. Conversely,
BCI-controlled exoskeletons, orthotics, mobile robots, wheelchairs, and robotic arms can
all be used by subjects who have spinal or neurological injuries resulting in reduced or
negligible residual muscle signals in limbs, creating research openings for BCI control of
such devices.
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There is a mutual relationship between the application for which a BCI is designed
and the endogenous paradigm used. Table 1 summarizes the applications, paradigms,
number of classes, and control functions for EEG-controlled devices in papers published
from 2017 through the end of 2021 that represented the state of the art. In the table, the
number of classes is the effective number of classes associated with device control. The
table is organized first according to the EEG paradigm used, then by device, and then
by year. Table 1 shows details for systems that used a single EEG paradigm, such as a
traditional MI. Table 1 also includes a column for the “Accuracy” (also called success rate
in some papers [1]) values quoted in studies. Although these results can give an idea of
performance, different studies had different experimental setups; for example, some studies
of BCI-controlled mobile robots included obstacles that they needed to avoid [12], whereas
others did not [13]. Not all studies quoted an accuracy or success rate statistic, and used
other performance measures such as sensitivity and specificity instead [33]. These papers
are listed with ‘N/A’ in the Accuracy column. Table 2 contains similar details of systems
that used mixed paradigms that combined more than one paradigm.

6.1. Motor Imagery Paradigms

Considering Table 1, traditional motor imagery, which consists of MI related to distinct
limbs, such as movement in the hands, feet (or legs), and tongue, was the most popular
paradigm. This paradigm presented a particularly intuitive method of control for exoskele-
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tons [34,35], in which the user can imagine walking or sitting [35]; rehabilitative pedaling
machines, in which the user can imagine the pedaling motion [36]; and robotic hands, in
which the hand can mimic imagined flexion or extension [37,38]. Many systems depended
wholly or in part on classifying left- and right-hand MI, possibly because these produced
distinct pattens in the right and left hemispheres, respectively, that can be accurately classi-
fied [15]. Furthermore, these MI actions can be intuitively related to left and right steering
commands for mobile devices such as robots. Nevertheless, systems based on traditional
MI tended to use four commands or less, possibly because it was challenging to accurately
decode multiclass MI [28,29]. Furthermore, MI-based paradigms required significant user
training for reliable use, and could suffer from a relatively high BCI illiteracy rate [4].
Enhanced intuition and control of MI-driven prosthetics and orthotics could be achieved by
adding functional electrical stimulation, which activated the subjects’ own muscles [39,40].

In 2018, Yu et al. [1] presented a sequential motor imagery and finite-state-machine
approach for controlling a motorized wheelchair. The sequential motor imagery approach
involved the subject issuing commands by completing two mental activities sequentially
(for example: left-hand and then right-hand MI), as opposed to just one mental command
(for example: left-hand MI), as in the traditional MI paradigm. The finite-state machine is
used to enable the same sequential command to be used for different actions, depending
on the current state of the system. These approaches were used to increase the degrees of
freedom of the BCI, and are discussed in more depth in Section 9.

Jeong et al. [41] presented a BCI for controlling a robotic arm based on single-limb MI.
Decoding single-limb movements was more challenging than decoding the movements of
different limbs, as in traditional MI [41]. However, it presented an opportunity for more
intuitive control paradigms, with the user being able to control the movements on a robotic
arm in 3D space by imagining similar movements in their own limb.

In order to master suitable control of MI-based BCIs, subjects require extensive train-
ing [4]. Traditional MI EEG subject training schemes used the discrete trial (DT) approach,
in which subjects were directed by cues to execute a MI task for a certain amount of time
and were given on-screen feedback; for example, through a progress bar or a moving ob-
ject [4,42]. Edelman et al. [42] presented a novel training method called continuous pursuit
(CP), in which subjects were trained through a gamelike interface that required them to
control a cursor in following a randomly moving icon on-screen. They noted that subjects
were more engaged, elicited stronger brain signal patterns, and could potentially be trained
in less time when using CP as opposed to DT. In test trials involving a robotic arm, the level
of performance obtained during CP training for cursor control was maintained, indicating
that the CP approach was effective for training subjects to control a dynamic device.

Table 1. A summary of EEG paradigms, devices, and control functions in the literature for single-
paradigm systems.

Paper Paradigm Device No. of Classes Classes and Control Function Accuracy

Choi, 2020 [35]

Traditional MI

Lower limb
exoskeleton

3
Gait MI—walking; sitting

MI—sitting down; idle state—no
action

86%

Gordleeva, 2020 [43] 2 MI of dominant foot—walking;
idle—standing still 78%

Wang, 2018 [44] 3 Left-hand MI—sitting; right-hand
MI—standing up; feet MI—walking >70%

Liu, 2017 [45] 2 Left-hand MI—moving left leg;
right-hand MI—moving right leg >70%

Ang, 2017 [46] Haptic robot 2 MI in the stroke-affected hand;
idle state ~74%

Cantillo-Negrete,
2018 [47] Orthotic hand 2

MI in dominant hand (healthy
subjects) or stroke-affected hand

(patients)—moving; idle
state—do nothing

>60%
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Table 1. Cont.

Paper Paradigm Device No. of Classes Classes and Control Function Accuracy

Xu, 2020 [48]

Robotic arm

4
Left-hand MI—turn left; right-hand
MI—turn right; both hands—move

up; relaxed hands—move down

78% (for left vs. right
and up vs. down

experiments); 66% (for
left, right, up, and

down experiments)

Zhang, 2019 [49] 3
Left-hand MI—turn left; right-hand

MI—turn right; tongue
MI—move forward

73%

Xu, 2019 [50] 2
Left-hand MI—left planar

movements; right-hand MI—right
planar movements

>70%

Edelman, 2019 [42]

Robotic hand

4

Left-hand MI—left planar
movements; right-hand MI—right

planar movements; both-hands
MI—upward planar movements;

rest—downward
planar movements

N/A

Spychala, 2020 [37] 3
MI hand flexion or extension for
similar behavior in robotic hand,

idle state—maintain hand posture
~60%

Moldoveanu, 2019
[51] Robotic glove 2

Left-hand MI and right-hand
MI—controlled movement of

robotic glove
N/A

Zhuang, 2021 [52]

Mobile robot

4
Left MI—turn left; right MI—turn
right; push MI—accelerate; pull

MI—decelerate
N/A (>80% for offline)

Batres-Mendoza, 2021
[12] 3

Left-hand MI—turn left; right-hand
MI—turn right; idle

state—maintain behavior
98%

Tonin, 2019 [13] 2

Left-hand MI—turn left; right-hand
MI—turn right. Idle rest state

inferred from probability output
of classifier.

~80%

Hasbulah, [53], 2019 4

Left-hand MI—turn left; right-hand
MI—turn right; left-foot

movement—move forward;
right-foot

movement—move backward

64%

Ai, 2019 [54] 4

Left-hand MI—turn left; right-hand
MI—turn right; both-feet

MI—move forward; tongue
MI—move backward

80%

Jafarifarmand, 2019
[55] 2 Left-hand MI—turn left; right-hand

MI—turn right N/A

Andreu-Perez, 2018
[14] 2

Left-hand MI—turn right;
right-hand MI—turn left. If the

probability output of the classifier
was less than 80%, maintain

current state.

86%

Cardoso, 2021 [31] Pedaling machine 2 Pedaling MI—cycle; idle
state—remain stationary N/A

Romero-Laiseca, 2020
[56] 2 Pedaling MI—cycle; idle

state—remain stationary

~100% (healthy
subjects); ~41.2–91.67%

(stroke patients)

Gao, 2021 [40] Prosthetic leg 3
Left-hand MI—walking on terrain;
right-hand MI—ascending stairs;

foot MI—descend stairs
N/A

Yu, 2018 [1] Sequential MI Wheelchair 6

Left hand, right hand, and idle state
identified by classifier. Four

commands obtained by sequential
paradigm, used to execute six
functions through a finite-state
machine: start, stop, accelerate,
decelerate, turn left, turn right.

94%

Jeong, 2020 [41] Single-limb MI Robotic arm 6

MI of same arm moving up, down,
left, right, backward and forward,

which were imitated by the
robotic arm.

66% (for a
reach-and-grab task);

47% (for a
beverage-drinking task)

Junwei, 2018 [25] Spelling Wheelchair 4
Spell the desired commands:
FORWARD, BACKWARD,

LEFT, RIGHT
93%

Kobayashi, 2018 [57] Self-induced
emotive State Wheelchair 4

Delight—move forward;
anger—turn left; sorrow—turn

right; pleasure—move backward.
N/A

Ji, 2021 [58] Facial movement Robotic arm 3

Detect double blink, long blink, and
normal blink (idle state) to navigate
VR menus and interfaces to control

a robotic arm

N/A
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Table 1. Cont.

Paper Paradigm Device No. of Classes Classes and Control Function Accuracy

Li, 2018 [59] Prosthetic hand 3

Raised brow—hand opened;
furrowed brow—hand closed; right

smirk—rightward wrist rotation;
left smirk—leftward wrist rotation

81%

Banach, 2021 [24]

Sequential facial
movement Wheelchair

7

Eyes-open and eyes-closed states
identified by the classifier. Seven

commands generated using
three-component encodings of the
states. Commands: turn left, turn

right, turn left 45◦ , accelerate,
decelerate, forward, backward.

N/A

Alhakeem, 2020 [60] 6

Eye blinks and jaw clench were
used to create six commands using

three-component encodings:
forward, backward, stop, left, right,

keep moving.

70%

6.2. Spelling and Induced Emotions

Other endogenous paradigms included spelling [25] and self-induced emotion
paradigms [57]. Spelling [25] is a control paradigm that could present an intuitive control
approach. However, only one system in the literature used this method, applying it to
wheelchair control [25]. Furthermore, although the system obtained a success rate in trials
of over 90%, it was a synchronous system. The success rate denoted the rate of correct com-
pletion of a navigation task on the wheelchair. Moreover, the idle state was not included
as a class; thus, to keep moving forward, the user had to continuously spell the word
“FORWARD”, which was mentally taxing and impractical. Self-induced emotions [57],
which can be generated by recalling memories or emotive concepts, were found to be effec-
tive for asynchronous control of a wheelchair, with a success rate between 73% and 85%
in executing four commands. However, induced emotions are a highly counter-intuitive
approach because emotions cannot be logically related to navigational commands; for
example, induced anger and sorrow were used to issue commands to turn left or right [57].
This was in contrast to more intuitive systems based on spelled commands such as “LEFT”
and “RIGHT” [25] or imagined left-hand and right-hand movements [55] that could be
easily associated with the commands to turn left and right. Furthermore, users had to make
an effort to self-induce emotions despite their current mood, which may be challenging in
everyday life. Self-inducing emotion may also be more mentally demanding than other
paradigms, such as facial movement, which use relatively straightforward actions such as
blinks [58,59].

6.3. Facial-Movement Paradigms

Facial-movement paradigms have been touted as a viable alternative to other endoge-
nous paradigms such as MI because they have much lower BCI illiteracy rates [59]. This
is because facial movements such as blinks and eyebrow or mouth movements produce
distinct signal characteristics in EEG data that can be detected with a relatively high accu-
racy [58,59]. Sequential facial-movement paradigms have also been used to augment the
number of commands executed using a small number of facial actions. These operate in a
similar way to sequential MI commands, requiring the user to carry out sequences of facial
actions, typically three [24], to generate commands. As with sequential MI commands, this
requires the user to remember sets of arbitrary sequences of commands, which may require
training for successful adaptation. Facial-movement paradigms can lead to counterintuitive
or impractical commands such as a furrowed brow for closing a prosthetic hand [59] or
closing one’s eyes for prolonged periods of time while navigating a wheelchair [24].
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6.4. Multiparadigm Systems

Table 2 shows the details of mixed-paradigm systems. Three of these systems merged
traditional MI with other paradigms to attempt to overcome the relatively poor classification
accuracy of MI systems when compared to exogenous systems such as SSVEP [9].

Ortiz et al. [61] proposed a mixed paradigm based on MI classification and attention
detection for controlling an exoskeleton. Attention detection is used to identify when
the subject has a high attention level, which can occur when concentrating on generating
MI. They applied this system to a two-class problem: MI for walking, which made the
exoskeleton walk; and the idle state, which led to stopping. In this approach, the EEG data
was passed through two independent decoders, one to identify the MI and one to identify
the attention level. They then merged the decisions of the two decoders in an ensemble
based on the certainties of each decoder output. Using MI and attention together resulted
in an accuracy of 67%, compared to 56% for MI and 58% for attention alone. In the online
testing phase, as given in Table 2, the traditional MI paradigm outperformed the MI and
attention paradigms, and the authors hypothesized that this was due to lags in the online
system. In all the experiments presented, the accuracies were relatively low, considering
it is widely accepted that having an accuracy of over 70% is required for a reliable online
system [4].

Table 2. A summary of EEG paradigms, devices, and control functions in the literature for multi-
paradigm systems.

Paper Paradigm Device No. of Classes Classes and Control
Function Accuracy

Ortiz, 2020 [61] Traditional MI +
attention

Lower-limb
exoskeleton 2 Walk MI—walking;

idle—just stand
Traditional MI: 63%;
MI + attention: 45%

Tang, 2020 [2] Traditional MI +
facial movement Wheelchair 4

Left-hand MI—turn
left; right-hand

MI—turn right; eye
blink—go straight

84%

Kucukyildiz,
2017 [33]

Mental arithmetic +
reading Wheelchair 3 Idle—turn left; mental

arithmetic—turn right N/A

Tang et al. [2] merged a facial-expression paradigm and motor-imagery paradigm to
expand the number of commands. A wheelchair could be controlled through left-hand MI,
right-hand MI, or blinking to turn left, turn right, or move forward, respectively. However,
this paradigm required continuous deliberate blinking to move forward, which may be
uncomfortable.

7. Shared Control

Shared control involves merging the BCI decoder output with information from
environmental sensors to control the dynamic device. Shared control has been mainly used
to implement emergency stopping, obstacle avoidance, and semiautonomous navigation in
dynamic devices.

A total of 27% of the papers reviewed (18 papers) explicitly discussed shared control as
a part of the proposed systems. However, this did not mean that the other systems did not
use information from sensors on the dynamic devices to regulate the behavior of the system.
In fact, it was common for the BCI to be used to issue high-level commands to devices
such as exoskeletons, orthotics, or robotic arms with grasping capabilities, then these
devices executed those commands using internal sensors for guidance [40,43,44,62–65].
This section, however, reviews papers that explicitly discussed shared-control strategies as
part of the presented work.

Shared control presents a trade-off between the autonomy of the user in controlling
the system through the BCI decoder and the control actions taken based on feedback from
sensors. This leads to different levels of shared control, with higher levels of shared control
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leading to a greater impact of the sensor information on device performance. This section
discusses these levels of shared control, which ranged from passive communication of
sensor information to the user at the lowest level to semiautonomous systems that could
navigate to a target selected by the user at the highest level.

The lowest level of shared control in the reviewed literature facilitated passive com-
munication from the dynamic device to the user [66]. The earliest examples of this were
in the BCI-controlled quadcopter studies by LaFleur et al. [27] (2013) and Kim et al. [26]
(2014), in which a video stream recorded from the hull of a quadcopter was fed back to the
subject. Later, in the study by Li et al. [66], an RGB sensor was attached to a mobile robot,
and incoming images were processed using a deep learning simultaneous localization and
mapping (SLAM) algorithm to identify objects. The maps were then displayed on a graphi-
cal user interface (GUI) with possible obstacles highlighted. The user was responsible for
carrying out obstacle avoidance based on this feedback. This type of shared control would
be useful for applications involving remote control, such as robots that explore debris after
an earthquake or flying a drone from another location. This is the lowest level of shared
control, since it merely feeds back sensor information to the user, leaving them to carry out
obstacle avoidance and navigation.

Gandhi et al. [67] presented a slightly higher level of shared control in which the user
could control the movements of a mobile robot by selecting directional commands such
as left, right, forward, backward, and halt from an intelligent adaptive user interface. The
intelligent adaptive user interface ordered the commands according to sensor feedback so
that the commands facilitating obstacle avoidance were at the top of the menu, whereas
more risky commands were toward the bottom of the menu. This made it easier for the
subject to easily select the recommended commands that would support obstacle avoidance
while still giving them full autonomy to select any navigation command in the system.
Menu navigation was carried out through MI commands.

A similar approach was presented by Shi et al. [30] for an UAV. A laser range finder
and video camera were used to identify obstacles in the vehicle’s path. When an obstacle
was detected, the UAV hovered and the user was presented with a menu of options for
commands that would facilitate obstacle avoidance (the options could consist of turn left,
turn right, or continue ahead, depending on the situation). The user could, however, choose
to not take the suggested actions, override the menu, and then control the UAV fully
through the BCI.

Some studies used shared control for emergency stopping. Emergency-stopping
systems offer a higher level of shared control, since the feedback from the sensors can
automatically stop movement of the device, thus superseding the BCI decoder output
during emergency situations. Infrared [24], ultrasound [12], and Kinect sensors [33] have
all been used to detect obstacles and stop the movement of a mobile device if an obstacle
was nearby. Once the device was stopped, the user was required to use BCI commands to
navigate around the object.

Navigating around obstacles manually through a BCI, however, can be tedious [5].
Furthermore, some devices, such as robotic manipulators, require fine movement control
that may not be possible with current EEG-based BCI decoders [68]. These issues can be
addressed through higher-level shared control systems that implement automatic obstacle
avoidance or the execution of fine motor control. Obstacle-avoidance algorithms use
incoming sensor data to guide the movement of a device around objects. The earliest
example of obstacle avoidance being used with a BCI for dynamic device control was in the
2003 work of Millán et al. [16]. In this BCI, the subject controlled the direction of travel (left,
right, or forward) of a mobile robot through a maze, and the mobile robot could perform
obstacle avoidance or emergency stops automatically if there was a risk of a collision. When
the robot encountered a wall, it followed the wall until the subject issued a command that
moved the robot away from the wall. Details of the control algorithms were not included
in the paper.
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A later study [52] implemented obstacle avoidance such that whenever an object was
identified, the mobile robot maximized the distance between the robot and the obstacle.
During obstacle avoidance, the BCI-issued user commands were ignored. Although this
approach prevented collisions, maximum margin obstacle avoidance may be unsuitable
for applications in which subjects need to approach objects at close range; for example, to
inspect them or pick them up.

In 2015, Leeb et al. [5] presented a telepresence robot that used the artificial potential
fields method to enable the robot to approach objects at close range. Artificial potential
fields are a standard path-planning approach [5,69] and involve modeling objects in the
environment as either attractive forces, which pull the planned path toward them, or
repellant forces, which push the path away. Infrared sensors on the robot were used to
identify nearby objects [5], and the objects were modeled by attractive forces if the BCI
decoder indicated that the direction of travel was toward that object. Otherwise, the object
was modeled by a repulsive force. Using this approach, the telepresence robot could
navigate a cluttered living environment. The shared control approach was effective: when
comparing the average results obtained when using shared control to when the robot was
controlled with just the BCI decoder; using shared control resulted in trials that were 33%
faster and required 15 fewer commands.

Another study used artificial potential fields to guide the movement of a robotic arm
toward targets based on the BCI decoder output and targets identified through a Kinect
sensor [69]. In this work, the objects were detected using the Kinect sensor, and the BMI
decoder’s output gave an indication toward which target the subject would like to move the
robotic arm. This target was then assigned an attractive force, and the arm moved toward
the target. A blending parameter was used to balance the influence of the BCI decoder and
the sensor on the movement of the arm to ensure that the user could exert influence over
the system. This blending parameter was used to fuse the robotic arm velocity obtained
from the BCI decoder with the ideal velocity vector, which would transport the arm directly
toward the target that the system predicted the subject wanted to reach. This blending
parameter ensured that if the system had incorrectly interpreted the direction of movement
desired by the subject, the arm did not immediately move to the incorrect target, while
at the same time it enabled the sensor data to aid the movement of the arm toward the
desired object, possibly reducing mental fatigue and frustration in the user [69].

Shared control has also been used to facilitate finer reach and grasp motions in a robotic
arm, which can be challenging to execute when using just the BCI decoder output [49,68].
For example, Li et al. [68] facilitated control of a robotic manipulator in three dimensions
through a shared-control strategy. They divided the workspace of the manipulator into two
areas: an inner area where the targets were located, and an outer area. The manipulator
was governed by different control laws depending on the area. When in the outer area, the
user commands issued by the BCI for moving left, right, up, down, forward, and backward
were closely followed; however, when the manipulator joint was pushed outside of the
bounded outer area, the joint was reset, pulling the manipulator toward the inner area
again. The inner workspace was divided into a fine grid of possible locations, and the
navigation of the manipulator was guided toward one of these definite locations. At each
update, the manipulator was moved to one of the six grid-points neighboring its current
position, and the location selected depended on the current location of the manipulator
and the output command from the BCI. This enabled finer control of the movement of the
manipulator within the inner area.

Shared control has also been used to implement clean-cut control modes between the
BCI and the underlying controller [50]. In the approach by Xu et al. [50], the user, through
the BCI decoder, was generally in full control of the movements of a robotic arm. However,
the arm was equipped with a depth camera that could sense targets, and once the arm
was within a certain distance from a detected target, an autonomous controller took over
the grasping motion to seize the target object. This removed the need for a user to issue a
grasping command, and saved the user from the possibly frustrating process of eliciting
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fine motor control through the BCI alone. However, this approach may be inappropriate
for grasping objects in a crowded environment, since the object on which the subject is
focused may not be clear.

Semiautonomous systems provided the highest level of shared control in the reviewed
literature. The gaze-and-BCI upper limb exoskeleton presented by Frisoli et al. [70] enabled
a subject to select a target object through eye-gaze tracking and activate the upper limb
exoskeleton through MI, and then the exoskeleton moved autonomously to grasp the target.
A Kinect camera was used to identify the objects in the subjects’ view range, and then the
eye-gaze tracking data was transposed onto the segmented Kinect image in order to identify
the object at which the subject was looking. Another semiautonomous system was the BCI-
controlled wheelchair by Zhang et al. [71], in which the subject selected a destination from
a menu, and then the wheelchair performed path planning, path following, and obstacle
avoidance to guide the subject to the desired destination. Menu navigation was carried
out using an MI paradigm, while path planning was carried out using the popular A*
algorithm, which finds the shortest path between two locations, and proportional–integral
control was used for path following [71].

Figure 4 shows a taxonomy for the shared control approaches discussed throughout
this section. Based on the reviewed literature, shared control could be split into two major
branches: those that just passed sensor feedback to the BCI user [66,67], and those that had
some element of automation involving a controller that executed actions based on sensor
data. Shared-control paradigms with an element of automation could be further divided
into those in which the BCI always had influence over the behavior of the system, even when
obstacle avoidance was being carried out [5,69], and those in which the input from the BCI
was sometimes ignored, with the sensor-based controller completely taking over operation
at certain times. The latter type of shared control could be clearly grouped into two branches:
the first consisted of BCIs that enabled users to issue low-level commands and an automatic
controller with an assistive nature that was designed to take over operation infrequently
during specific events such as emergency stops [12,24,33,50,68]; the second consisted of
semiautonomous systems in which the BCI was used to issue high-level commands, such
as selecting the destination for a BCI-controlled wheelchair, and then the sensor-based
controller executed those commands [70,71].
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Although systems with higher levels of shared control may reduce the mental work-
load on the subject by enabling them to navigate complex tasks faster and with fewer
commands [5], as the level of shared control increases, care must be taken to ensure that the
will of the user is not overridden by the sensor-based control algorithm. Since the desired
level of shared control may vary between subjects, tunable systems that allow for variation
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in the level of shared control, such as in the work of Kim et al. [69], may be important for
commercial BCIs.

8. Obtaining Stable Control from BCI Decoders

The majority of the papers we reviewed obtained the control signal directly from the
output of the BCI classifier [2,28,31,33,37,43,46,48,50,56,59–61,63,66,72]. For asynchronous
systems, this generally involved windowing the EEG data and obtaining a classification
output at a regular rate [2,28,33,37,43,46,48,50,56,59–61,63,66,71,72]. This classification
output was used to drive the external device. However, BCI decoders are known to have
an unstable output that is prone to spurious misclassifications [13,54], and some of the
reviewed papers attempted to mitigate this to provide a more stable BCI control signal for
control [13,35,54]. The two main approaches in the literature for obtaining stable control
signals were false-alarm approaches and smoothing approaches.

8.1. False-Alarm Approaches

The false-alarm approach was the most straightforward one used in the literature to
obtain a smoother control signal [52,54]. This approach is based on the assumption that a
subject cannot change their mental state instantaneously. Thus, when the system identifies a
change in mental state at the classifier output, either dynamic operation is paused until the
output stabilizes, or the current state is maintained until a certain number of consecutive
classifier outputs are of the same state.

In 2012, Chae et al. [73] presented a comprehensive fading feedback rule that was
based on the false-alarm approach. In this approach, in order to execute a command,
a “buffer” of four similar consecutive classification outputs for the command had to be
achieved. Once the buffer was full, the system continued to execute the command as long
as the BCI output remained consistent. If the classification output did not match the current
control state, command execution paused, and one level was removed from the buffer. If the
subject wished to continue in the current command state, then they had to issue a correct
classifier output to top up the buffer before execution of the command could recommence.
Otherwise, to change state, the subject had to execute three more BCI decoder outputs
that were not the current state to reduce the buffered values to zero, and then execute four
consecutive correct classifications of the new desired state to refill the buffer and begin
executing the new command. This meant that the fastest way to change state involved
the BCI classifier outputting the same label for eight consecutive samples. Chae et al. [73]
verified that this approach improved the classification accuracy, but resulted in longer
decision times for the BCI system.

In 2015, Hortal et al. [74] presented a slightly different approach for controlling a
robotic arm: the latest five consecutive classification labels determined by the BCI decoder
were considered, and if all five were the same the movement, the command was executed;
otherwise, no action was taken and the arm remained at rest.

More recent approaches, such as those of Ai et al. [54] (2019) and Zhuang et al. [52]
(2021), used more straightforward approaches for false-alarm systems that only required
two or three consecutive samples, respectively, to be similar. This introduced lower latency
than the eight-step process for changing the buffer state in the work of Chae et al. [73].
Although Ai et al. [54] commented that the false-alarm system could reduce false positives,
this benefit was not verified experimentally in [54] or by Zhuang et al. [52], and neither cited
literature to support this design choice. Verification of the effectiveness of the false-alarm
approach is desirable.

Figure 5 compares the operation of the four different false-alarm approaches discussed
in this section. This illustrative example is for a two-class problem, in which classes A
and B are related to different mental states that cause different types of movement in the
dynamic device. The blue bars show the output of the BCI classifier at the previous time
step, and the orange bars show the action taken in the dynamic device at the current time
step. It is immediately evident that there was a significant philosophical shift in these
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false-alarm approaches: the earlier approaches of Chae et al. [73] and Hortal et al. [74]
halted the operation of the device when the BCI classifier outputted a different label and a
false alarm was triggered, while the more recent approaches by Ai et al. [54] and Zhuang
et al. [52] just maintained the current device state through the false-alarm condition. By
halting operation earlier, approaches could successfully reduce the time spent executing an
unwanted command, but this resulted in episodic movements of the device, which could
affect the smoothness of operation that subjects might expect in an asynchronous BCI. Later
works that maintained the current state gave the user a better impression of continuous
device control when spurious misclassifications occurred. However, they could remain in a
control state for longer than the subject intended if the classifier was susceptible to high
levels of instability.
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Figure 5. Comparing different false-alarm approaches. The blue bars show the BCI classifier output
at the previous time step, and the orange bars show the decision made at the current time step. The
example is for a two-class problem in which A denotes the classifier label for one mental state and B
is the label for the other state. Each mental state was related to a different movement in the dynamic
device. During “no action” phases, movement of the device was paused. In this example, it was
assumed that at the start, the BCI classifier was outputting in class A for a long period (more than
eight consecutive samples). Four different approaches are presented, namely those by Chae et al. [73],
Hortal et al. [74], Ai et al. [54] and Zhuang et al. [52].

8.2. Smoothing Approaches

Some works in the literature smoothed the control signal [5,13,41,45]. The most
straightforward approach in the literature involved averaging the label probabilities out-
putted from the classifier over a number of consecutive time steps, with studies using
two [41], three [45], four [75] or eight steps [16]. Leeb et al. [5] used a weighted average of
the present BCI decoder output and the previous smoothed output sample. The weighting
parameter could be tuned for each individual subject. The class associated with the highest
smoothed probability was the class assigned in the control signal.

In 2019, Tonin et al. [13] presented a dynamical smoothing method that drove a control
signal to one of three stable points, corresponding to left- and right-turn actions for mobile
robot control and the idle state, which corresponded to no robot-turning action while the
robot continually moved forward. The approach involved calculating two mathematical
forces that were then used to determine the change in the control signal from one time step
to the next. The first force was influenced by the value of the control signal at the previous
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time step, while the second was influenced by the BCI decoder output at the current
time step. The proposed approach was compared to the weighted average smoothing
approach of Leeb et al. [5] for navigating a mobile robot toward one of six targets within
a fixed space. The approach by Tonin et al. resulted in a shorter length of the trajectory
to reach a predefined target and a higher accuracy in terms of times the targets were
successfully reached.

9. Overcoming the Limited Degrees of Freedom in Endogenous BCIs

One of the core issues in endogenous BCIs is that even with state-of-the-art signal-
processing and classification techniques, the number of classes that can be accurately
classified is limited [1,28]. This is evident in Table 1, which shows that endogenous systems
based on mental commands were often limited to four commands or less. Since dynamic
devices typically have a high number of degrees of freedom, innovative solutions have
been found to facilitate their control through endogenous BCIs. The main solutions in
the reviewed literature were sequential control paradigms, hybridization of the BCI, and
menus that could be navigated through limited commands.

9.1. Sequential Command Paradigms

Sequential command paradigms require the subject to issue commands by executing
two endogenous mental activities sequentially, as briefly introduced in Section 6. A sequen-
tial paradigm involves training a classifier on a number of singular endogenous activities,
such as left-hand MI. However, during online use of the BCI, subjects issue commands by
sequentially carrying out mental activities; for example, imagining left-hand MI followed
by right-hand MI. Postprocessing of the classifier output is used to identify the sequential
activities and thus the command to be issued.

The earliest reporting of a sequential command paradigm was in the 2014 synchronous
BCI by Li et al. [68], which was designed to control a robotic manipulator. In that paper, a
classifier was trained on five different classes; namely, the rest state and four MI classes,
which were left-hand, right-hand, foot and tongue MI. From these five classes, they obtained
six commands through the following pairings: left-hand MI followed by idle to move left,
right-hand MI followed by idle to move right, tongue MI followed by idle to move up, foot
MI followed by idle to move down, left-hand MI followed by foot MI to move forward,
and right-hand MI followed by foot MI to move backward.

In their 2018 paper, Yu et al. [1] presented a similar sequential MI-based paradigm,
but applied it to asynchronous control of a wheelchair. The system was based on a linear
discriminant analysis (LDA) classifier that could classify left-hand MI, right-hand MI,
and idle-state data. The user could generate four commands using these three classes by
carrying out these sequential commands: left-hand MI then idle, right-hand MI then idle,
left-hand MI then right-hand MI, and right-hand MI then left-hand MI. The sequentially
executed commands were determined by performing template-matching postprocessing
on the output of the classifier.

Sequential-command paradigms have also been used in conjunction with facial-
movement commands. In their 2021 paper, Banach et al. [24] obtained seven different
commands to control wheelchair movement from endogenous brain signals obtained from
two activities; namely, eyes open and eyes closed. Unlike the works of Yu et al. [1] and
Li et al. [68], which required the user to issue two-step sequential commands, Banach et al.’s
study used a three-step sequential command setup in a synchronous manner. Since each
step required three seconds, each command took up to nine seconds to perform, introducing
an impractical latency into the system.

Although sequential paradigms are able to increase the number of commands and
have been shown to be effective for both synchronous and asynchronous BCIs, there
is no rigorous comparison between a sequential command paradigm and a standard
BCI paradigm. For example, Yu et al. [1] obtained four commands from three mental
activities—left- and right-hand MI and idle—using the sequential MI approach; however,
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this was not compared to using a standard four-class MI paradigm consisting of, for
example, left-hand, right-hand, legs, and tongue MI. Thus, several open questions remain,
such as whether this two-step command paradigm with three mental activities will have a
lower accuracy than a similar one-step command paradigm due to its sequential nature;
in other words, does this still result in a higher accuracy than the four-class MI paradigm,
which is expected to have lower accuracy? If the sequential paradigm results in better
accuracy, is this worth the trade-off of higher latency? Since multistep paradigms require
subjects to remember compound commands that may not be intuitive, does the cognitive
load of such paradigms make them less practical and attractive to users? Thus, the true
value of a sequential paradigm as opposed to a single-step paradigm is still open.

9.2. Finite-State Machines

In their 2018 paper, Yu et al. [1] used a finite-state machine to increase the number
of commands that could be issued by the subject to control a wheelchair. The previous
subsection discussed how a sequential command paradigm was used to increase the
number of commands from three to four. The finite-state machine was then used to
increase the number of commands that the subject could issue to six, thus enabling them to
trigger commands to start, stop, turn left, turn right, accelerate, and decelerate. This was
because different sequential commands were linked to different actions in the wheelchair,
depending on the current state of the system. For example, if the wheelchair was at rest,
the left-idle sequential command could be used to start the wheelchair moving at a low
speed, while issuing the same command while the wheelchair was already moving would
result in an acceleration. A success rate of 94% was obtained for navigation tasks, which
involved traversing a set route that included passing by specific waypoints and evading
an obstacle. The “success rate” referred to the percentage of tasks successfully completed,
with success being defined as reaching all the waypoints and not colliding with the obstacle.
Together, the finite-state machine and sequential paradigm were effective in circumventing
the issue of poor classification of the multiclass MI data by restricting the classifier to three
classes. However, the finite-state machine required the user to remember the multiple-state-
dependent meanings for some commands, which may have further increased the mental
load on the user.

9.3. Hybrid BCIs: Increasing the Degrees of Freedom through Additional Biosignals

In this review, the term hybrid BCI (hBCI) refers to systems that use other biosignals
in addition to EEG for driving an external device. Hybrid BCIs have primarily been used
to increase the number of commands that can be issued through an EEG-based BCI by
enabling the subject to issue commands through another biosignal paradigm [29,34,76].

In 2016, Soekadar et al. [34] presented an hBCI for controlling a motorized hand
exoskeleton that combined EEG and electrooculogram (EOG) signals. EEG signals related
to grasping intention were used to activate the exoskeleton to grasp. EOG signals related to
horizontal eye movements were used to open the exoskeleton. This device was successfully
used by subjects with quadriplegia and could be used to aid daily living activities based on
grasping motions, such as holding a mug or book.

Hybrid BCIs have been widely applied to BCI-controlled quadcopters [26,28–30],
possibly because these devices present a large number of degrees of freedom and can
be challenging to control even with standard manual controllers. Additional biosignals
have been used primarily to increase the number of control commands, but they have also
been used to increase system robustness [26,28–30]. In 2014, Kim et al. [26] presented a
BCI-controlled quadcopter that used EEG and eye-gaze tracking. A camera on the hull
of the quadcopter fed back a real-time image based on the quadcopter’s location, and the
subject controlled the movement of the quadcopter using eye movements. There were
two main control modes: in mode A, the subject could control the forward, backward, left
translational, and right translational motion of the device by looking up, down, left, or right,
respectively; using similar eye movements in mode B, the subject could control upward
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motion, downward motion, left rotation, and right rotation. Dual-modality commands were
used to control take-off/landing (simultaneous concentration and eyes closed) and change
between control modes A and B (concentration and looking at the center of the screen).

Chen et al. [29] presented a BCI-controlled quadcopter that used left-hand and right-
hand MI to control landing and take-off, and EOG signals to control navigation during flight.
To control the direction of quadcopter movement (left, right, forward, or backward), the
subject looked at a four-icon menu in which each icon was linked to a particular function.
The hBCI was found to be effective, exhibiting online command decoding accuracies
between 95% and 96% depending on the subject. However, restricting the user to focusing
on a menu during flight limited this system’s practicality: when flying a quadcopter, the
subject will usually be looking at the device, or in the least observing a livestream of its
movements on a screen.

Khan et al. [28] presented a more practical hBCI for controlling a quadcopter. The
system could accept up to eight commands, four of which were supplied through EEG
and four of which were supplied through functional near-infrared spectroscopy (fNIRS).
The EEG-based commands, which used a facial-movement paradigm, were horizontal
eye movements for landing, double blink to decrease altitude, eye movements in the
vertical plane for anticlockwise rotation, and triple blink to move forward. The fNIRS
commands consisted of mental activities, including imagined object rotation for take-off,
mental arithmetic to increase altitude, word generation for clockwise rotation, and mental
counting for backward movements. As a safety feature, the authors ensured complementary
commands were assigned to different recording modalities. For example, the take-off
command was issued using an EEG-derived command, whereas the “landing” command
was issued using fNIRS. This ensured that if an erroneous command was interpreted using
one modality—possibly due to a malfunction or poor signals being received at that time—a
corrective command could be issued by the subject using the other modality. In the offline
analysis, the fNIRS classifier obtained an accuracy of 77% and the EEG classifier obtained
an accuracy of 86%. The paper did not provide a performance measure for the online
flying task. Unlike the approach proposed by Chen [29], the subject could continuously
observe the motion of the quadcopter during use. However, the commands lacked intuition,
and forward movement required continuous triple blinking, which could induce fatigue.
Furthermore, both works were tested in simple flying conditions that did not require any
obstacle avoidance.

9.4. Menu Navigation with Limited Commands

Some systems allowed subjects to choose the behavior of the dynamic device through
a GUI-based menu that could be navigated using a limited number of commands.

The menu used in the work of Gandhi et al. [67] sequentially presented subjects with
pairs of options. The subject could pick one command from the five available in the menu
to control the movement of a robot; namely, forward, backward, turn left, turn right, and
halt. The menu also had a final option called “main” to return to the top of the menu. The
options in the menu were organized in pairs, and the subject could select using left-hand or
right-hand MI depending on whether they wanted to issue the command on the left or right,
respectively. If the subject did not want to select either of the options, they could remain in
the relaxed (idle) state, and the system would then show the next pair of commands. This
enabled the subjects to select one of five commands using just two different MI activities
and the rest state.

Zhang et al. [71] presented a menu that could be used by the subject to select one of
25 different target points within a room to which they want the wheelchair to move. The
menu was presented to the subject as a horizontal list of the numbers 1–25. The list was
divided in two, and the user could choose to select either the left-hand side of the list by
issuing a left-hand MI command or the right-hand side of the list by issuing a right-hand
MI command. The selected half of the list was then displayed to the user with the halfway
point indicated, and the user again selected the half of the list in which the desired location
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could be found. Eventually, the user was able to select the desired location from the final
two destinations on the list. In all, the selection process had to be carried out five times in
order to obtain the final destination, which resulted in a significant latency when using
the system.

The menu-based approaches discussed in this subsection provided different levels
of control to the user. Zhang et al. [71] proposed a semiautonomous system in which
the subject could only select the desired destination, and then the wheelchair navigated
autonomously to it. The implementation by Gandhi et al. [67] offered the subject lower-level
control of the system by enabling them to select a dynamic action such as turning left.

The approaches discussed in this section made use of the relatively high classification
accuracy that can be obtained when just two MI classes are used. Nevertheless, the
sequential selection process involved in these menus can be long and tedious, introducing
latencies that may make them impractical for a real-life BCI.

10. Error Handling

Error handling in online BCIs is a cutting-edge problem. As previously discussed in
Section 8, state-of-the-art BCI decoders experience spurious misclassifications that can affect
performance. In addition to these spurious misclassifications, mental-state changes in the
user, such as a drop in concentration, could also affect the performance of the BCI classifier.
These events result in erroneous behavior, which can be especially undesirable in dynamic
devices, since this could result in incorrect navigation or potentially dangerous collisions.

When humans perceive that an error has occurred, spikes known as ErrPs appear in
EEG signals [77]. Recent research has investigated whether ErrPs can be used to assist in
the control of BCIs [72,77].

Ehrlich et al. [77] designed an ErrP-based decoder to asynchronously identify ErrP
signals in a human subject observing a robot. The subject was aware of the task that the
robot was required to carry out, and thus when the robot committed an error, ErrPs were
generated in the subjects’ EEG data. When the ErrP decoder identified an error, the robot
automatically corrected its performance. This study indicated that ErrPs were a viable
paradigm for intuitive human–robot coadaptation.

In a ground-breaking study, Bhattacharyya et al. [72] paired MI and ErrPs to control a
robotic arm. The robotic arm had specific datums in a 2D plane that needed to be reached,
and subjects could issue commands first to rotate the arm through right-hand MI, and
then to change its planar position using foot MI. In order to stop the rotation or the planar
movement at the datums, an ErrP decoder continuously monitored the data for ErrPs, and
upon detection stopped movement of the arm. Although this was a basic BCI with limited
applications, it was the only example in the reviewed literature that illustrated the use of
asynchronous ErrPs to control an external dynamic device in conjunction with another
paradigm, such as MI.

11. Signal-Processing and Classification Techniques at the Cutting Edge

BCIs that are used for dynamic device control must be driven by reliable and high-
accuracy EEG classification methods if they are to be used in practical applications. Al-
though the requirement for high classification accuracy is not unique to BCIs for dynamic
device control, since these devices often have to navigate complex environments or carry
out fine motor tasks, precise control is even more crucial. Many of the studies in the
reviewed literature focused on presenting novel classification techniques with the aim of
improving classification performance. A high classification accuracy means that the user
can obtain finer control of the dynamic system, enabling them to perform more precise
movements, such as selecting a target object from a cluttered space using a robotic arm or
navigating a sharp corner using a wheelchair.

This section provides an overview of the signal-processing and classification tech-
niques used, with a specific focus on novel signal-processing techniques that were presented
for use in BCIs for dynamic device control.
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The techniques used can be broadly categorized as either traditional machine-learning-
based or deep-learning-based. Figure 6 gives an overview of this categorization. It is
evident that traditional machine learning tended to dominate the literature, with deep
learning methods, which are an emerging field when compared to traditional machine
learning, constituting just 6% of the methods used (four papers). One paper merged both
deep learning and traditional machine learning techniques to form ensemble classification
techniques, and these accounted for the remaining 2%. The rest of this section discusses the
traditional machine learning techniques used, followed by the deep learning techniques.
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11.1. Features for Traditional Machine Learning Techniques

Figures 7 and 8 summarize the features and classifiers used in studies based on
traditional machine learning techniques, and capture how frequently each method was
used. Note that some studies used multiple features or multiple classifiers. In total,
61 studies used just traditional machine learning.

When considering the results shown in Figure 7, it is immediately evident that com-
mon spatial pattern (CSP)-based features were the most popular. This was not surpris-
ing, since CSP features, which can be used to extract spatial features from EEG time
series, have a long history as robust features in MI EEG classification [78], and 80% of
the reviewed studies used an MI-based paradigm. Many studies used traditional CSP
features [29,37,43,44,51,53–55,63,66], which were established for MI EEG classification [78].
However, filter bank CSP features, which have been shown to perform better than tradi-
tional CSP features [79], were also common [35,46,47]. Filter bank CSP feature extraction
involves first passing the EEG signal through a filter bank, then extracting CSP features
from each frequency band, and then performing feature selection to obtain the most dis-
criminative subset of features [79]. Although this method improves the accuracy when
compared to the traditional approach, the feature selection process can increase the training
latency [80].
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In total, 23 studies used time-domain modeling features (such as autoregressive
features [48]) or multichannel time series data for classification [58], whereas 17 used
frequency [17,72] or time-frequency domain features [65]. Time-series data are sometimes
directly used for thresholding classification, which will be discussed in detail in the next
subsection [58,81]. In real-time systems, low execution times are essential, and past research
has indicated that time-domain features can have a similar performance to frequency-
domain features, with the added benefit of a lower computational complexity [82].
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Riemannian-geometry-based features are an emerging approach that was applied
in two rehabilitative pedaling-machine BCIs [31,56]. They were used due to their low
computational cost and strong classification performance [56].

Some studies used a mixture of different features in order to characterize EEG data.
The aims of these approaches were to better represent MI EEG data, which exhibits spatial
and frequency-domain changes between classes, and which evolves in time through event-
related synchronization and desynchronization processes [83]. Many studies used CSP
features to capture spatiotemporal characteristics in the data, and then paired them with
time-domain features [37,45], time-frequency domain features such as the discrete wavelet
transform [40,84], and/or functional brain network features [54]. Other studies paired
time-domain features with time-frequency domain features [60,72,85] or frequency domain
features [61].

Studies comparing the effectiveness of various features for online control of dynamic
physical devices, both from an algorithmic performance perspective and from a user
experience perspective, may provide insight into which features tend to result in the best
overall performance. Unfortunately, no such study was found in the reviewed literature.

11.2. Classifiers for Traditional Machine Learning Techniques

Figure 8 presents a bar plot of the classifiers used in traditional machine learning
systems. Specifically, the heights of the bars indicate how frequently each classifier was
used, while the stacking colors show which features were paired with each classifier. In this
section, the prevalence of different classifiers is discussed first, then the classifier–feature
pairings are analyzed in more detail. Note that the aim of this plot was to analyze the
different feature–classifier pairings; this means that in papers that used different types of
features in the feature vector but only one classifier, the classifier was counted multiple
times in the plot shown (i.e., once for each feature). For example, Bhattacharyya et al. [72]
used both time-frequency domain features and time-domain features to construct a feature
vector that was input to a support vector machine (SVM) classifier. In order to construct
Figure 8, the SVM classifier from that study was counted twice: once when paired with the
time-domain feature category, and once when paired with the time-domain category.

Discriminant analysis classifiers were overwhelmingly the most popular classifiers
used in the literature. Of the classifiers that fell into this category, 25 were LDA classi-
fiers, while information [86], quadratic [73], and spectral regression discriminant analysis
classifiers, which mitigate the curse of dimensionality problem in LDA [54], were the
others used.

Although popular, the LDA classifier was mostly applied to binary classification
problems: in 17 out of 25 instances in which the LDA classifier was used, it was applied to
a binary classification problem. This may have been due to the fact that nonlinear decision
boundaries may be generally more suitable for multiclass classification [87]. However, none
of the papers provided an extensive study into the effectiveness of LDA as a multiclass
classification approach to dynamic device control. Although LDA is widely used, it can
also provide a baseline performance that can be used for comparison.

Although LDA may be preferable due to its low computational training time [28],
SVM was also a popular classifier due to its reliability [35,40]. Many studies applied the
SVM classifier to binary classification [29,60,63,66], while other papers used expansions of
the SVM classifier to enable multiclass classification [40,52]. Zhuang et al. [52] presented a
majority-voting-based approach for four-class MI classification. This involved training six
SVM classifiers in a one-vs.-one approach for each possible pairing of MI commands. The
final classification label was assigned based on the class that obtained the most votes from
the six classifiers. Gao et al. [40] used a directed acyclic graph to apply the SVM classifier
to a three-class MI problem that consisted of MI for ascending stairs, descending stairs,
and floor walking. This approach introduced hierarchical classification, with the top layer
classifier trained on ascend-vs.-descend MI and the two lower-level classifiers trained on
data for floor walking vs. ascend and floor walking vs. descend.
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Fuzzy-logic-based classifiers are a promising alternative to the popular SVM and LDA
classifiers [14,55]. Andreu-Perez et al. [14] conducted an online mobile robot control task
to compare their multiclass novel fuzzy classification approach, which they called GT2
FS, to other approaches in the literature, including LDA and SVM classifiers. The task
began with the robot moving in an empty space. An obstacle was then placed in the space,
and the subject had to use left- or right-hand MI to turn the robot to the other side (i.e.,
right or left). The aim was to avoid the obstacle placed in the robot’s path. The GT2 FS
system obtained a classification accuracy of 86% for a three-class classification problem,
which was notably better than that of the LDA classifier at 58%, and of the radial basis
function SVM classifier at 61%. These BCI classification accuracy results were obtained
while executing the robot navigation task. Within the proposed framework, each MI class
was described using a number of fuzzy rules. These rules were based on prototypes
built from the EEG data in an unsupervised way using the fuzzy Gath–Geva approach,
as well as a small amount of training data that was used to assign prototypes to certain
MI classes. Andreu-Perez et al. [14] also tackled a key problem in BCI classification: due
to the nonstationarity of EEG data, misclassifications can occur over time as the online
data diverges in its statistical properties from the data used for training. They proposed
an online adaptation framework that used unsupervised learning to update the classifier,
reducing the domain shift between the training data and incoming online data.

Gaussian [13] and Bayesian posterior-probability [45] classifiers can model the inherent
uncertainty in EEG data, producing probabilities associated with each class that give a
reliable estimate of the certainty of the classifier [13]. These probability labels have been
used to smooth the output BCI signal to prevent spurious misclassifications, and were
discussed in more depth in Section 8.2.

Thresholding-based classifiers were used for paradigms that had highly distinctive
EEG patterns [24,58]. Blinks, for example, could be easily identified as relatively large-
amplitude spikes in the signal, and an amplitude threshold on the time-series data could
be used to identify them [58]. A thresholding approach for power spectral density features
was established to distinguish between the eyes-open and eyes-closed states, which was
possible due to the notable alpha-band power that occurred when subjects closed their
eyes [24]. Thresholding has also been used to discriminate between MI classes [38,42].

Relatively simple, shallow neural networks have been shown to be effective for endoge-
nous device control [16,25,68,86]. Junwei et al. [25] presented a BCI-controlled wheelchair
that was tested with subjects who had a neurodegenerative illness, and obtained a 93%
success rate for navigation tasks in an everyday environment. The paradigm was based on
mentally spelling the commands “LEFT”, “RIGHT”, “BACKWARD” and “FORWARD” to
control the wheelchair accordingly. Two EEG channels, T3 and T4 were used. For feature
extraction, a Chebychev filter bank with 22 frequency bands was used to filter the EEG
data, and the band power for each band was extracted and summed across the channels
used. The log transform of these values was then used as the feature vector. For classifi-
cation, these features were input to a radial basis function neural network with a single
hidden layer. Although this system had a high success rate, it operated in a synchronous
way, which involved recording 5 s of EEG data, during which the subject issued the next
command, executing the command and then repeating the process. This introduced an
operational latency.

Li et al. [59] presented an asynchronous control approach that used a multilayer
feed-forward neural network and wavelet transform features to control movements of
a prosthetic hand. Control was based on a facial-expression paradigm consisting of the
expressions raised brow, furrowed brow, left smirk, and right smirk to issue the commands
open hand, close hand, rotate wrist right, and rotate wrist left, respectively. In an online
experiment that mimicked the hand movements required for drinking a glass of water, a
success rate of 81% was obtained across subjects.

Although effective, the works of Junwei et al. [25] and Li et al. [59] may not be ideal
for practical BCIs. In the case of the work by Junwei et al. [59], the synchronous operation



Sensors 2022, 22, 5802 25 of 36

introduced approximately 7 s of latency between commands being issued. In the case of
Li et al. [59], although the facial-expression paradigm enabled fine control of the prosthetic
hand, this paradigm was not intuitive for a practical prosthetic.

Ensemble learning of traditional machine learning classifiers has been shown to
improve classification performance [33]. Kucukyildiz et al. [33] merged SVM, random
forest (RF), and artificial neural network (ANN) classifiers for improved control of the
direction of a BCI-controlled wheelchair. A hierarchical classification approach was used: if
the certainty in the label assigned by the ANN was above a certain threshold, then the label
assigned by the ANN was used. Otherwise, if the SVM and RF classifiers agreed on the
classification label, this was assigned. If this was not the case, the individual output of the
SVM classifier, then that of the RF classifier, were considered. If neither of the labels were
assigned with certainties above a certain threshold, then the sample remained unclassified.
This meant that the system did not take action on the data and continues operation in the
previous control mode. Using the ensemble resulted in an average sensitivity of 85% across
the three classes, compared to 65%, 76%, and 79% for the ANN, SVM, and RF classifiers
alone, respectively. Unlike other studies discussed, this paper did not quote accuracy or
success rate as measures of performance, so it could not be directly compared to other
methods; however, this result did indicate that an ensemble of classifiers may be beneficial.

Spychala et al. [37] proposed an ensemble learning technique based on logistic regres-
sion for a MI BCI to control a robotic hand. For the ensemble, they trained three logistic
regression classifiers: one for distinguishing between the flexion MI and extension MI, one
for distinguishing between the flexion MI and the idle state, and one for distinguishing the
extension MI from the idle state. A finite-state machine for hand operation was constructed,
and this determined which classifiers were consulted at different times of operation. Finally,
probability thresholds for each classifier were tuned for each subject, and depending on
whether the classifier probability outputs fell above or below these thresholds, different
actions of the robotic hand were carried out. This approach was effective for online control
of a BCI by stroke patients, obtaining a median online accuracy of over 60%. There was
no comparison in the paper of the ensemble classifier to multiclass classifiers, so this is an
opening for future work.

The works of Kucukyildiz et al. [33] and Spychala et al. [37] illustrated that ensemble
learning can be effective for dynamic device control. Studies into offline EEG classification
have proposed a variety of novel ensemble learning techniques that could, in the future, be
applied to online dynamic device control. Salient ensemble learning approaches applied
to offline data have aimed to produce more generalizable classifiers that are robust to
the artifacts and nonstationarities present in EEG data [88–90]. In 2019, Raza et al. [88]
presented an adaptive ensemble learning technique. Covariate shifts in the incoming EEG
data were identified by monitoring the CSPs in the data using an exponentially weighted
moving-average filter. When shifts were detected, the ensemble of classifiers was expanded
by adding new classifiers that were adapted in an unsupervised way to compensate for
the shift. Later, Zuo et al. [90] proposed a cluster-decomposing-based ensemble learning
framework. Clustering decomposition was used to divide EEG data into subsets that
had different distributions, and each subset was used to train a different classifier. Then,
multiobjective optimization was used to select the best set of classifiers. The proposed
approach outperformed various benchmarking techniques. In 2022, Zheng et al. [89]
proposed an ensemble learning technique based on temporal features, spatial features, and
a multiscale filter bank. First, bootstrap sampling was used to divide the EEG data into
subsets. From each subset, 20 different SVM classifiers were derived. These classifiers were
obtained by preprocessing each subset using four different TDF techniques, thus obtaining
four different versions of the subset. For each version, spatial, temporal, and TFD features
were obtained. Then, five SVM classifiers were trained on different feature combinations,
with some selected using feature selection and others not. Thus, five SVM classifiers were
obtained from each of the four TFD-decomposed versions of the data. Weighted-decision
fusion amongst the classifiers was then carried out using weights derived with the L2-norm
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method. The proposed approach outperformed other classification techniques applied to
the same dataset.

Linear mappings are an alternative classification approach [38,42,48,57]. In the map-
ping designed by Kobayashi et al. [57], time-domain features were extracted from the EEG
data and then input to a linear formula that mapped the features onto class labels. In the
approach presented by Xu et al. [48], a linear mapping was used to control the movements
of a robotic arm in a 2D plane: the energy in the alpha and beta bands was estimated using
16th-order autoregressive coefficients, then weights were used to map these coefficients
onto the position in the x–y plane that the arm was directed to move toward.

CSP features were mostly used with SVM or LDA classifiers [35,47]. This type of
feature–classifier pairing is a classic BCI signal-processing pipeline for MI EEG [43,50,91].
Time-domain features appeared to be the most versatile in the reviewed literature, being
used with eight different classifiers [25,28,48,54,57,60,72,92]. Frequency domain features,
time series, and CSP features have all been used with four different kinds of classifiers,
indicating that they were also versatile. The results indicated that Riemannian, time-
frequency domain, and functional brain network features may be emerging features, and
future work could investigate how they perform with various other classifiers for dynamic
device control.

11.3. Deep-Learning-Based Techniques

In the simplest terms, deep neural networks are typically multilayer kernel networks
with more than one hidden layer. However, deep neural networks are also characterized
by novel architectural characteristics that have endowed them with various computational
benefits. Very commonly, though not exclusively, the raw data is provided to the deep
neural network, and then multiple neural layers effectively extract useful features for the
task at hand.

Due to the successful application of deep learning techniques in the domains of
signal processing and computer vision, research interest in applying them to EEG data has
been growing [41]. In recent years, research has shown that deep learning was especially
effective for the processing of nonstationary and nonlinear data [2], confirming that they
were appropriate for brain imaging and brain-signal decoding [41]. Novel deep learning
networks such as the spiking neural network (SNN) are of particular interest to BCI
researchers, since they are neuromorphic, meaning that their functionality imitates brain
activity [12]. This kind of functionality is not available in traditional machine learning
classification approaches.

Deep learning systems have been used to facilitate asynchronous control that used
more intuitive paradigms. In 2020, Tang et al. [2] presented a 1D convolutional neural
network (CNN) approach for controlling a wheelchair. The multichannel EEG time series
was arranged such that the electrodes on the left-hand side were grouped together first,
followed by those on the right-hand side, followed by signals representing the difference
between the signals on corresponding opposite sides of the scalp. In the CNN, EEG signals
were processed along the time axis. The CNN had a three-branch architecture consisting of
a small-scale kernel in the first branch, a large-scale kernel in the second, and a max-pooling
layer for subsampling followed by a convolutional layer in the third branch. The features
extracted from each branch were concatenated and then input to a classification layer. In
online tests, accuracy ranged from 70% to 92%, depending on the command issued; the
forward command, which was related to a facial-movement command, obtained the highest
accuracy. In an offline analysis of a two-class classification problem for left- and right-hand
MI, the 1D CNN approach obtained an average accuracy of 83%, which was better than
the accuracies obtained for CSP and SVM-based classification (67%), a deep belief network
(77%), and a CNN with a sparse autoencoder (78%) for the same experimental framework.
However, the performance of the 1D CNN was not compared to state-of-the-art 2D CNN
systems such as EEGNet [93] or ShallowConvNet [94].
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In the same year, Jeong et al. [41] proposed a CNN and bidirectional long short-term
memory (Bi-LSTM) network to control the movements of a robotic arm in 3D space. In this
system, subjects imagined movements in the same arm in one of six directions; namely,
up, down, left, right, forward, or backward. The movement of the arm was governed
by a velocity profile output from the deep learning system that provided information
about the velocities in the x, y, and z directions. Three 2D CNNs, which took as input
the segments of EEG time-series data, were used to obtain velocity profiles for the x, y,
and z directions separately. Afterward, the profiles were input to an LSTM network that
determined the final velocity profile of the arm. Two online tasks were carried out to assess
the performance of the system: picking up an object and drinking from a glass. Success
rates for the first task ranged from 47% to 87%, whereas for the second task, they ranged
from 33% to 57%. In an offline analysis, the performance of the CNN Bi-LSTM network
was compared to state-of-the-art approaches using the normalized root-mean-square error
(NRMSE) in the velocity profiles. The CNN Bi-LSTM had an NRMSE between 0.1150 and
0.2112, whereas EEGNET [93] had an NMRSE between 0.1412 and 0.3692. CNN Bi-LSTM
was also found to perform better than ShallowConvNet [94] and an LSTM network. This
approach provided the highest degree of freedom for a pure EEG paradigm of all the papers
reviewed. However, a drawback of the system was that it did not facilitate the idle state
and assumed that the subject was continuously issuing commands.

In 2021, Batres-Mendoza et al. [12] proposed a SNN that used quaternion features for
controlling a mobile robot [12]. Quaternions model EEG data in an abstract way in terms
of rotations and orientations [12]. The mobile robot could turn left or right or continue
forward based on left-hand MI, right-hand MI, or the idle state, respectively. This was
the only deep-learning-based approach that used shared control: an ultrasonic sensor was
used to detect obstacles, and if an obstacle was detected, the robot stopped and awaited
commands to avoid the obstacle. While CNN networks aim to mimic the processing that
occurs within the visual cortex [95], SNNs mimic the general biological behavior of neurons
in the brain, which communicate via spikes in electrical activity [96]. The application
of SNNs to BCIs is relatively novel, and it is promising for modeling the spatial and
spectral characteristics of brain activities [96]. Batres-Mendoza et al. [12] did not directly
compare the performance of the SNN-based system to CNN-based systems, which are
state-of-the-art, through experimentation, so it was difficult to conclude whether SNNs
provided any benefit. However, Batres-Mendoza et al. [12] did compare their results to
those reported in other papers that used similar experimental conditions, and the proposed
approach was the only one that obtained over 95% accuracy in online tests. Furthermore,
the CNN-based classification approach had a response time that was between 0.1 s and
1.1 s shorter than those of the comparison systems, which consisted of CSP-LDA, CSP-SVM,
and a hierarchical model–multilayer perceptron classifier.

The results in this section indicated that deep learning techniques have the potential
to outperform traditional machine learning methods in terms of both classification accu-
racy and response times. Further research is required to identify whether deep learning
systems always outperform traditional machine learning techniques, and if not, in which
applications they provide the most benefit.

11.4. Merging Traditional Machine Learning and Deep Learning Techniques

One study used ensemble learning to combine the outputs of machine learning and
deep learning techniques [52]. Zhuang et al. [52] presented a BCI for driving a mobile
robot based on four MI commands that corresponded to turn left, turn right, accelerate,
and decelerate. The ensemble comprised a generic CNN classifier network that took EEG
time-series data as input and a SVM classifier that took CSP features as input. The Ad-
aboost.M1 boosting algorithm was used to merge the classification results. An offline study
indicated that the ensemble was more effective than the individual classifiers, obtaining an
average classification accuracy of 92%, compared to 87% for the CNN and 83% for the SVM
classifier. Furthermore, this study used subject-independent training: the classifiers were
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trained using data from three subjects, then tested in the online experiment on another
subject. Although the system performed well, further validation with more test subjects
would be needed to conclude whether subject-independent training is most effective, or if
possibly transfer learning—accomplished by pretraining the network on data from other
subjects—should be used.

These results illustrated that traditional machine learning and deep learning tech-
niques can be complimentary, and ensembles that merge their capabilities can lead to
overall improved performance.

12. Subjects

Figure 9 is a histogram showing ranges for the number of subjects included in the
reviewed studies, while Table 3 summarizes the number of patients involved in each study.
The skew toward lower numbers of participants was expected, since recruiting subjects
can be challenging. The study with the highest number of subjects (32) was a clinical
trial [51] that involved significant resources and extensive participant sourcing. A total of
18% of the studies (12 papers) included subjects who had some relevant pathology that
affected mobility. Of these studies, six recruited stroke patients [37,46,47,51,56,70], four
recruited subjects with paraplegia or tetraplegia [15,19,34,75], one recruited spinal injury
patients [69], and one recruited subjects with neurodegenerative diseases [25]. Although
the recruitment of subjects with illness or disability can introduce additional challenges
for researchers, it is an important aspect of BCI research, since many of these technologies
are aimed at these individuals. Historically, BCI technologies have a low uptake among
this population [3], and more extensive testing of BCIs with subjects who have significant
disease or disability will help identify the best paradigms and control strategies for these
stakeholders [3].
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Table 3. A summary of the papers that included patients and the number of subjects considered.

Paper Condition Number of Subjects

Spychala, 2020 [37]

Stroke

7
Romero-Laiseca, 2020 [56] 2

Moldoveanu, 2019 [51] 32
Cantillo-Negrete, 2018 [47] 6

Ang, 2018 [46] 9
Frisoli, 2012 [70] 4

Soekadar, 2016 [34] 6
Do, 2013 [75]

Paraplegia or tetraplegia
10

Pfurscheller, 2003 [19] 1
Pfurscheller, 2001 [15] 1

Kim, 2019 [69] Spinal injury 2
Junewi, 2019 [25] Neurodegenerative disease 4

13. User-Experience Surveys

Only four of the reviewed papers reported formal results related to user experience
with the BCI. Liu et al. [45] used standard questionnaires for subjective workload assess-
ment; namely, the NASA Task Load Index (NASA-TLX) and the Subjective Workload
Assessment Technique (SWAT). The NASA-TLX survey assesses the workload involved in
operating a human–machine interface [97]. It factors in the mental, physical, and tempo-
ral demands of the system, as well as the effort required, the frustration experienced by
the user, and the perceived performance of the system [97]. The SWAT method involves
questions related to three areas of user experience; namely, time load, mental effort, and
physiological stress [98]. For each question, subjects can rate the load they experience as
low, medium, or high [98]. Results from these questionnaires were used to assess user
experience when controlling a lower-limb exoskeleton using MI and to compare two differ-
ent signal-processing algorithms for control: one based on sensorimotor rhythms (SMRs)
and the other based on movement-related cortical potentials (MRCPs) [45]. SMRs are the
classic activity that is observed over the motor cortex during MI, characterized by decreases
and increases in alpha and beta band power. SMRs were generated by imagining left-
and right-hand movements. MRCPs, which are signals associated with “readiness”, occur
when planning or carrying out movements. In this study, they were a readiness potential
that preceded the MI tasks being executed. Subjects reported that generating SMR data
involved a higher workload than MRCP data. Furthermore, subjects who had a relatively
poor performance with the SMR decoder reported more frustration when generating the
data compared to MRCPs. Although MRCPs were favored by subjects, the average online
accuracy obtained with the MRCP method was 69%, compared to 80% for the SMR method.
These results indicated that the paradigm favored by subjects may not necessarily be the
one that performs best. This result may have been due to MRCPs being relatively quick
and easy to generate, since they only require the user to mentally express an intention to
move, whereas the generation of SMRs requires concentration and imagination.

Leeb et al. [5] also used a NASA-TLX survey to assess the change in load on the
subject when controlling a wheelchair’s direction of travel using a BCI as opposed to a
joystick. They noted that using the BCI did result in an increased mental load on the subject;
however, in terms of frustration, perceived performance, and perceived temporal load,
there was no significant difference between the two modes of operation for the subjects.

Although standardized questionnaires provide an established assessment method
that can be used for comparison across studies, they are generic. Some studies used
specifically designed questionnaires that enabled the questions to be tailored to the de-
vice being assessed and the particular tasks being carried out in the experiments [37,51].
Spychala et al. [37] assessed subjects’ sense of ownership, agency, and binding when a
robotic hand was used for neurofeedback during MI-based stroke rehabilitation. At a
group level, stroke patients reported successfully feeling a sense of ownership, agency,
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and binding, indicating that this BCI modality could hold potential in a clinical setting.
A clinical trial into another stroke rehabilitation system [51] that involved controlling a
robotic glove or haptic robot through MI also used a specially designed questionnaire. The
questions tackled physiological and comfort issues that may occur in use, perception of
the system, and the usefulness of the system. Subjects reported finding the system tiring
and uncomfortable.

These studies illustrated how user feedback can provide valuable insight into the
practicality of a BCI system. Despite this, the vast majority of papers reviewed did not
record any data related to user experience. Although popular performance metrics such as
accuracy, success rate, and information-transfer rate are vital assessment tools, if strong
performance in terms of these metrics comes at the cost of an unacceptable cognitive load
or a frustrating, tiring experience for the user, it is unlikely that these BCIs would be
successful with a wide population of users. By collecting information about subjective user
experience, researchers will be able to identify the paradigms and control schemes that
subjects prefer, as well as forward-facing issues that need to be remedied. Thus, quantitative
and qualitative approaches to user experience with BCIs need to be more widely adopted by
researchers if these technologies are to become clinically and commercially viable products
that are widely adopted.

14. Conclusions: Emerging Questions and Future Work

A core issue across various systems is a lack of intuitive or practical commands. Some
examples of these commands include using frowns and smirks to control the movement of a
prosthetic hand [59], carrying out tongue MI to reverse a mobile robot [54], and continuously
spelling out the word “FORWARD” to keep a wheelchair moving forward [25]. In particular,
facial-movement paradigms have been touted as a promising complimentary or alternative
paradigm to MI due to their high detection rate. Although this paradigm has been effective,
it can be a source of impractical commands and should be applied with care. An example
of an impractical command might be imagining tongue movement to increase the speed
of a mobile vehicle—there would be no intuitive relationship between the command and
the mental action. Furthermore, facial-expression-based systems are not a replacement for
endogenous systems based on mental activity alone, which have the potential to be highly
intuitive and provide seamless control.

The feature extraction and classification techniques used had a fundamental effect
on the performance of the BCI device. For use of endogenous systems based on mental
activities to obtain a high level of functionality, more studies need to compare various clas-
sifiers and feature-extraction techniques in online systems. As previously discussed, it was
common for studies to present novel signal-processing and classification approaches in iso-
lation without any direct comparison to alternative techniques. Without such comparisons,
the full value of the proposed approaches are still in question.

Although offline analysis can provide important indications of the most suitable
classifiers and features to use, online BCIs must be adequately robust to the domain shift and
nonstationarities that can occur over time during BCI use. When using online BCIs, subjects
may experience distractions, drops in concentration, and wandering thoughts, which can
all impact the performance of the system. Thus, it is recommended that researchers not
only rely on classifiers and features that have worked well in offline studies, but also seek
to investigate and address these issues that are unique to online BCI use. This was seen
in some of the literature reviewed, such as in the work of Andreu-Perez et al. [14], who
proposed an unsupervised method for updating a fuzzy-logic-based classifier.

Overwhelmingly, systems in the literature depended on the MI-based paradigms. In
fact, 80% of the papers reviewed included MI as a paradigm. Although this is an established
and reliable paradigm for users who are able to generate MI signals, the MI systems suffered
from a high BCI illiteracy rate and a low number of degrees of freedom [28,29]. One way
of addressing this is through hybridization of the BCI. However, hBCIs that are used to
increase the number of commands available in the BCI usually have impractical setups,
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such as BCIs for flying quadcopters that require the subject to either focus on a GUI [29]
or issue commands by carrying out mental arithmetic [28]. More research is required into
hBCI systems that are based on intuitive control paradigms and that seamlessly integrate
different biosignals for enhanced control without increased impracticality. Sequential
commands and finite-state machines have also been used to expand the control capabilities
of MI-based BCIs [1], but these may increase the mental load on the user, particularly in the
early user-training stages.

Alternative paradigms to MI could be explored in future works. A synchronous
spelling paradigm was shown to be effective for device control by persons with neurode-
generative illnesses [25]. The next step would be testing this paradigm in an asynchronous
system. Furthermore, speech imagery, which involves imagining speech to issue BCI com-
mands, showed promising performance in a GUI-based application [99]. In future works,
speech-imagery paradigms could be used to control external dynamic devices with simple
but effective commands.

ErrPs can be used for asynchronous error correction in BCIs. Bhattacharyya et al. [72]
showed how ErrP signals can be detected asynchronously and used to stop the movement
of a robotic arm. This study also illustrated that ErrP signals could be used in conjunction
with a MI paradigm to control an external device. However, the experiments carried out
were simplistic, with the robotic arm just needing to pass specific predefined datums.
The next step may involve investigating the effect of ErrP-based correction in devices
performing more complex tasks, such as an MI-controlled robot or a wheelchair navigating
an everyday living environment.

Sophisticated shared control is also required for navigation in complex environments.
Many systems in the literature used basic shared control that led to an emergency stop, leav-
ing the user to carry out obstacle avoidance, which could be mentally fatiguing [12,24,33].
Ideally, BCIs for dynamic device control have integrated obstacle avoidance. Although
some approaches in the literature proposed more sophisticated approaches, they were still
limited to maximum margin avoidance [52] or selection of a target object in an uncluttered
environment [69]. In practical systems, subjects may want to pass near “obstacles”; for
example, they may want their wheelchair to pass near a table to pick something up, a task
for which obstacle avoidance algorithms that maximize the distance from obstacles would
be inappropriate. Potential fields have been used to successfully enable subjects to navigate
close to objects that may otherwise be classified as obstacles; however, potential fields have
a known issue: when traveling down corridors, both walls can be detected as obstacles, and
this can cause the path of the vehicle to oscillate. Moreover, the potential-fields approach
can become locked in local minima, leading to the device they are controlling becoming
trapped and being unable to move [100]. Furthermore, subjects can have different risk
tolerances, and can have different BCI literacies. Shared-control systems that can be tuned
to the preferences and capabilities of subjects represent a new research frontier in the control
of dynamic devices through BCIs.

Finally, user-experience surveys can provide insight into the practicality and intuition
of BCIs [37,45,51]. More studies should use quantitative and qualitative techniques to
assess user experience, since this can provide invaluable insight and avenues for future
works. The low uptake of BCIs amongst some target users has been linked to a lack
of knowledge of the needs and expectations of subjects who experience disability or
diseases that affect mobility [3]. Thus, it is especially important that studies involving such
subjects prioritize the gathering of feedback on user experience, in addition to quantitative
performance measurement.
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Nomenclature

ANN Artificial neural network
BCI Brain–computer interface
Bi-LSTM Bidirectional long short-term memory
CNN Convolutional neural network
CP Continuous pursuit
CSP Common spatial patterns
DT Discrete trial
EEG Electroencephalogram
EMG Electromyogram
EOG Electrooculogram
ErrPs Error-related potentials
fNIRS Functional near-infrared spectroscopy
GUI Graphical user interface
hBCI Hybrid brain–computer interface
LDA Linear discriminant analysis
MI Motor imagery
MRCP Movement-related cortical potentials
NASA-TLX NASA Task Load Index
NRMSE Normalized root-mean-square error
RF Random forest
SLAM Simultaneous localization and mapping
SMR Sensorimotor rhythms
SNN Spiking neural network
SSVEP Steady-state visually evoked potentials
SVM Support vector machine
SWAT Subjective workload assessment technique
UAV Unmanned aerial vehicle
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