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Animal antimicrobial peptides (AMPs), known as broad-spectrum and high-efficiency

antibacterial activity, are important effector molecules in innate immune system. AMPs

not only have antimicrobial, antiviral and antitumor effects but also exhibit important

effects in vivo, such as anti-inflammatory response, recruiting immune cells, promoting

epithelial damage repair, and promoting phagocytosis of bacteria. However, research on

the application of AMPs is incomplete and controversial. This review mainly introduces

the classification of AMPs, biological functions, as well as the mechanisms of action,

expression rules, and nutrition regulation from three perspectives, aiming to provide

important information for the application of AMPs.
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INTRODUCTION

The indiscriminate use of antibiotics has caused bacteria to develop resistance and super bacteria
that endangers human health. Therefore, researchers are desperately searching for alternatives to
antibiotics. Recently, antimicrobial peptides (AMPs) have received extensive attention because of
their broad antimicrobial spectrum, low resistance to drug resistance, and no residue formation.

AMPs, also known as host defense peptides, are a key barrier in the body to prevent the invasion
of foreign pathogenic bacteria. Mature AMPs generally contain 12–100 amino acid residues and
have positively charged and amphiphilic molecular structures, which facilitates their interaction
with the cellular targets (like negatively charged microbial membranes or others) (1). However,
as studies on AMPs continue to be deepen, researchers have found that they are not omnipotent.
Some bacteria can still develop resistance to AMPs, and certain AMPs can also partly kill probiotics
in vivo. Some researchers found that when S. aureus was experimentally exposed to pexiganan,
cross-resistance occurred (2). In this review, we summarized the classification, biological functions,
active mechanism and expression of AMPs.

CLASSIFICATION OF AMPS

Structural Classes of AMPs
Based on structural differences, AMPs can be roughly divided into three categories: polyamino
acids, short-chain AMPs, and lipopeptides.

Polyamino acids are polymers formed by the condensation of amino groups and carboxyl groups
between amino acid molecules. Cationic polyamino acids, such as polylysine, polyarginine, and
polyhistidine, have bactericidal effects and have attracted a lot of attention due to their unique
antibacterial mechanism and low resistance to bacterial resistance. The bacterial cell membrane
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can be depolarized and ruptured by polylysine through
electrostatic interactions, leading to the death of bacteria (3, 4).
Polyarginine contains a guanidine group, which can ionize in an
alkaline environment, penetrate the outer membrane of bacteria,
dissolve cells; on the other hand, bacterial contents and nucleic
acids can bind to polyarginine, causing the change of replication
and transcription of target cells genes (5). In acidic conditions,
polyhistidine can interact efficiently with the outer membrane
of anionic cells, thereby exerting an antibacterial effect (6).
Short-chain AMPs are peptides that are shorter than 15 amino
acids, usually chemically synthetic, and have lower production
costs and optimization potential compared to other AMPs. At
present, the common short-chain AMPs mainly include those
that with positively charged amino acids and hydrophobic
amino acids. Most short-chain AMPs commonly exhibit positive
charge and hydrophobicity. While bacterial cell membranes
are mostly negatively charged, which can generate electrostatic
affinity with the positive charges, and easily anchored by the
hydrophobicity and overall amphiphlicity of peptides, leading
to the destruction of the cell membrane, outflow of bacterial
contents, and eventually, death (7). Lipopeptides, amphiphilic
substances, composed of peptide base connected to one or more
lipid chains, usually self-assemble and form certain aggregation
structures (8). Active substances can be transported into cells in
the form of endocytosis through lipopeptides, and the cell walls of
bacteria will also can be destroyed by lipopeptides (8, 9). Based on
the shape, they can be divided into two types: cyclic lipopeptides
and linear lipopeptides.

Origin Classes of AMPs
According to different origins, AMPs usually have the following
four categories: microbial AMPs, animal AMPs, plant AMPs,
and other AMPs. AMPs from different origins have different
antibacterial effects. Here wemainly discuss animal AMPs, which
can be divided into insect AMPs, mammalian AMPs, amphibian
AMPs, avian AMPs, and fish AMPs.

Insect AMPs are basic peptides with low molecular
weight, good water solubility, strong thermal stability, no
immunogenicity, and resistance to hydrolysis. They do not
damage the normal cells of higher animals but have strong
and broad-spectrum antibacterial, anticancer, and antiviral
abilities (10). Mammalian AMPs, divided into defensins and
cathelicidins, mainly exist in neutrophils and epithelial cells of
skin and mucosa. Among them, defensins have been studied
the most and constitute most of the AMPs in the AMP family.
Amphibian AMPs, composed of 5–60 amino acids, usually have
good water solubility, good thermal stability, and the ability to
tolerate proteases. They are mostly composed of a single peptide
chain, and some also have a special disulfide bond structure
(11). Avian defensins are significant different from mammalian
defensins in coding. Human β-defensin is encoded by only
two exons, while avian β-defensin is encoded by four exons,
where the first one encodes the 5’UTR region of the defensin
gene, the second encodes signal and part of the precursor, the
third encodes the rest of the precursor, and the third and fourth
encode mature peptides (12). But AvBD12 has only three exons,
which may be the last two exons fused into one during evolution

(13). Moreover, in the avian cathelicidin family, the domain of
the signal peptide cathelicidins are highly conserved, but the
mature peptides are highly differentiated (13, 14). Fish AMPs are
positively charged short-chain amino acids that participate in
the host’s defense mechanism. Although fish AMPs are divided
into defensins and cathelicidins similar to mammals, fish also
secrete specific AMPs with high salt tolerance, which might be
associated with the high salt of sea water (15).

BIOLOGICAL FUNCTION AND ACTIVE
MECHANISM OF AMPS

Antibacterial Function and Active
Mechanism of AMPs
AMPs have negatively charged electrostatic interactions and
interactions with specific intracellular targets, which make the
integrity of microbial cell membranes destroyed and the synthesis
of cell proteins, DNA and RNA inhibited (16). AMPs mostly
exert antibacterial effects via their secondary structure, which
mainly includes α helices and β sheets. In aqueous solution,
most α-AMPs are in random helical conformation, which
can resume amphipathic conformations, highly structured, in
membrane mimetic environment. In contrast, β-AMPs are quite
more ordered in both above cases (17). It makes α-AMPs
bind to bacterial membranes that the electrostatic interaction
between cationic residues on the peptide and anionic lipids
on the target membrane (18). β-AMPs have a linear butyl
side chain, which can interact with membrane lipids through
the hydrophobic subunit Bu to kill bacteria by disrupting the
integrity of the bacterial membrane (19). Moreover, many studies
have shown that it’s essential for AMPs to ploy biological activities
and primary mechanism of action that the positive charges
and hydrophobic properties (Figure 1A). The electrostatic
interaction, that between AMPs and the negatively charged
bacterial membrane, can be promoted by the positive charges;
while the bilayer of the bacterial membrane can be inserted by
AMPs though hydrophobicity, which leads to the cell membrane
be disrupted and permeabilitied, and the bacterial contents be
leakaged and death, eventually (20–22). On the other hand, some
AMPs, which can make membrane transporters blocked and cell
division inhibited and can interact with nucleic acids and/or with
the protein biosynthesis process, function differently and act in a
non-lytic manner, preferring intracellular targets (23–25). Some
membrane-active AMPs, such as indolicidin and LL-37, may
penetrate the cell, interact with intracellular targets and bind to
the DNA (asmany cationic AMPs do) (26, 27). Other AMPs, such
as the proline-rich drosocin (in the non-glycosylated form), enter
the cell through transporters and act on specific intracellular
proteins, without significantly perturbing its membranes (28).

The antibacterial effect of AMPs is also related to their
concentration. AMPs are usually located on the surface of the cell
membrane, and when the peptide concentration reaches a certain
threshold, the bacterial cell membrane is destroyed (29). In
locations whenAMPs’ physiological concentration are lower than
micromolar levels, other functions such as immune regulation
might be more important than killing bacterial directly. Animals
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generate a suite of AMPs, which act additively and often even
synergistically in most cases. Hence, although the concentration
of each AMP might be below the activity threshold, bacteria
might still be killed by the AMP mixture (30, 31). It indicates
a cooperative interaction of the AMPs molecules with the lipid
monolayer that the surface pressure of the mixture is sigmoidal
increasing by increasing AMPs’ concentration (32). Interestingly,
when the concentration is too high, AMPs may start to aggregate
before attaching to the cell membrane, suggesting that their
potency to disrupt the cell membrane might be reduced (33).
High concentrations of AMPs were shown to increase the
intestinal permeability and imbalance of intestinal bacteria in
mice (34).

Research on the mechanism of action of AMPs, which
resist fungi, has also been performed. Some studies have
found that the intracellular targets can be affected by AMPs
though ROS production, programmed cell death, mitochondrial
dysfunction, disruption of cation homeostasis, ATP efflux, cell
cycle impairment, autophagy, and vacuolar dysfunction. AMPs,
which finish interacting with the target, can be internalized or
can remain outside the fungal cell (35).

Immunomodulatory Effects and Active
Mechanism of AMPs
The AMPs’ concentration in the body is lower than 2µg/ml,
which is lesser than the concentration required for bactericidal
effects but is sufficient to regulate immune cell function in
the physiological environment (36). Many studies have shown
that immunomodulatory activity is the main biological function
of AMPs (Figure 1B).

The immunomodulatory functions of AMPs mainly include:
(1) Regulating the level of inflammation in vivo. Excessive
activation and amplification of the innate immune system can
cause damage to the host, and AMPs can inhibit excessive
inflammation in vivo. The mechanisms of AMPs regulating
inflammation are very complicated. LL-37 can prevent the
translocation of the NF-κB subunit p65 translocation, activate
MAPK and PI3K signaling pathways, and selectively upregulate
the expression of anti-inflammatory factors, or directly bind
to LPS, preventing its interaction with LPS binding protein,
thereby inhibiting the activation of TLR4 and the downstream
signaling pathways (37, 38). In B lymphocytes, mouse and
human neutrophils, and dendritic cells, the abnormally high
expression of proinflammatory factors, induced by LPS, can
be reduced by LL-37 (36, 37, 39). Moreover, AMPs, such as
C14-R1 and C12-R2, can kill bacteria via prom0oting ROS
generation and causing oxidative damage (40). (2) Indirectly
playing a chemotactic role by inducing or increasing the secretion
of chemokines. At low physiological concentrations, AMPs
can induce the chemotaxis of immune effector cells and the
production of chemokines. For example, human defensins can
stimulate the transcription and production of IL-8 in bronchial
epithelial cells, via inducing degranulation and activation of
mast cells to recruit neutrophils (37). When the physiological
concentration is little higher, AMPs directly act as chemokines,
recruiting granulocytes to the infection site to initiate innate and

adaptive immune responses. LL-37 can mediate FPR2 receptors
and CXCR2 to increase calcium efflux, thereby facilitating
chemotaxis of peripheral blood monocytes and neutrophils.
Moreover, LL-37 can also activate FPR2 receptors to induce
monocyte chemotaxis (41, 42). Similarly, hBD-2 and hBD-3
can chemoattract monocytes through CCR2 (43). (3) Initiating
and regulating specific immunity. If the innate immunity is
unable to eliminate the infection, AMPs initiate and expand the
host’s specific immune response by signal transmission pathways,
acting as a signal transduction bridge between innate immunity
and specific immunity. Injection of PTd and AMP HH2-CpG
can increase the secretion level of IgG by 100 times, and hence,
increase the antibody level of immunoglobulin subtypes IgG2a
and IgG1 (44). (4) Directly enhancing the ability to resist bacterial
infections. CRAMP knockout mice are more likely to show skin
necrosis due to Streptococcal A infection and are more likely to
show urinary system infections (45, 46). (5) Activating immune
cell function through specific receptors. For example, LL-37,
formed a complex with DNA of host cell, activates plasma cell-
like DC cells through the TLR-9 signaling pathway, making IFN-
γ produced and autoimmune T cells activated (47, 48). Moreover,
porcine cathelicidin protegrin-1 maintains barrier function by
accelerating the migration of porcine epithelial cell, depending
on the activation of insulin-like growth factor-1 receptors, to
modulate immune activity (49).

The Barrier Function and Active
Mechanism of AMPs
Epithelial cells in the animal intestine, urinary tract, and
respiratory tract can express AMPs. In recent years, many studies
have shown that AMPs play an important role in animal mucosal
and skin defense. The role of AMPs is not only to kill pathogenic
bacteria but also to enhance the body’s resistance to pathogenic
microorganisms by enhancing the barrier function of epithelial
tissue (Figure 1C). For example, LL-37 can induce the expression
of various cell growth factors such as vascular endothelial growth
factor and keratinocyte growth factor, stimulate the growth of
intestinal epithelial cells, and ensure the integrity of the intestinal
epithelial tissue (50). LL-37 can also increase the hardness of
alveolar epithelial cells by interacting with fibrous actin, thereby
enhancing the body’s defense against Pseudomonas aeruginosa.
Cathelicidin can increase the expression of epithelial mucins
MUC1 andMUC2 via theMAPK signaling pathway and promote
the repair of epithelial injury (51). Cathelicidin-WA can also
promote the absorption of long-chain fatty acids by intestinal
epithelial cells via the PPAR-γ signaling pathway to strengthen
the intestinal barrier (52). Moreover, AMPs have also been shown
to facilitate the absorption of skin-derived toxins to protect
frogs from predators, as AMPs can permeabilize the epithelial
tissue to enable fast transmembrane transport for co-secreted
toxins (53). Meanwhile, during thermal injury, β-defensin-2
can bind to C1q to make the classical pathway inhibited,
with the result that it can be reduced that the overactivation
of complement cascade by human β-defensin-2 (54). Tight
junctions between intestinal epithelial cells can regulate the
permeability of the intestinal mucosal barrier and maintain the
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FIGURE 1 | Antimicrobial pathways of AMPs. (A) Interacting with pathogenic bacteria directly; (B) Eliminating pathogenic bacteria through immune regulation; (C)

Inhibiting the invasion of pathogenic bacteria by regulating the intestinal barrier.

tightness of the intestinal epithelial cells. They are a vital part
of the intestinal mucosal barrier. In recent years, studies have
shown that AMPs can regulate the expression of tight junction
proteins and affect the permeability of the intestinal mucosal
barrier. Human defensin-1 can increase the expression of the
tight junction proteins occludin and claudin-1 in epidermal
keratinocytes and reduce cell permeability (55). Similarly, the
AMPs, cathelicidin-BF, mastoparan X, and lactoferrin-derived
peptide-20, can increase the expression of IPEC-J2 tight junction
protein zonula occludens-1, occludin, and claudin-1 in rat
intestinal epithelial cells, maintain the normal shape of the tight
junction structure, and protect the integrity of the intestinal
barrier (56–60). Moreover, the AMP microcin J25 can improve
intestinal mucosal morphology and strengthen the intestinal
barrier in mice, along with a reduction in intestinal permeability
(34, 61). Our research results also showed that injection of PR-
39 significantly alleviated the damage to the mouse intestine
caused by Salmonella infection and dextran sodium sulfate
(DSS) induction and maintained the structural integrity of the
intestine and intestinal homeostasis (62). Additionally, it has

been reported that AMPs can interact with intestinal microbes
to regulate the structure of intestinal flora, maintain intestinal
homeostasis, and strengthen the intestinal barrier (63, 64).
However, AMPs such as melittin, which can open the tight
junctions rapidly between cells and cause a sudden increase in
cell permeability, have the opposite effect on epithelial cells (65).

EXPRESSION AND NUTRITION
REGULATION OF AMPS

Expression of AMPs
AMPs show different expressions in different growth and
developmental stages of organisms. Our research group studied
the expression patterns of the β-defensin family in the intestines
of Jinhua pigs and Landrace pigs of different ages and found that
the expression of pBD-1 and pBD-3 genes in the intestines of
piglets showed an increasing trend with the increase in age. At
the age days of 20, 40, and 60, the expression levels of pBD-1,
pBD-2, and pBD-3 in the intestine of Jinhua pigs were higher
than those of Landrace pigs (66). Other studies have shown
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that weaning can significantly affect the expression of AMPs
PR-39 and PG−1 mRNA in piglets (67). In other animals, the
expression of Cathelicidin AMPs also shows developmental
changes with age. The CRAMP gene of cathelicidin AMPs in
the mouse intestine is highly expressed in young mice, and its
expression level gradually decreases with the proliferation and
differentiation of epithelial cells (68). AMPs, as the effector
molecules, are significant for innate immunity. When foreign
bacteria infect, the body expresses AMPs to play a corresponding
immunomodulatory effect. The body has different immune
responses to bacteria of different serotypes and shows selectivity.
For example, Salmonella typhimurium can specifically upregulate
the gene expression of porcine defensin-1 and defensin-2 in the
epithelial cell line of the pig colon, while Salmonella cholerae
do not stimulate the expression of AMPs (69). The infection of
foreign pathogenic microorganisms and their toxins can increase
the expression of β-defensin in piglets or the piglet jejunal
epithelial cell line IPEC-J2 (70). For example, S. typhimurium
can increase the gene and protein expression of PR-39 and
protegrin in pig bone marrow cells, and the infection of
Streptococcus ATCC19714 can upregulate the gene expression
of oral β-defensin 1 in pigs (71). We found that E. coli K88
infection promoted the expression of the PR-39 gene in the bone
marrow, spleen, and ileum of Jinhua pigs and Landrace pigs
and increased the expression of the PR-39 gene in the thymus,
liver, and lung of piglets (72). The mechanism of action probably
depends on the FOXO6-METTL3-m6A-GPR161 signaling
axis (73).

Nutritional Regulation of AMPs
It is more economical and effective to regulate the expression
of endogenous AMPs through nutritional means, among which,
VD3 and butyric acid are themost important regulators. VD3 can
induce the expression of AMPs in a variety of human cell lines
and primary cells (74). VD3 can inhibit bacteria by killing them
through the effect of LL-37 and the maturation of phagosomes;
additionally, it can induce the expression of HBD-2 and has a
dose-dependent effect (68). Retinoic acid, metabolized by VA,
can induce the expression of PR-39 in pigs (70). Additionally,
bacterial polysaccharides can increase the expression levels of
PR-39 in the bone marrow and liver and hepcidin in the liver
(75). Arginine, isoleucine, leucine, and valine can modulate

the expression of intestinal endogenous β-defensins in porcine
through multiple pathways (76, 77).

PROSPECTS

To minimize the excessive use of antibiotics, the emergence of
AMPs might solve key problems such as bacterial resistance
and drug residues. However, the application of AMPs in
the aquaculture industry still faces many challenges. With
the continuous advancement in science and technology, the
technical barriers to the application of AMPs in the aquaculture
industry might be gradually removed. By constructing a suitable
expression system and improving the expression strategy,
many recombinant AMPs with low cost, high yield, and
excellent activity can be obtained. Through genetic and artificial
modifications, the antimicrobial function of AMPs can be
maximized. The use of amidation, cyclic methods such as D-
amino acid substitutions, and coating can improve the stability
and safety of AMPs in the body. A comprehensive analysis of
AMPs from the structural features and pharmacokinetics to the
immunomodulatory mechanisms is benefit to the development
of safer and more efficient AMPs for health. In addition, with
the deepening of molecular directed evolution and systematic
molecular evolution research in AMPs, more high-quality AMPs
will be gradually developed, and the application of AMPs will be
more and more extensive.
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