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Abstract: Background: β-Alanine is a sport supplement with increasing popularity due to its con-
sistent ability to improve physical performance, with the downside of requiring several weeks of
supplementation as imposed to the maximum daily and single dose tolerated without side effects
(i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustained-
release tablet, while powders are the most commonly used format to deliver several grams of amino
acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia
effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a
sustained-release tablet (reference). Methods: Twelve subjects (25.6 ± 3.2 y, 50% female) participated
in a randomized, single-blind, crossover study. Each participant was administered orally the test
(β-alanine 8 g, L-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach
β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0–8 h)
were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried
out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical
Intensity Sensory Score (ISS). Results: The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both
p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased
in the test (0.0199 ± 0.0107 min−1) versus the reference (0.0299 ± 0.0121 min−1) product (p = 0.0834)
as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus
reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, ref-
erence: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS
(p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale
intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis
loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were
reported (except paresthesia). Conclusions: The novel controlled-release powder blend shows 100%
higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or
mid-term supplementation strategies to increase carnosine stores in sports nutrition.
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1. Background

β-Alanine is a sports supplement with increasing relevance due to its ability to im-
prove physical performance in several mixed sports and exercise tests by trained and
untrained individuals [1–7]. It increases the muscle stores of the intracellular dipeptide
carnosine [1,8,9], and it is the rate limiting amino acid in its synthesis when binded with
L-histidine. It contains an imidazole ring that exerts physiological properties [10–13] in-
cluding the main mechanism responsible for improving physical performance: a high
proton buffer capacity [14,15] initiated in the lower physiological range which precedes
other intramuscular buffer systems, acting at the earlier stages of exercise [16–18]. Com-
pared to other buffer systems, the reported capacity of the non-bicarbonate carnosine
system is small [19,20], but the maximum capacity of muscle to store carnosine remains
unknown [21], which means that total performance gains by β-alanine supplementation
can be greater than what we currently know. Chronic supplementation is conditioned by
paresthesia, a harmless sensory side effect of itching [22–25] that limits the maximum single
dose tolerable [26] and therefore the maximum daily dose feasible, consequently prolong-
ing treatment time. Thus, long supplementation studies to observe both its performance
benefits and to ascertain carnosine store limits are required [27–30].

This was mainly solved through a sustained-release tablet that increased the daily
dose without enhancing the intensity of paresthesia [31], but to date, no other galenic for-
mulation has been developed to enable larger acute doses which would permit adherence
to shorter supplementation protocols with higher daily amounts. Amino acids in sports
nutrition supplements are usually in powder form, providing several grams of active
ingredients in a single dose, with the practical advantage of avoiding ingestion of several
tablets [32,33]. The main problem with β-alanine in pure powder form is that it elicits
paresthesia even at low doses due to high peak consequence of its fast absorption [26,31],
Thus, a modified-release formulation might represent an alternative to avoid its fast ab-
sorption preventing the appearance of the high peak and may allow the administration
of larger daily amounts. Galenic modification of powder sport supplements represent a
novelty which applies pharmaceutical technology advances to potentially improve some
characteristics. According to a mathematical model with slow-release tablets [34], total
muscle carnosine increases are (linearly) dependent on daily β-alanine dose, not only
to raise daily muscle carnosine synthesis, but also to maintaining high carnosine stores
subject to a constant decay. If this outcome is reproduced at higher doses as some evidence
suggests [35], higher daily doses can result in either shorter supplementation protocols, or
higher carnosine stores over time. Furthermore, recent studies have focused on optimal
dosing schedules and individualized pharmacokinetic response using protocols which
adjust acute intake based on anthropometric features such as weight [36,37] which requires
a β-alanine powder retaining its controlled-release properties (tablet’s sustained-release
features may be voided when its physical integrity is compromised—i.e., broken in smaller
units [38]). Additionally, the controlled-release powder blend contains L-histidine, which
availability in the muscle may be compromised with chronic supplementation [39], and
carnosine as an additional donor of both β-alanine and L-histidine after hydrolysis [40,41].

In this study we assess the pharmacokinetics, bioavailability and paresthesia effects of
β-alanine at isomolar doses in physically active healthy volunteers after the oral administra-
tion of commonly employed slow-release tablets and a novel controlled-release formulation
in a crossover study. The aim was to study the pharmacokinetic profile and paresthesia
dynamics of a modified-release β-alanine powder as a novel alternative formulation for
sport users.

2. Methods
2.1. Study Design and Participants

A single-blind, cross-over, randomized pharmacokinetic study to compare a novel
controlled-release product versus a marketed slow release tablet reference formulation of
β-alanine was designed. Participants were a representative sample of the target population
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of the products and provided written informed consent prior to the commencement of the
study. The inclusion criteria were: (a) healthy adults aged 18–40 years old; (b) engaged in
physical activity at least three times a week. The exclusion criteria were: (a) current or past
history of a serious clinical pathology; (b) supplementation with β-alanine products in the
past; (c) hyper-beta-alaninemia; (d) changes to the diet or exercise routine during the study.
We recruited a total of twelve subjects.

Dose selection was aimed to provide the highest amount of β-alanine in a single
dose without eliciting paresthesia, reducing the number of intakes per day, which would
be expected to improve compliance and adherence in chronic supplementation [42]. A
previous intravenous infusion study of 9.16 ± 0.78 g at a mean rate of 60.6 ± 5.7 mg/min
during 150 min (3.6 g/h and 39.7% of the total amount per hour) of β alanine elicited
mild transient paresthesia, which disappeared for all subjects after the infusion was com-
pleted [43]. Therefore, we should aim to keep below this limit. A previous in vitro release
assay test on the test product was performed and showed an estimated release rate of
16.68% per hour during a total of 6 h [44]. Thus, we estimated that an 8 g dose would yield
approximately 1.33 g per hour (approximately half the amount compared to the previously
mentioned study [43]), which may result in similar or unperceived paresthesia within the
expected intersubject variability [24].

Ethics approval and consent to participate: Ethical approval was granted by the
institutional research ethics committee of the Catholic University of Murcia (No. CE021902)
and was performed in accordance with the ethical standards as laid down in the 1964
Declaration of Helsinki and its later amendments.

2.2. Test and Reference Formulation: Composition

Subjects were randomly assigned to a group for the crossover sequence (Epidat 4.2,
2016) and were administered orally β-alanine 8 g, L-histidine 300 mg, carnosine 100 mg
as a controlled-release powder blend test formulation (BETAFOR3MAX®, Martinez Nieto
S.A., Cartagena, Spain) or a slow release tablet reference formulation (Etixx Sports NV,
Merelbeke, Belgium). We discarded the pure β-alanine powder as a feasible reference
product, as it may elicit unnecessary severe side effects at these doses due to its potential
fast absorption [26]. The test product was a controlled-release powder blend formulation,
which contained 8 g of β-alanine, 300 mg of L-histidine and 100 mg of carnosine per dose.
The modified-release property was obtained by a specific manufacture process not utilized
before in the field of sports supplements in powder formulas. L-Histidine was added to
help maintain carnosine synthesis in view of chronic β-alanine periods in which L-histidine
availability in muscle may be compromised [39]. Carnosine was included as an additional
donor of β-alanine and L-histidine after hydrolysis either before reaching the plasma by
cytosolic carnosinase (CN2) [45,46] or once in the plasma by serum carnosinase [40,41].
The reference product was a slow release tablet which required 10 tablets to reach 8 g of
β-alanine and 20 mg Zinc.

2.3. Test and Reference Formulations: β-Alanine Content Verification

Both products were tested to verify their β-alanine content by HLPC with the fol-
lowing procedure: A 4-level calibration curve prepared with pure β-alanine as reference
(P01090, Cambridge Commodities Ltd., Ely, UK) with known purity (99.6%, batch number
201704043) at different concentrations (10, 20, 50 and 100 ppm) was performed. Correlation
r2 > 0.990 was required to validate the calibration curve after regression analysis by the
method of least squares. Additionally, verification after quantification of a known quantity
prepared in a solution with the reference standard, must be within 90–110% of this quantity.
A sample containing one single dose of each product—10 slow-release tablets, and the
amount containing 8 g β-alanine of the controlled-release powder—were weighed in a
precision weight scale (Mettler Toledo AT261, Marshall Scientific LLC, Hampton, NH,
USA) for content quantification. Samples were diluted in deionized water and derivatized
after mixing with reagents for 15 min at 40 ◦C, further buffered with phosphate. After-
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wards, 10 µL of sample was analyzed by HPLC in a Agilent Technology 1200 series system
with a 5 µm, 4.6 × 150 mm C18 column (Zorbax Eclipse Plus, Agilent Technologies Inc.,
Marshfield, MA, USA) and a UV-VIS detector set at 360 nm, flow rate 1 mL/min at 20 ◦C
with a mobile phase of phosphate buffer (pH = 6) and acetonitrile using a gradient elution
(t, %B: (0; 10), (10; 25), (15; 50), (19; 50), (20; 10) and (26; 10)). The assay complied with the
validation criteria of the Association of Official Analytical Chemists (AOAC), Standard
Method Performance Requirements (SMPRs) for Identification and Quantitation of Free
Alpha Amino Acids in Dietary Ingredients and Supplements [47].

2.4. Study Procedures, Sample Collection and Processing

The reference and the test formulations were provided in a container without any
labeling. Subjects were isolated from researchers and participants to avoid interference in
their answers. Furthermore, to preserve investigator’s blinding during the trial as well as
the posterior data handling, a staff member not involved in the research activities checked
that the product was consumed and that the questionnaires were completed. The products
were administered in a single oral dose after overnight fasting and water was allowed ad
libitum. Five hours into the study, a standardized vegan meal free from β-alanine and
L-histidine foods were provided. It included fresh salads, grilled vegetables (cooked and
dressed with vegetable oils), egg-free mayonnaise, dried spices and fruit. Subjects were
prohibited any different food or drink except water. A 1-week washout period was kept
between the two crossover phases.

Blood samples (10 mL) were collected from the antecubital vein at 0 (pre-dose baseline),
30, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420 and 480 min in tripotassium EDTA tubes,
centrifuged (4500 rpm, 5 min, 4 ◦C) the supernatant separated, kept frozen at −20 ◦C until
β-alanine determination by LC-MS/MS liquid chromatography-tandem mass spectrometry
(Clinical Analysis Laboratory, Centro medico Vírgen de la Caridad, Cartagena, Spain).

2.5. Paresthesia Questionnaires

Paresthesia was assessed concomitantly after each blood sample collection using
perceptual ratings questionnaires [31] presented always in the same sequence without
allowing the subjects to browse back for revision. Paresthesia intensity was assessed with
two scale types. The Visual Analogue Score (VAS) consists of a horizontal, continuous
10 cm line with ending vertical marks labeled “no unusual sensation” and “most intense
sensation imaginable”. The subject draws a mark at the distance most fitting with their
perception intensity and the output is the segment length from the low end. The Intensity
of Sensation Score (ISS) features a discrete category-ratio scale which allows non-linear
intensity perception changes with 9 categories ranged from “absent” (1) to “unbearable”
(9) with in-between levels: low (2–3), moderate (4–6) and intense (7–8). The subject would
tick the best fitting category. Lastly, the subjects were interviewed to identify additional
adverse effects.

2.6. Pharmacokinetic Data Analysis

Individual non-compartmental pharmacokinetic parameters were calculated using
Phoenix® 8.2 (Certara USA, Inc., Princeton, NJ, USA). The maximum β-alanine plasma
concentration (CMAX) and time to CMAX (TMAX) were obtained from the pharmacokinetic
profiles; the elimination rate constant (kel) was calculated by log-linear regression of the
concentration–time data in the terminal slope; the elimination half-life (t1/2) was ln2/kel;
the area under the curve up to the last concentration (AUC0→last) was calculated using the
method of the trapezoids, the extrapolated AUC (AUClast→∞) was Clast/kel (Clast is the last
concentration) and total exposure (AUC0→∞) was the addition of both areas. The mean
residence time MRT0→last and MRT0→∞ were calculated as AUMC0→last/AUC0→last and
AUMC0→∞/AUC0→∞, respectively, where AUMC is the area under the first moment of
the curve. Oral clearance (CL/F) was calculated as D/AUC0→∞ where D is the dose and F
is the bioavailability; the apparent volume of distribution at steady-state (VSS/F) was MRT
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× CL/F. Relative bioavailability was the test to reference AUC0→∞ ratio. The absorption
rate constant Ka was calculated with the equation MRT = MAT + MIT, where MAT is the
mean absorption time or 1/Ka and MIT is the mean input time or 1/kel, assuming no
change of kel between oral and intravenous routes. Similarly, the maximum effect (EMAX),
time to EMAX (TEMAX), and area under the effect curve (AUEC) were calculated from the
response–time curve.

Pharmacokinetic parameters comparison, crossover sequence and period effects eval-
uation between the test and the reference outcomes were analyzed using the Wilcoxon test
or t-test checking for equality of the variances (Phoenix 8.2). In addition, power calculation
was performed for all comparisons of key pharmacokinetic parameters between both arms
of the study (AUC, Cmax, V/F and Cl/F). They are reported together with the p-values.

3. Results

Twelve subjects (50% female) were recruited and eleven completed the study (a male
subject did not show up on the second occasion). The subjects were 25.6 ± 3.2 years
old (range: 24–32 y), weighted 68.1 ± 8.0 kg (50.3–83 kg), had a height of 1.74 ± 0.10 m
(1.51–1.83 m) height and a lean mass of 52.1 ± 9.0 kg (38.1–67.6 kg). No side effects were
reported except the expected paresthesia.

3.1. Pharmacokinetic Analysis

The plasma concentration–time profiles of β-alanine after administration of either
the sustained-release tablet or the controlled-release powder blend are shown in Figure 1,
and their non-compartmental pharmacokinetic parameters listed in Table 1 and shown
in Figure 2. Statistical differences were found in CMAX, AUC, V/F, CL/F and MRT. The
CMAX, AUC0→last and AUC0→∞ were 1.6-, 2.1- and 2.1-fold higher in the test product
and their extrapolated AUC were 1.7% and 2.2%, respectively. This yielded a 2.1-fold
β-alanine bioavailability increase of the novel formulation. The Ka was 1.5-fold higher in
the sustained-release tablet but did not reach statistical differences, and V/F and CL/F
decreased 0.38 and 0.41-times in the controlled-release powder blend, parallel to the higher
F. Lastly, the MRT0→e and the MRT0→∞ were 12% and 8% higher, respectively, in the test
formulation, although only the MRT0→last was statistically significant (p = 0.0449).
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Symbols represents Mean ± SD.



Pharmaceutics 2021, 13, 1517 6 of 16

Table 1. Non-compartmental pharmacokinetic parameters of the test and reference formulations.

Parameter (Units) Powder Blend Tablet p-Value (Power)

ke (1/min) 0.0111 ± 0.002 0.0103 ± 0.0020 0.2850 (0.19)

t1/2 (min) 63.5 ± 8.7 68.9 ± 9.8 0.1994 (0.27)

TMAX (min) 90 ± 13 82 ± 14 0.2767 (0.28)

Ka (min−1) 0.0199 ± 0.0107 0.0299 ± 0.0121 0.0834 (0.49)

CMAX (µmol/L) 1072 ± 276 672 ± 192 0.0045 (0.86)

AUC0→last (min·µmol/L) 157,058 ± 34,097 76,314 ± 27,838 <0.0001 (0.96)

AUC0→∞ (min·µmol/L) 159,557 ± 34,708 77,965 ± 28,275 <0.0001 (0.96)

V/F (L) 54.2 ± 15.5 142.0 ± 60.9 0.0004 (0.91)

Cl/F (L/min) 0.587 ± 0.128 1.417 ± 0.498 <0.0001 (0.94)

MRT0→last (min) 143 ± 19 128 ± 16 0.0449 (0.51)

MRT0→∞ (min) 150 ± 20 138 ± 18 0.1373 (0.31)

Data are presented as mean ± SD. n = 11, statistical differences were accepted when p < 0.05.
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3.2. Pharmacodynamic Analysis

Because paresthesia is the limiting side effect of β-alanine dosing schemes, we eval-
uated it with VAS and the ISS scales. The intensity time course after the administration
of each formulation is shown in Figure 3 and the pharmacodynamic parameters listed in
Table 2. With the VAS scale, EMAX was 4.95 ± 2.32 AU (arbitrary units) and 2.94 ± 2.90 AU
in the test versus the reference product, respectively (p = 0.0864). The AUEC was 1.9-fold



Pharmaceutics 2021, 13, 1517 7 of 16

higher with the test product (not significant). The ISS scale identified statistical differences
between both formulations: EMAX and AUEC were 1.7 and 1.9-fold greater in the test
product, respectively, and displayed lower variability (Table 2).
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Figure 3. Mean effect intensity time profile (upper panels) and hysteresis plots (lower panels) obtained with the Visual
Analog Score (A) and the Intensity of Sensation Score (B) scales for both formulations. Error bars in the hysteresis plots
have been omitted for clarity. Figures in the upper panel represents the mean and positive SD.

Table 2. Model independent analysis of the paresthesia effect of β-alanine in a powder blend or tablet.

Test Parameter Powder Blend Tablet p-Value (Power)

Visual Analogue Score

TEMAX (min) 65.5 ± 22.5 (34.4%) 49.1 ± 33.6 (68.4%) 0.195 (0.26)

EMAX (AU) 4.95 ± 2.32 (46.7%) 2.94 ± 2.90 (98.8%) 0.086 (0.40)

AUEC0→last (AU) 389.1 ± 232.6 (59.8%) 216.4 ± 247.4 (114.5%) 0.107 (0.40)

Intensity of Sensation Score

TEMAX (min) 57.3 ± 21.0 (36.7%) 38.2 ± 23.6 (61.8%) 0.059 (0.47)

EMAX (AU) 4.91 ± 1.04 (21.3%) 2.91 ± 1.97 (67.8%) 0.009 (0.72)

AUEC0→last (AU) 448.8 ± 163.8 (36.4%) 240.1 ± 217.7 (90.7%) 0.019 (0.62)

Data are presented as mean ± SD, coefficient of variation, (CV). AU: arbitrary units unless stated, statistical differences were accepted
when p < 0.05. Dose administered was of 89.7 mMol in each case.

4. Discussion
4.1. Increased Bioavailability

The main finding of the study is the 2.1-fold β-alanine bioavailability (F) increase as
well as a 1.9-fold higher CMAX provided by the controlled-release powder blend versus
the reference formulation (Figure 1). In addition, the CMAX obtained in the present study
is similar to that obtained after oral administration of pure powder at 40 mg/kg (~3.2 g
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for subjects weighing 80.2 ± 17.1 kg) [26] and larger AUC (3.3-fold higher) while the dose
was ~2.5-fold higher (8 g). This could suggest a more efficient β-alanine absorption after
delivery from the controlled-release powder blend.

It is not likely that this higher relative bioavailability (F) is the consequence of lower
clearance: first, the elimination rate constant (kel) and mean residence time (MRT) remain
similar in both formulations, indicating no effect on the disposition process (Table 1);
second, the oral clearance (Cl/F) and volume of distribution (V/F) decreased equally,
suggesting that only the bioavailability parameter (F) was affected, suggesting that V and
Cl may remain unchanged regardless of the formulation. This suggests that the improved
bioavailability resulted from an improved absorption of the controlled-release powder
compared to the sustained-release tablet.

Therefore, a possible explanation is an improved β-alanine absorption across the
gastrointestinal tract, probably involving some of the amino acid absorption mechanisms.
Amino acids cannot passively diffuse across membranes but require amino acid trans-
porters (AAT), mostly solute-linked carriers (SLC) transporters. These AATs may modulate
their intestinal uptake, renal reabsorption and secure intracellular uptake against a 1000-
fold concentration gradient [48]. Experiments carried out in situ in rat small intestine
showed pH and Na+ dependent [49] uptake and saturable kinetics [50] and studies carried
out in brush border membrane vesicles (rabbit) suggested the need of multiple Na+ and
at least a Cl− associated with β-alanine uptake [51]. Furthermore, characterization in
human intestinal caco-2 cells suggested a pH only dependent amino acid transporter at the
apical membrane of the enterocytes in the ileum [52,53] and cloning techniques allowed the
molecular identification of various ATT, including the SLC6A14 transporter [54]. This trans-
porter is also called the β-alanine carrier, and its small intestine expression is limited to the
ileum [55,56]. Functionally, the presence of the β-alanine carrier with saturable absorption
kinetics together with their ileum localization would prevent sharp increases of β-alanine
ingested in the diet avoiding potential paresthesia. To some extent, the behavior of the
controlled-release powder blend may mimic the absorption profile of dietary β-alanine,
which ultimately provides a prolonged β-alanine time-course appearance in blood [26,57].
Modified-release devices retarding ability would depend on their physic-chemical proper-
ties configuring drug diffusivity [58] and release pattern [59,60]. In this context, the distal
intestinal localization may favor continuing absorption from a controlled-release powder
formulation contrary to a sustained release tablet that could result in greater unabsorbed
dose loss due to the saturable uptake kinetics.

An additional possible explanation of the increased bioavailability may be related to
inhibition of β-alanine first-pass metabolism due to the coadministration with L-histidine.
A hepatic uptake carrier for neutral and cationic amino acid (ATA3) can be inhibited
by several amino acids including β-alanine and histidine with 2-fold greater affinity for
histidine than β-alanine [61]. Additionally, β-alanine presents weak inhibition potency to
prevent histidine SNAT3 mediated cell uptake [62]. After the coadministration of histidine
and β-alanine, histidine may be preferentially uptaken by the hepatic cells instead of β-
alanine, thus histidine may play an essential role to diminish the hepatic first-pass uptake
of β-alanine resulting in greater circulating levels of β-alanine. Although the role of drug-
drug interactions is not fully understood, coadministration has proven a valid strategy
to increase bioavailability and modulate tissue uptake [63–67] with potential therapeutic
benefits [68–70]. If this mechanism were confirmed in future studies, L-histidine addition to
β-alanine formulations may play and essential role to improve not only its gastrointestinal
absorption but also β-alanine tissue uptake to ensure its muscle [39] and plasma [35,39]
concentration after chronic supplementation.

As a limitation of the study, we did not measure β-alanine urinary excretion as our
main objective was its bioavailability. Previous studies [26,31,71,72] have shown β-alanine
excreted unchanged in urine (~5%). However, a small percentage lost in urine would
not be equivalent to a greater uptake by target cells, as it could be eliminated through
metabolic routes as previously shown [71–73]. However, it remains unclear whether the
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2.1-fold higher relative bioavailability would lead to its greater skeletal muscle fibers
uptake and further synthesis to carnosine. As transporters, TauT and PAT1 are expressed
in human muscle fibers [74]. Whereas TauT is a high-specificity, low capacity β-alanine
transporter (which needs to be coupled with a Na and Cl ions) [75] and likely saturated
at high concentration of systemic β-alanine, PAT1, on the contrary, is a low-specificity,
high-capacity transporter probably less saturable. Although some studies have suggested
that TauT plays a dominant role in β-alanine muscle cell uptake, it has also been suggested
the existence of additional uptake mechanisms: after intravenous infusion of β-alanine
at saturable level, exceeding the maximum transport capacity of TauT in humans a 2.5–
3-fold increase in muscle β-alanine was achieved compared to a 1.5-fold increase when
sub-saturating amounts were administered [43]. This would support the idea that higher
concentrations would achieve greater muscle uptake, even beyond the transport capacity
of TauT. However, definitive answer to this hypothesis would require measurements of
β-alanine in the biophase, which is beyond the scope of this study.

4.2. Paresthesia-Response Analysis

The time course of the paresthesia intensity (Figure 3) shows that the maximum
effect, EMAX in the VAS scale was observed earlier than the β-alanine plasma TMAX in
the reference and the test formulations (p = 0.011 and p = 0.006, respectively) and was
similar with the ISS scale findings (p < 0.001 for both products). This shows that the EMAX
is achieved earlier than the plasma CMAX implying saturation of receptors or tolerance,
which is consistent with previous reports comparing paresthesia in slow-release tablets and
pure powder [31]. This suggests that although the paresthesia effect is dependent on the
dose it seems to reach a maximum effect within each formulation, suggesting a non-linear
response. Furthermore, we investigated whether CMAX and AUC0→∞ could predict the
paresthesia intensity (EMAX, AUEC). However, no correlations were found with any of
these pharmacokinetic parameters (Figure 4) with neither formulation. Thus, in the present
study we did not find a good predictor of paresthesia intensity and no prediction ability
could be identified. This lack of prediction ability would be consistent with saturable
kinetics of β-alanine uptake. This would mean that neither CMAX nor total β-alanine
systemic exposure serve as consistent predictors of paresthesia intensity. However, this
prediction ability remains controversial, as higher pins and needles intensity correlated
with higher CMAX after slow-release tablets [31], supporting the role of high CMAX of
β-alanine [26]. However, one study showed that subjects that reported paresthesia and
other side effects did not have different plasma β-alanine concentration from those not
reporting it [41] suggesting a large variability in the response. Likewise. Another study
showed that paresthesia intensity was already decreasing albeit higher concentrations
(~4-fold) were reached at later time points after intravenous infusion [43]. This behavior is
similar to the one found in the current study and supports the findings that paresthesia
intensity is not well correlated with plasma peak concentration, it is highly variable and
tolerance may be developed. Furthermore, in this study we only tested one dose level;
accordingly, no conclusion can be drawn regarding whether the lack of correlation is also
due to poor plasma exposure–dose correlation. To address this issue, a pharmacokinetics
linearity study would be required.
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Figure 4. Correlation analysis between the pharmacokinetic parameters CMAX, AUC0→last and the pharmacodynamic
parameters EMAX and AUEC obtained with the VAS and the ISS scale for the controlled-released powder blend and
sustained-release tablet formulations.

Both EMAX and AUEC were higher with the controlled-release powder blend (Table 2):
EMAX was 1.7-times higher in both scales and AUEC increased 1.8-fold and 1.9-fold using
the VAS and the ISS scales, respectively, but only reached statistical difference with the
ISS scale. Although bioavailability increased 2.1 times, this raise in paresthesia effect was
not attained with the test formulation which further supports the finding that paresthesia
intensity is not dose-dependent. Differences between scales may portray their intrinsic
differences and the subjective perception of intensity: the VAS is continuous while the ISS
is a discrete category-ratio score which excerpt some influence on the subject to decide
whether a threshold has been reached to select a specific level in scale [76] (Table 2).

The β-alanine plasma concentration–effect response curves were analyzed to identify
possible hysteresis phenomena in the link between effect and pharmacokinetics. This hys-
teresis plots may present a counter-clockwise or a clockwise loop [77]. A counter-clockwise
loop shows increasing effect and may indicate non-instantaneous drug distribution and
delay of the response until the drug reaches the biophase. It may also suggest active metabo-
lites or sensitization of the receptors. However, a clockwise loop indicates the highest effect
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occurs at the beginning and then declines due to tolerance, tachyphylaxis or antagonist
active metabolites [77,78]. Our results show a clockwise hysteresis loop (Figure 3) with
both scales and formulations, which to the best of our knowledge, has not been described
previously. The clockwise loop may indicate a delay in the β-alanine plasma concentration
measured in the venous blood (forearm) versus de biophase [78] and could suggest that
the receptors in the skin mediating paresthesia [22,23,25] might present a higher affinity
for plasma β-alanine even if they may require a minimum threshold to increase intensity
to perceived levels. This possibility would be supported by the earlier TEMAX found in
both formulations. A change in the sensitivity of the receptors may lead to tolerance [77] or
tachyphylaxis when it takes place almost immediately as in our study (Figure 3). This is in
line with a case study providing β-alanine intravenously at a high dose (11 g) in which
paresthesia decreased and disappeared before the infusion was even completed [79]. In
addition, EMAX is reached at the first concentration measured, then it plateaus until the
CMAX and returns to the starting point with the tablet formulation. However, with the
controlled-release formulation, it takes longer to reach the EMAX which is followed by the
decline without the plateau (Figure 3). In fact, with the same plasma concentrations, the
effect is greater with the controlled-release powder blend suggesting that saturation of
receptors is unlikely. Again, this supports the idea that peak plasma concentration may
not be an accurate predictor of paresthesia intensity, challenging previous interpretations
and suggesting that other underlying mechanisms can play a more dominant role. As an
example, inter-individual characteristics as race (Caucasian or Asian) and sex have been
showed to affect timing, location and paresthesia intensity [24]. In the current study, the
majority of subjects reported paresthesia and was higher in the controlled-release powder
group. To this respect, albeit we may have developed some mechanistic insights, further
studies would be needed to assess linearity and dose proportionality, thus we could not
predict the maximum dose that would not trigger paresthesia. However, we have shown
the possible presence of tolerance and large intersubject variability response.

4.3. Implications of the Findings

More efficient release kinetics has been achieved with an innovative controlled-release
powder blend delivering 2-fold bioavailability increase of β-alanine after an 8 g oral dose.
To our best knowledge, this dose is the highest single acute dose reported in the literature
in a single administration, greater than the common daily dose of 6.4 g, and seems more
attractive than large number of tablets per intake (10 in this study), or very frequent pure
powder quantities split throughout the day. Our results call for researching daily dosing
schedules towards new supplementation protocols and the assessment of carnosine syn-
thesis rate with shorter supplementation time. Although formulation effect on carnosine
uptake remains unclear [80,81], the ceiling effect seems still far to achieve, being the cu-
mulative dose the essential factor [1,82]. Based on a Bayesian mathematical model [52],
the amount of muscle carnosine that may be increased by β-alanine supplementation has
not been reached with the usual supplementation protocols (6.4 g/day, 4 weeks) rather it
would require around 33 weeks (8 months). In fact, the largest study attempted 24 weeks
without evidence of a ceiling effect [21]. Further research to confirm the enhancement
capacity of carnosine stores by β-alanine supplementation warrants the development of
novel formulations like the controlled-release powder blend used in this study. Achieving
higher daily intakes may help to clarify this limit and may allow shorter supplementation
strategies. However, we unequivocally cannot conclude out of the present study that these
higher doses with an increased uptake may present an advantage over other supplemen-
tation strategies. In fact, it is unclear whether high doses eliciting intense but tolerable
paresthesia can represent on optimal strategy to raise carnosine synthesis. Overall, data
suggests that chronic β-alanine dosing is safe, as β-alanine is an endogenous compound
and exhibits a safe profile [83]; however, administration of a larger total cumulative dose,
which seems to be unavoidable given the low rate of carnosine synthesis, may require
further assessment.
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Last, β-alanine controlled-release powder-like delivery systems would avoid the
limitations of multiple layer tablets and would allow dosing based on anthropometrical
variables or other factors (e.g., body weight, lean muscular mass, etc.) instead of fixed
doses [36]. This would lead to assess better the individual responses and to identify new
β-alanine supplementation strategies able to reach the minimum cumulative dose to elicit
benefits from an earlier stage. Moreover, it may generate a paradigm shift in the usage
of β-alanine from chronic to short or mid-term supplementation times in sports nutrition
where the expectation of higher performance outcomes in a shorter period of time may
overcome daily transient and intense levels of paresthesia.

4.4. Future Directions

Assessing the bioavailability of innovative formulations is a necessary step for the
development of evidence-based ingredients or blends. Creatine, one of the most studied
ergogenic aids in sports nutrition, is marketed as creatine salts associated with different
conjugates like creatine citrate, malate and orotate, or as creatine derivates like creatine
ethyl-ester [84]. Generally, they have poor bioavailability and not enough active ingre-
dients to reach the bloodstream [85]. In the present study we found that this first step
was accomplished with the controlled-release powder blend, ensuring greater systemic
exposure after oral administration of the active ingredient than a reference slow-release
tablet. This means that for the same amount declared in the label (dose), a greater amount
reaches the systemic circulation which in turn could provide a larger physiological effect
at the same declared dose. Clearly, the novel powder blend represents a solution to in-
clude controlled-release β-alanine to multi-ingredient powder products (the most common
format of sports nutrition ergogenic aids) and would enable further research to explore
drug-drug interaction in sports nutrition.

5. Conclusions

This study shows the suitability of a new controlled-release powder blend formulation
to deliver β-alanine systemically orally with a 2.1-fold bioavailability increase versus a
slow release tablet formulation. That is to say, twice the amount of β-alanine would reach
the systemic circulation when provided as a controlled-release powder blend instead of as a
sustained-release tablet. In addition, the 8 g oral dose of β-alanine produced no additional
side effects except the expected paresthesia, although its extent would need assessment at
high doses chronically administered to ensure a complete safety assessment.

The pharmacokinetic-pharmacodynamic analysis shows a clockwise hysteresis loop
with marked tachyphylaxis. Furthermore, no paresthesia prediction between CMAX,
AUC0→∞ and EMAX, AUEC was found probably due diverse uptake kinetics and effect
mechanisms involved, which suggest that peak concentrations are not a good predictor of
paresthesia intensity.

This novel controlled-release formulation invites to explore a change from chronic
to short or mid-term β-alanine supplementation strategies to enhance carnosine uptake
with precision dose calculation considering anthropometrical variables and preserving its
controlled-release features.
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