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SUMMARY

Recent work provides the first method to measure the relative fitness of genomic
variantswithin a population that scales to large numbers of genomes. A key compo-
nent of the computation involves finding maximal perfect haplotype blocks from a
set of genomic samples for which SNPs (single-nucleotide polymorphisms) have
been called. Often, owing to low read coverage and imperfect assemblies, some
of the SNP calls can bemissing from some of the samples. In this work, we consider
the problem of finding maximal perfect haplotype blocks where some missing
values may be present. Missing values are treated as wildcards, and the definition
of maximal perfect haplotype blocks is extended in a natural way. We provide an
output-linear time algorithm to identify all such blocks and demonstrate the algo-
rithm on a large population SNP dataset. Our software is publicly available.

INTRODUCTION

Several recent works have explored the problem of determining maximum perfect haplotype blocks

(MPHBs) in large population datasets where each individual in the dataset is genotyped at a set of single

nucleotide polymorphism (SNP) sites along their genome. These data can be viewed as a large f0; 1g ma-

trix, where the rows represent each individual or sample and the columns are the SNP locations along a

chromosome of interest. Typically, a 0 indicates no change from the reference and a 1 represents a change.

The study of algorithms to find MPHBs was motivated by their usefulness in determining the fitness of ge-

netic variations for a set of loci along the genome by computing the selection coefficient (Gillespie, 2004,

Chapter 5.3), which indicates how stable each loci is from an evolutionary standpoint. With an algorithm for

computingMPHBs that scales to entire chromosomes and thousands of individual samples, it is possible to

investigate the selective pressure at each locus over an entire chromosome. The first such algorithm runs in

quadratic time (Cunha et al., 2018); more recent work (Alanko et al., 2020) gives two methods for finding

MPHBs that both run in linear time. The first linear time method is based on suffix trees, and the second

is based on the positional Burrows-Wheeler Transform (pBWT), both of which are data structures devel-

oped for efficient processing of string (alphabet character) data. In practice, the authors found the

pBWT-based method to be the faster of the two.

In this work, we extend the definition of maximal perfect haplotype blocks to include the possibility of

missing values in the data. We model such missing values as wildcards. Sequencing data are often noisy

and missing SNP calls are common, so it is natural to consider this variation of the problem. Wildcards

have also been considered in other pattern matching contexts; e.g., researchers have considered an index-

ing scheme for a text containing wildcards and a query pattern without wildcards (Tam et al., 2009) and in-

dexing a text without wildcards to search for patterns with wildcards (Bille et al., 2014).

We update the definition of MPHBs to permit some SNP values to be wildcards (represented as *’s in Fig-

ure 1). We assume that in each column there are samples for each SNP variation, e.g., there is at least one

row with a 0 value and at least one row with a 1 value. This assumption guarantees that each block resolves

to a single sequence of SNPs, which simplifies the representation of blocks. Following the notation from the

paper that first introduced MPHBs (Cunha et al., 2018), we index SNPs (columns) as 1 through n and se-

quences (rows) as 1 through k. For a set of sequences S and a subset of the row indices K , we define SjK
as the K-induced subset of S. That is, SjK : = fsi ˛Sri˛Kg.

Given k sequences S = ðs1; s2;.; skÞ of length n, a maximal perfect wildcard haplotype block is a triple

ðK ; i; jÞ with K4f1; 2;.;kg, jK jR2, and 1%i%j%n such that
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1. c c˛½i; j�, ��ðWs˛SjK s½c�ÞXf0; 1g��= 1 (consensus),

2. i = 1n
��ðWs˛SjK s½i�1�ÞXf0; 1g��s1 (left-maximality),

3. j =nn
��ðWs˛SjK s½j + 1�ÞXf0; 1g��s1 (right-maximality),

4. c s0˛½1;k�yK , d c˛½i; j�, ��ðWs˛SjKWfs0 gs½c�ÞXf0; 1g��= 2 (row-maximality).

Figure 1 shows a set of six sequences with three SNPs each. There, the ordered triple ðf1; 3; 5; 6g; 1; 2Þ is a
maximal perfect wildcard haplotype block, because it satisfies all four of the above conditions:

5. At every column c˛½1; 2�, the sequences included in the block of rows s1; s3; s5; s6 contain either a 0 or

a 1 but do not contain both.

6. i = 1, so the block cannot be extended left.

7. Among sequences s˛Sjf1;3;5;6g, there exists at least one with s½j + 1�= 0 and at least one with s½j + 1� =
1, so the block cannot be extended right.

8. For every sequence s0 not included in the block, s0 disagrees with a sequence s included in the block

at at least one position, so the block cannot contain any additional rows.

By contrast, the ordered triple ðf1; 2g; 1; 2Þ is not an MPWHB, since s1½1�= 1 and s2½1� = 0, violating the first

(consensus) property.

The maximal perfect wildcard haplotype block (MPWHB) problem is to find all maximal perfect wildcard

haplotype blocks for a given set of sequences. In previous work (Cunha et al., 2018), it was shown that in

the original formulation of the problem without wildcards, there are at most k possible maximal perfect

haplotype blocks that end at each column in the dataset; thus there are most knmaximal perfect haplotype

blocks in total. The number of maximal haplotype blocks grows considerably if wildcards are present. The

example shown in Figure 1 illustrates a simple construction in which for each column (SNP position), there is

exactly one row with a 0 value and one row with a 1 value.

In general, this construction has n SNPs and k = 2n sequences, with s2i�1½i�= 0 and s2i ½i�= 1 for i = 1;.; n and

all other values set to be wildcards. It is easy to check that, for any 1%i%j%n and any binary string b of

length j� i + 1, there is a subset K of the sequences such that ðK ; i; jÞ forms an MPWHB that agrees with

b in all non-wildcard positions. Summing over the possible lengths, the total number of MPWHBs is

Xn

l = 1

ðn + 1� lÞ,2l; (Equation 1)

as there are n+ 1� l starting positions for a block length l and 2l possible agreed upon strings. In practice,

we expect that there will be many fewer solutions in normal biological inputs. Motivated by this, we pro-

pose the objective of finding an algorithm whose running time is linear in the number of blocks found.

In the remainder of the paper, we will refer to MPWHBs simply as blocks for convenience.

In the Supplemental Information Transparent Methods Section S, we discuss how to represent all blocks

using trie data structure and describe an algorithm for finding all solutions using depth-first search to

implicitly search the trie. A trie (pronounced ‘‘try’’) is a tree where all nodes are labeled with a single letter

Figure 1. Six Sequences with Three SNPs Each

There can be many possible maximal perfect wildcard haplotype blocks if many wildcards are present; in this example,

there are 22 possible blocks, e.g., ðf1; 3; 5; 6g; 1; 2Þ is one of the blocks.
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from an alphabet; words that are present in a collection can be retrieved by following any path from the root

(top) of the tree to any terminal (leaf) node. For us, the ‘‘words’’ in the trie are representations of the blocks

in the set of sequences. Depth-first search is a standard method for searching through a tree data structure

that we can use to explore the entire trie systematically and efficiently. Figure S.1 shows an example of the

trie data structure built over a small dataset; Algorithm 1 describes the algorithm. The running time of the

algorithm is Oðkn ,TÞ, where T is the total number of blocks found.

RESULTS

We tested our method for finding blocks using the human chromosome 22 dataset from 1000 Genomes

Project (1000 Genomes Project Consortium et al., 2015) that was also used by others studying MPHBs

(Alanko et al., 2020). This was the smallest dataset they looked at, but it still consists of 5; 008 sequences

and 1; 055; 454 SNPs and so is representative of current larger SNP population datasets. Our implementa-

tion, written in Java, employs a built-in parallel loop construct for multi-threading. The algorithmwas run on

a high-performance research cluster (Hyalite High Performance Computing System, operated and sup-

ported by University Information Technology Research Cyberinfrastructure at Montana State University),

and each experimental run was done on a single Intel Xeon Ivy Bridge or similar node with either 32 or

40 cores available and 256 Gb of memory.

Table 1 summarizes the results as we varied both the percentage of randomwildcards (defined as the prob-

ability that a specific SNP call is a *) and the minimum block area threshold. The area of a block ðK ; i; jÞ is
defined as jK j,ðj � i + 1Þ, the number of samples in the block times the width of the block in terms of num-

ber of SNPs. The minimum block area is given as a parameter to the algorithm and is also used to prune the

trie search; paths that cannot lead to a block that meets the minimum area requirement are not explored.

We did not optimize I/O, so only start timing each run after the SNP input file has been read into memory

(which takes several minutes). We note that, although our experiments follow the general form of those per-

formed in previous work (Alanko et al., 2020), the running times presented here are not directly comparable

with those reported there, since the implementations are written in different languages and the experi-

ments performed on different systems. It is possible to optimize the DFS function to receive only the indices

of the rows that are lost at each call, meaning that Algorithm 1 takes Oðklgk +nlgkÞ space, accounting for

the storage of up to k row indices along the currently explored trie path, and the length n cons.cnt vector.

However, the algorithm reads the entire k by n matrix into RAM, so this dominates memory use. For this

reason, we did not record memory usage in our experiments.

Wildcards Min. Area Run Time # Blocks #DFS Calls/Block jK j #SNP

0% 13 min 28 s 148,613,645 35.5 1,497.3 490.0

0% 500,000 19 min 37 s 16,076,453 294.5 1,498.5 690.4

0% 1,000,000 18 min 11 s 2,228,762 1,888.4 1,659.1 889.2

0% 2,000,000 13 min 47 s 4,779 660,363.0 1,634.9 1,287.9

5% 2 h 22 min 506,675,436 30.8 545.9 426.1

5% 500,000 2 h 12 min 18,155,762 815.9 1,477.3 710.9

5% 1,000,000 1 h 47 min 2,652,944 5,277.8 1,645.0 909.8

5% 2,000,000 2 h 9 min 13,387 926,786.2 1,546.8 1,380.9

10% 5 h 32 min 1,128,831,659 27.3 334.4 439.9

10% 500,000 4 h 18 min 20,144,453 1,471.3 1,455.3 736.5

10% 1,000,000 5 h 21 min 3,101,221 9,157.3 1,627.0 1,627.0

10% 2,000,000 5 h 3 min 36,145 721,431.8 1,506.1 1,452.0

Table 1. Summary of Experiments Varying the Wildcard Frequency and Minimum Block Area for an SNP Dataset for Human Chromosome 22

Consisting of 5,008 Sequences and 1,055,454 SNPs

The rightmost three columns are averages.
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Although block statistics vary significantly when there is no minimum area threshold, we see that the dis-

tributions of the larger blocks are not drastically different when wildcards are present. We also plot the dis-

tributions of block shapes found for the varying wildcard rates and a minimum block area of 500; 000 in

Figure 2.

DISCUSSION

In this work, we give the first method for computing maximal perfect haplotype blocks in the presence of

missing data. To do so, we define the maximal perfect wildcard haplotype block problem and give an

output-linear time algorithm to solve it, with a running time of Oðkn ,TÞ, where T is the total number of

blocks found. Although it is possible to find maximal perfect haplotype blocks (without wildcards) in

OðknÞ time (Alanko et al., 2020), that method cannot be directly adapted to the wildcard setting, because

rows with wildcards cannot be sorted. It remains to be shown whether a faster algorithm can be given in the

wildcard case.

Our experimental results suggest that randomly distributed missing values do not substantially alter the

distribution of larger blocks. Thus, for applications such as estimating the selection coefficients of loci

along a genome, missing SNP values should be tolerable. We plan to investigate this further on synthetic

and actual datasets with missing values. In recent work (Williams andMumey, 2020), we examined a version

of the maximal perfect haplotype problem for pangenomic data. It would also be natural to consider

missing values in those data; this would lead to a version of the problem where the sequences are paths

in a graph and a wildcard could indicate that a path goes through an SNP but the value was unable to

be called.

Limitations of the Study

We focused on updating the theory around maximal perfect haplotype blocks to account for unknown

SNPs and giving an algorithm to find all blocks with wildcards. The main application of finding blocks

has been to compute selection coefficients, so an important next step is to develop a method and a

tool to compute selection coefficients in the presence of unknown SNPs.

In our experiments, we used only one human chromosome; future work could study a larger set of human

chromosomes or datasets from other organisms. Additionally, we looked at only randomly distributed un-

known values; real data may have unknown SNPs in a non-random fashion that could skew the distributions

of large blocks.

Figure 2. Scatterplots Showing the Distributions of Maximal Perfect Wildcard Haplotype Block Shapes Found for the Different Wildcard Rates

and the Minimum Block Area Threshold Set to 500,000
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We proposed an algorithm for finding all blocks with an asymptotic runtime ofOðknÞ time per block found;

an interesting algorithms question is whether blocks can be found asymptotically faster than this.

Resource Availability

Lead Contact

Requests for further information should be directed to and will be fulfilled by the Lead Contact, Lucia Wil-

liams (lucia.williams@montana.edu).

Materials Availability

No materials were generated in this study.

Data and Code Availability

VCF files from phase three of the 1000 Genomes Project are available from ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/release/20130502/. We used chromosome 22 and processed it to a binary haplotype matrix us-

ing the program vcf2bm, available at https://gitlab.com/bacazaux/haploblocks. Code to run our algorithm

and experiments on a binary matrix is available at github.com/msu-alglab/WildHap/.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101149.
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S. Transparent Methods

We describe the details of our trie-based representation of blocks and an
algorithm that implicitly searches the trie to find all blocks.

S.1. A Trie-Based Representation of Blocks

Our approach uses a trie to identify blocks ending at each column. This idea
was first proposed for the non-wildcard version of the problem by Cunha et al.
(2018) and later improved upon by Alanko et al. (2019). The key observation is
that, at each column, left-maximal blocks correspond to the internal branching
nodes of the trie constructed over the reverses of input sequences up to that
column. (Cunha et al. (2018) use right-maximal blocks and sequences from the
current column to n.) In the wildcard case, the trie must contain valid haplotype
blocks formed using wildcards; however, simply including every enumeration of a
sequence’s wildcards may yield internal blocks that do not satisfy the consensus
constraint. For example, the sequences {0*, 1*} do not form any blocks, but a
trie constructed over {00, 01, 10, 11} would have two internal branching nodes.
Thus, we must be careful in defining how we construct the trie at a given column.
In this section, we define a trie so that all internal branching nodes and a subset
of the leaves correspond to blocks. For a column `, we call this structure the
extended block trie at ` and denote it by T`. We first define the strings over
which T` is built, and then discuss useful properties of T`.

For every block (K, i, j) we define two types of strings: its consensus pattern
and its set of single-character extensions.

Definition 1. Let (K, i, j) be a block. The consensus pattern for (K, i, j) is the
sequence without wildcards that matches to s[i..j] for every sequence s ∈ S|K .

Because the first property (consensus) of the definition of block requires that
at least one row take the value 0 or 1 for every column of the block, there is
exactly one such consensus pattern for every block.

Definition 2. Let (K, i, j) be a block with i > 1 and consensus pattern P . If at
least one of the rows in K has a 0 (1) in the i− 1 position, then the string 0P
(1P ) is the 0 (1) single-character extension for the block.

A block (K, i, j) may have two, one, or zero single-character extensions,
depending on the values in the i− 1 positions of sequences in S|K .

For a given column `, we denote the set of all blocks ending at ` as B`; that
is, B` = {(K, i, j)|j = `}. We note that because each block ending at column
` must have a unique consensus pattern, the total number of unique patterns
associated to the blocks in B` is exactly the same as the number of blocks in
B`.

The trie for column ` is built over two sets of strings:

1. The reverse of the consensus pattern for every block in B`.

2. The reverse(s) of the single-character extension(s) for every block (K, i, `)
in B` such that i > 1.

1



We label each edge of T` with either a 0 or a 1. We also give each node two
labels. The path label is the concatenation of all edge labels on the path from
the root to the node. The row label is the subset of row indices {1, 2, . . . , k}
corresponding to the rows that participate in a block whose reverse consensus
pattern has the node’s path label as a prefix. We say that these rows support
the node. Figure S.1 shows an example of the extended block trie for a set of
wildcard haplotypes at a column `.

With the inclusion of single-character extensions in the trie, we have the
following lemma.

Lemma 1. Let T` be the extended block trie at `. Every block in B` is repre-
sented as either a leaf node or an internal branching node in T`. That is, the
reverse of the consensus pattern for every block in B` is the path label of either
a leaf node or an internal branching node.

Proof. Because T` is built using all blocks ending at `, every block in B` certainly
corresponds to a node in T`; we must show that such nodes are either branching
nodes or leaves. We show that non-branching nodes cannot be blocks ending
at `.

Let u be an internal non-branching node in T` with path label p and depth
d. Let C ⊆ {1, 2, . . . , k} be the row label of u and let v be the single child of
u. Because u has only one child, all rows supporting u also support v. (If not,
u would have a single-character extension as its other child.) Thus, the block
(C, `− d + 1, `) cannot be left-maximal, and so u cannot correspond to a block
ending at `.

We note that leaf nodes that are not blocks must be single-character exten-
sions. We call such nodes failed extensions.

To motivate the inclusion of single-character extensions in the trie, we also
note that, without them, there could be a block corresponding to an internal
node that does not branch, as in the following case. Consider a block (K, i, `)
whose consensus pattern P is a suffix of the consensus pattern for another block
(K ′, i′, `) such that K = K ′ \ h for some single sequence sh ∈ S. Without loss
of generality, assume that the string 0P is a suffix of the consensus pattern for
(K ′, i′, `). Since only one sequence sh supports (K ′, i′, `) but not (K, i, `), the
string 1P cannot be a suffix of any block ending at column `, because blocks
must be supported by at least two sequences. Thus, the node corresponding to
(K, i, `) would be an internal, non-branching node without the single-character
extension 1P . The block ({1, 3, 4}, 2, 4) with consensus pattern 010 in Figure S.1
would be an internal, non-branching node if not for its single-character extension
1010, as would be ({1, 3, 6}, 2, 4).

We now prove properties of this trie that will help us to build it from the
wildcard haplotype matrix.

Lemma 2. Let T` be the extended block trie at column ` built over k length n
sequences of zeros, ones, and wildcards. If u is a node of T` whose parent is a
branching node v, then u’s row label is a strict subset of v’s row label.
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s1: 1 * 1 * 1 *

s2: 1 1 0 0 1 *

s3: 0 * * 0 1 0

s4: 1 0 * 0 0 1

s5: 1 * 1 1 * 1

s6: 0 1 1 0 0 *

(a) ` = 4.

block/ reverse
extension pattern
({1,2,3,4,6},4,4) 0
({1, 5}, 4, 4) 1

({2,3,4},3,4) 00

({1,3,4,6},3,4) 01

({3, 4}, 2, 4) 000

({3, 6}, 2, 4) 001

({1,3,4},2,4) 010

({1,3,6},2,4) 011

({3}, 1, 4) 0100

({1,4},1,4) 0101

({3,6},1,4) 0110

({1}, 1, 4) 0111

(b) All blocks (bold) and failed exten-
sions at ` = 4.

rows: {1,2,3,4,5,6}

path: 0
rows: {1,2,3,4,6}

0

path: 1
rows: {1,5}

1

01
{1,3,4,6}

1
00

{2,3,4}

001
{2,3}

0

000
{3,4}

011
{1,3,6}

010
{1,3,4}

0 01 1

0110
{3,6}

0
0101
{1,4}

1
0100
{3}

0
0111
{1}

(c) T4.

Figure S.1: An example extended block trie at column ` = 4 for the six input sequences shown
in S.1a. The trie is built over the seven blocks and five failed extensions shown in S.1b. Nodes
that correspond to blocks are shown in pink in S.1c. Leaf nodes for patterns 001 and 1 are not
continued because they are not right-maximal; the leaf node for pattern 000 is not continued
because it does not satisfy the consensus condition. Related to Figure 1.

Proof. Let p be the path label of v. Because v is a branching node, p is a pattern
of some block (K, i, `) in B`. We must consider two cases: the case when u’s
path label is a prefix of the reverse of some other block (K ′, i′, `) with i′ > i,
and the case when u is a failed extension (and thus not a block).

Suppose that u’s path label is a prefix of the reverse of some other block, as
described above. Let p′ be the path label of u. Since u is a child of v, p must
be a prefix of p′. Thus, every row that matches to p must also match to p′,
and so K ′ ⊆ K. Now we must show that K ′ 6= K. Aiming for a contradiction,
suppose that the same set of rows match p′ as p, so K ′ = K. Then, (K, i, `) is
not left-maximal, contradicting the fact that it is a block.

Now suppose that u is a failed extension. By definition, the rows supporting
u are a subset of the rows supporting v. As in the other case, if the two sets
were equal then u could not be left-maximal, and thus u could not correspond
to a block.

We define a terminal block node as either a leaf in the trie that represents a
block or a parent of an extension (and so is also a block).

Lemma 3. Given k length n sequences S over the alphabet {0, 1, *}, the num-
ber of terminal block nodes in the extended block trie at column ` is at most
2min(k−2,`).

Proof. Clearly ` is trivial bound on the depth of any trie node, as the levels
in the trie correspond to SNPs 1 . . . `, so there at most 2` leaves. We observe
that any path in the trie to a terminal block node goes through at most k − 2
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branching nodes, since each branch eliminates at least one row from the path
(Lemma 2) and we must have at least two remaining rows at the node since it is
a block. If we collapse all paths of non-branching nodes and remove extensions,
the trie becomes a binary tree with maximum depth k − 2; it can have at most
2k−2 leaves.

Corollary 1. The maximum number of blocks ending at column ` is at most
2min(k−1,`+1) − 1.

Proof. The number of internal, non-terminal block nodes is one less than the
number of terminal block nodes.

Consequently, an upper bound on the number of blocks possible in a data
set with k rows (sequences) and n columns (SNPs) is

n∑
`=1

2min(k−1,`+1) − n.

We remark that this bound is probably not tight since it grows significantly
faster than Equation (1), the number of blocks found in the somewhat patho-
logical construction shown in Figure 1.

S.2. A DFS-Based Algorithm

We make use of a depth-first search approach to implicitly search the trie
described in Section S.1 in order to identify blocks. For each SNP column
` we would like to search for blocks that end at this column. As explained
above, we can view blocks as paths in a {0,1}-trie, where the path specifies the
reverse order of the consensus string of the block. We define the set set0(`) =
{i ∈ {1, 2, . . . , k} : si[`] = 0} to indicate the rows (sequences) that are 0 for
SNP `. Similarly, we also define sets set1(`) and set∗(`). Pseudocode is given in
Algorithms 1 and 2. The main idea of the DFS function is to implicitly search the
trie for new blocks that end at the given column, `. The argument rows is a set
containing the sequences that reach the current node in the trie, corresponding
to the row label of the extended block trie described in Section S.1. In order
for an edge to exist in the trie it must have at least one row (sequence) that
supports it in the sense that row agrees with the edge’s SNP setting. Also, trie
branches are not followed if the block they represent is not right-maximal, or if
there is a column in the block that only contains wildcards. These conditions
are checked prior to making a recursive call to further explore the trie from the
current node. It is easy to parallelize the loop in Algorithm 1 by allocating a
separate cons.cnt array for each thread.

Note that each path in the trie is less than n in depth and terminates in a
found block. As noted in Lemma 3, there are at most k−1 branching nodes along
any path in the trie. We keep count of the number of non-wildcard (consensus)
values at each SNP level in the trie path currently being explored. As rows get
deleted along a path, these counts can be updated in O(n) time per row deleted.
The path is only continued if these counts stay positive. At most k − 1 rows
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can deleted along any path, so the O(kn) time bound until the next block is
discovered holds in general. Thus the running time of the algorithm is O(kn ·T ),
where T is the total number of blocks in the solution.

5



References

Alanko, J., Bannai, H., Cazaux, B., Peterlongo, P., Stoye, J., 2019. Finding
all maximal perfect haplotype blocks in linear time, in: 19th International
Workshop on Algorithms in Bioinformatics (WABI 2019), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Cunha, L., Diekmann, Y., Kowada, L., Stoye, J., 2018. Identifying maximal per-
fect haplotype blocks, in: Brazilian Symposium on Bioinformatics, Springer.
pp. 26–37.

Algorithm 1: FindBlocks

int `;
int cons.cnt[n];
for ` = 1, 2, . . . , n do

cons.cnt[`] = 0;
DFS(`, {1, 2, . . . , k}, `, cons.cnt);

end
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Algorithm 2: int DFS(i, rows, `, cons.cnt)

branchs := 0;
for b = 0, 1 do

kp := rows ∩ (setb(i) ∪ set∗(i));
rm := rows ∩ set1−b(i);
cons.cnt[i] := ‖rows ∩ setb(i)‖;
ok = (cons.cnt[i] > 0);
if ok then

branchs := branchs + 1;
end
for r ∈ rm do

for c = i + 1, . . . ` do
if sr[c] 6= ∗ then

cons.cnt[c] := cons.cnt[c]− 1;
if cons.cnt[c] ≤ 0 then

ok = false;
end

end

end

end
ok := ok & (` = n ‖ (kp ∩ set0(` + 1) 6= ∅ & kp ∩ set1(` + 1) 6=
∅) ‖ kp ⊂ set∗(` + 1));

if ok & ‖kp‖ ≥ 2 & (i = 1 ‖ DFS(i− 1, kp, `, cons.cnt) 6= 1) then
found block: (kp, i, `);

end
for r ∈ rm do

for c = i + 1, . . . ` do
if sr[c] 6= ∗ then

cons.cnt[c] := cons.cnt[c] + 1;
end

end

end

end
return branchs
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