
1Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreports

SPARK-MSNA: Efficient algorithm
on Apache Spark for aligning
multiple similar DNA/RNA
sequences with supervised learning
V. Vineetha   , C. L. Biji & Achuthsankar S. Nair

Multiple sequence alignment (MSA) is an integral part of molecular biology. But handling massive
number of large sequences is still a bottleneck for most of the state-of-the-art software tools.
Knowledge driven algorithms utilizing features of input sequences, such as high similarity in case
of DNA sequences, can help in improving the efficiency of DNA MSA to assist in phylogenetic tree
construction, comparative genomics etc. This article showcases the benefit of utilizing similarity
features while performing the alignment. The algorithm uses suffix tree for identifying common
substrings and uses a modified Needleman-Wunsch algorithm for pairwise alignments. In order to
improve the efficiency of pairwise alignments, a knowledge base is created and a supervised learning
with nearest neighbor algorithm is used to guide the alignment. The algorithm provided linear
complexity O(m) compared to O(m2). Comparing with state-of-the-art algorithms (e.g., HAlign II),
SPARK-MSNA provided 50% improvement in memory utilization in processing human mitochondrial
genome (mt. genomes, 100x, 1.1. GB) with a better alignment accuracy in terms of average SP score
and comparable execution time. The algorithm is implemented on big data framework Apache Spark in
order to improve the scalability. The source code & test data are available at: https://sourceforge.net/
projects/spark-msna/.

Sequence alignment is used in bioinformatics to identify degree of similarity between biological sequences (DNA,
RNA or protein), in understanding functional, structural and evolutionary relationship between them. Sequence
alignment is of vital importance in molecular biology for studies involving molecular function prediction, evolu-
tionary tree reconstruction and disease analysis. Needleman-Wunsch(NW) algorithm1, was one of the first imple-
mentations of dynamic programming in bioinformatics. It was an optimal sequence alignment algorithm with a
tradeoff in computational time and space. For two sequences of length m and n, the time and space complexity is
computed as O(m * n). By expanding the same algorithm for multiple sequence alignment (MSA), the complexity
rises exponentially (O(mn) for n sequences of length m). Because of this high computational cost involved, NW
algorithm cannot be used in multiple sequence alignment especially for large number of long sequences. Most
popular implementations of MSA such as CLUSTAL2, MAFFT3, MUSCLE4 use approximation methods such
as progressive and iterative approaches for faster execution and less memory utilization. Most of the algorithms
implemented so far were derivatives of NW algorithm.

The improvements in DNA sequencing technology has led to an unprecedented increase in the amount of
DNA and genome data being available for studies. Therefore, it is important to improve the scalability and perfor-
mance of MSA tools. Cloud computing and the recently emerged big data technologies such as the new program-
ming paradigm called MapReduce5, are effective ways to process huge volume of data of the order of petabytes
and more. Implementation using big data frameworks for sequence alignment/mapping were reported in the
literature for instance, Sadasivam et al., 20106 presented a Hadoop based implementation of MSA using NW
algorithm and Zhao et al., 20157 presented Spark based implementation of local alignment.

Most of these research focused on improving the scalability of MSA using Big data frameworks, but not much
research has happened in improving the MSA technique as such. These implementations are able to support large

Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India.
Correspondence and requests for materials should be addressed to V.V. (email: vineevishnu@gmail.com)

Received: 4 July 2018

Accepted: 12 April 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42966-5
http://orcid.org/0000-0001-6445-7833
https://sourceforge.net/projects/spark-msna/
https://sourceforge.net/projects/spark-msna/
mailto:vineevishnu@gmail.com

2Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

set of input sequences, but when it comes to massive DNA sequences, they are either unable to support or execute
slowly when the count of sequences increase beyond 100. DNA sequences are highly similar compared to protein
sequences. This similarity feature can be utilized to improve the alignment, and enable algorithm to tackle the vol-
ume and achieve better performance. Q. Zou et al.8 developed an algorithm which is proven to be highly efficient
in performing MSA of similar DNA/RNA sequences. The algorithm uses centre star strategy along with trie tree
data structure to improve the performance. Spark version of this algorithm HAlign II9, to support large volume
of sequences reported promising results for similar DNA/RNA sequence alignment. MASC (Multiple Sequence
Alignment Based on a Suffix Tree and Center-Star Strategy) is the implementation of same algorithm on CUDA
architecture to obtain much faster performance for ultra large data sets10. PASTASPARK11 is another promi-
nent implementation of MSA on Spark framework, which performs alignment based on SATé (Simultaneous
Alignment and Tree estimation) and transitivity.

MSA could be further enhanced with a bounded dynamic programming algorithm12 at the pairwise align-
ment level. DDGARM, an improved NW algorithm13 for pairwise alignment has proved that, for highly similar
sequences, optimal alignment can be achieved by filling only 10% of the matrix. Our algorithm uses the concept
of Q. Zou et al., on progressive alignment, with modified NW algorithm for improved pairwise alignment. Key
characteristics of the proposed algorithm include, (a) Suffix tree data structure for storing input sequences and
identifying common substrings between sequences, (b) A knowledge base and nearest neighbor learning layer
to guide the pairwise alignment, (c) Modified Needleman-Wunsch algorithm to perform pairwise alignments
at each stage in order to reduce the memory and execution time of alignments and (d) Parallelization using
MapReduce method for suffix tree construction and pairwise alignment to further improve the execution time.

Methods
Progressive Alignment.  Progressive method is one of the basic alignment strategies used for MSA. It is
known to provide reasonably good result and is the most widely used heuristic method for MSA14. Hence it
is chosen as the core of our algorithm. The basic flow of progressive strategy is to prepare a guide tree and use
series of pairwise alignments to align the sequences based on the branching order in the guide tree. The guide
tree is formed based on the pairwise distance of sequences. Guide tree is formed in the order from shortest to
longest distant pair. Initially the most closely related sequence pair is aligned and then the remaining sequences
are aligned to the previous alignment until all sequences are aligned. Pairwise alignment is performed at each
stage and it is refined at the final step while summing up the alignments. In the refinement step, the early gaps are
revisited to adjust the penalties based on aligned sequences from other pairwise alignments. There are many MSA
algorithms which uses modified forms of progressive methods2. Details about progressive alignment method
along with pseudo code is given in Supplementary Material (Data S2).

The guide tree construction and pairwise alignment are the major contributors for the execution time and
memory utilization in progressive alignment method. Use of data structure such as suffix tree which enables effi-
cient storage and quick search of common substrings of the sequences help in improving the complexity of guide
tree step. Similarly, the pairwise alignments are performed using the dynamic programming approach which
becomes the most time consuming process when the sequences involved in the MSA are quite large. Bounded
dynamic programming algorithm is used to enhance the performance of pairwise alignments.

From the suffix tree, common substrings can be rapidly extracted for highly similar DNA sequences. This
leaves only the unmatched regions to be aligned. The modified pairwise alignment algorithm also provides sub-
stantial improvement in execution time and memory utilization as the similarity among the sequences increases.

Suffix Trees to enhance alignment of similar sequences.  Suffix trees greatly improve the performance
of search on indexed string and hence are widely used in problems involving pattern matching, finding sub strings
etc. Many existing alignment algorithms use suffix tree to identify matching substrings and there exists different
algorithms for the construction of suffix tree15–21. Ukkonen suffix tree construction15 is followed in the implemen-
tation as it is superior in terms of time and space complexity22.

Each input sequence is partitioned in to equal size segments and these segments are used to construct the
suffix tree. Suffix tree is characterized by a root and each edge is labeled by the nucleotide in the sequence. For any
node v, the string formed by concatenating the edge labels from root to v is the path to that node, path(v). Suffix
tree is known to provide optimal search time16,23, which means, identifying the node v, which is closest to the root
for a given pattern P, such that P is a prefix of path(v) can be performed in time linear to the length of P. All leaves
in the subtree of the node v then represent the occurrences of the pattern P in string S.

If there are n DNA sequences with an average length of m, the time complexity for building a suffix tree for
one sequence is O(m) (Lines 2–3 in Algorithm 1). After constructing the suffix tree, search the suffix tree for
each segment of every sequence pair to identify the common substrings and matching segments. Searching the n
sequences in the suffix tree costs O(nm) (Lines 5–7 in Algorithm 1). For the unmatched segments, record the per-
centage identity and difference in length if any. Since the sequences are partitioned to equal size segments, only
the last segment of every sequence will be having different length. Only the unmatched segments are considered
for pairwise alignments and the features ie; percentage identity and difference in length are used to extract learn-
ing from knowledge base. The guide tree for performing pairwise alignments are formed based on the similarity
measure extracted for each sequence pair.

Modified N-W algorithm for pairwise alignment.  Our previous research had proved that, for pairwise
alignments, optimal alignment can be achieved by populating only limited number of diagonals of the matrix13.
The number of diagonals to be filled to obtain optimal alignment is not fixed in all cases. Hence, there is a need
to find the minimum number of diagonals to be filled as a pre-requisite. This is done using dot plot approach.
With some modifications to the dotlet24 algorithm, the number of diagonals to be filled can be obtained. Test

https://doi.org/10.1038/s41598-019-42966-5

3Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

results have proved that the similarity between sequences and the number of diagonals to be filled are inversely
proportional. According to our previous research13, sequences with % identity (more than 50%) and difference
in length (less than 25%) are reported to get a 50% improvement in memory utilization and execution time in
pairwise alignments.

In our approach, pairwise alignment is performed only for the unmatched segments. As the similarity between
sequences increases, the number of segments to be aligned reduces. The modified alignment algorithm further
reduces the complexity as similarity increases. The most distant segment pair from the input sequences are chosen
to identify the number of diagonals to be filled. This improves the execution time and at the same time ensures
that all pairwise alignments provide optimal alignment as it would be the highest of diagonals count for the
given input set. Even though this step involves only one pairwise alignment, this could become costly for very
large sequences. Hence, a knowledge base is built with training data and a learning layer with nearest neighbor
algorithm is used to extract knowledge out of knowledge base. With more learnings, the knowledge base becomes
more accurate and would result in faster learning.

In the traditional dynamic programming based pairwise alignment, the complexity is O(m2)for sequence
segments having length m. In our modified alignment approach, the complexity reduces to O(m * k) + O(2m * d),
where k is the difference in length and d is the number of diagonals filled. In case of highly similar sequences,
k → 0 and d m , hence the complexity becomes O(m) compared to O(m2) in the case of traditional dynamic
programming approach where we fill the entire matrix. The worst case complexity would be O(m2) as 2m * d
becomes equal to m2, when the similarity between sequences decreases.

Supervised learning layer.  Bounded dynamic programming for pairwise alignment is the key in our
approach to achieve better performance. From the experiment results13, it is known that the number of diagonals
to be filled depends on the similarity level and difference in length. Prior knowledge about the number of diago-
nals to be filled is a pre-requisite for the pairwise alignment step. Using training dataset, a knowledge base is built
with the mapping of sequence similarity to number of diagonals. Sequence similarity measure (percentage iden-
tify and difference in length) for the most distant segments are used for extracting the knowledge from knowledge
base. Nearest neighbor algorithm is used to identify the best matching entry from the knowledge base25,26. Less

Algorithm 1.  (Main flow):

https://doi.org/10.1038/s41598-019-42966-5

4Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

number of dimensions (percentage identity and length difference) for pattern recognition was the driving behind
selecting nearest neighbor as the learning algorithm. More details about nearest neighbor algorithm is given in
Supplementary Material (Data S3).

The learning layer uses percentage identity and length difference as the features for classifying the input
sequences. For each sequence pair, these features are extracted and the combination of highest value for difference
in length and lowest value for identity are chosen for an input dataset. Then, it is matched with the knowledge
base to identify the closest set. The algorithm initially checks for the exact match and in case of absence of exact
match checks for the closest match (within a range of ±(2–3)%). Count of diagonals will be fetched for this closest
match and that will be used for the pairwise alignment in the progressive MSA. Each time a new set of features
are encountered, for which a closest match does not exist in the knowledge base, dotlet algorithm is executed to
identify the number of diagonals. This learning is then entered in to the knowledge base for future alignments.
More entries in the knowledge base would improve the performance and accuracy of the alignment. Figure 1
shows the flow of the algorithm with sample data.

Parallel implementation with Spark.  Parallel computation is implemented using MapReduce model at
two stages in the algorithm. The suffix tree construction and the pairwise alignment of progressive method.
MapReduce can be implemented using Hadoop or Spark. Due to the additional improvement in time provided

Figure 1.  Sample flow of SPARK-MSNA algorithm.

Algorithm 3.  (Nearest Neighbor).

Algorithm 2.  (Knowledge Base creation/learning).

https://doi.org/10.1038/s41598-019-42966-5

5Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

by spark with its in-memory computation, spark is chosen as the MapReduce framework27. More details about
MapReduce programming model is given in Supplementary Material (Data S4).

Although usage of suffix tree with Ukkonen’s algorithm results in linear time complexity, this could be cost-
lier when sequences involved are quite large in size. Performance is further improved with parallel construction
using MapReduce programming model28. The suffix tree is partitioned vertically and each partition is constructed
independently. The prefixes generated from the vertical partitioning forms the key and its starting positions form
the value. This key-value pair is processed using the map task and subtrees are constructed in parallel by compute

Difference in Length
of sequences (%) Similarity (%)

percentage of diagonals
filled in the 2 × 2 matrix

0.30 99.20 0.15

0.20 99.30 0.14

0.40 98.00 0.16

0.30 98.10 0.15

0.10 95.90 0.18

0.23 97.30 0.17

0.34 98.20 0.16

0.35 96.40 0.18

0.70 99.00 0.4

1.20 99.00 0.3

5.80 75.00 6.2

25 50.00 20

Table 1.  Sample knowledge base constructed for testing.

Similarity
(%)

Execution time (without
knowledge base)

Execution time (with
knowledge base)

Dataset 1 95 1 min 11 sec 50 sec

Dataset 2 70 1 min 31 sec 1 min 4 sec

Dataset 3 45 1 min 47 sec 1 min 14 sec

Dataset 4 35 2 min 5 sec 1 min 29 sec

Dataset 5 20 2 min 43 sec 1 min 55 sec

Table 2.  Execution time taken by SPARK-MSNA for datasets with different similarity. Datasets were of equal
size (3.75MB).

Figure 2.  Flow chart of SPARK-MSNA algorithm.

https://doi.org/10.1038/s41598-019-42966-5

6Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

nodes. Suffix tree construction from the subtree is combined with the map tasks in order to reduce the overhead
of shuffle and reduce. Algorithm 4A shows the flow for the map function of suffix tree construction.

The pairwise alignment stage checks for matched segments and the unmatched segments alone are then taken
for pairwise alignment. Pairwise alignment of segments is then executed in parallel using MapReduce model.
Name of the sequence with segment index is the key and the sequence segment is the value for this map phase.
Each compute node then performs the pairwise alignment using the modified pairwise algorithm. Result is then
passed in the form of key-value pair where key is the sequence name with segment index and value is the aligned
sequence. Aligned sequence segments for one pair of sequences are combined with the map task to avoid the
overhead of reduce task. Algorithm 4B shows the flow of the map function for pairwise alignment.

Figure 4.  Improvement in execution time of SPARK-MSNA with more number of nodes.

Figure 5.  Speedup in execution time due to additional compute nodes.

Figure 3.  Execution time of SPARK-MSNA decreases as similarity of input sequences increase.

https://doi.org/10.1038/s41598-019-42966-5

7Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Parallel execution does not improve the complexity of the algorithm but it helps in improving the execution
time. When we have number of compute nodes equal to or more than the number of partitions to be processed,
the execution time is equivalent to that of processing single partition plus an additional overhead for the reduce
phase to construct the final result. In case the number of compute nodes are less, partition groups are formed and
process the partition groups in parallel, for improved performance compared to sequential run. Spark framework
reduces the network overhead by utilizing the data locality concept of MapReduce, but merging the scattered
intermediate results to form the final result will always be there. But in case of large datasets, this additional over-
head is much lower compared to the sequential execution or traditional distributed computing (OpenMP/MPI).
Figure 2 shows the flow chart of the algorithm.

Results and Discussion
Test results on simulated data.  Performance of the algorithm was tested using simulated data and couple
of actual data sets. MSA algorithms supporting massive genome sequences are still in the evolving phase and hence
there is a lack of benchmark dataset when it comes to large scale DNA MSA algorithms. The Balibase29 dataset which
is considered as the golden benchmark for MSA is more suitable for protein sequences and does not provide bench-
mark for large DNA sequences. Details about real-world applications of MSA involving large genome sequences
are given in Supplementary Material (Data S1). Simulated data with different levels of similarity was used to test
the effectiveness of the algorithm. Test data was created by taking a portion of the human mitochondrial genome
(NC_012920.1) as first sequence and then creating the second sequence with some random modifications in the
first sequence. The similarity between sequences were first tested with traditional NW algorithm for correctness.
Sequence datasets were prepared with 95%, 70%, 45%, 35% and 20% similarity and fixed size of 3.75 MB with max-
imum length 6580 bp and minimum length 6560 bp. Training data with 50 datasets of varying similarity range was
prepared to build the knowledge base. Table 1 shows the snapshot of the knowledge base created for the test data.

Prepared datasets were used to test the algorithm and identify the relationship of performance with similarity
level. Testing was performed with and without knowledge base. Whenever the learning layer failed to match
input data with existing entries in knowledge base, the algorithm performs dot plot step to gain the knowledge
and make an entry in knowledge base. Table 2 shows the result of testing with simulated data. The results indi-
cate that the algorithm delivers better performance as similarity between the input sequences increases. Figure 3
shows the decrease in execution time as similarity among input sequences increases. This is because, the number
of segments to be aligned and the diagonals to be filled for alignment reduces as the similarity increases. With
the knowledge base, the execution time and memory utilization reduces further as we do not have to perform the
modified dotlet alignment to find out the number of diagonals to be filled. With large sequence data, the reduc-
tion in time due to removal of dotlet alignment would be more significant.

Comparison with other tools.  Most of the MSA algorithms compare the test results with other commonly
used tools/algorithms. Test results of SPARK-MSNA are compared with HAlign, HAlign II and PASTASPARK.
MAFFT & MUSCLE are used for comparing results of small data sets. Even though MASC has reported highly
competitive performance in handling large volume of data, the underlying architectures are different for both

Algorithm 4A.  (Map function for Suffix tree construction).

Algorithm 4B.  (Map function for pairwise alignment).

https://doi.org/10.1038/s41598-019-42966-5

8Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

implementations, as MASC is implemented on CUDA processor. The algorithms HAlign8 and HAlign II9 have
reported considerable improvement in performance specifically in addressing large scale DNA sequence data and
our work has been inspired from HAlign; so, we have used same datasets used by HAlign to test the performance
of our algorithm – human mitochondrial genomes (mt genomes) and 16 s rRNA. Dataset from PASTASPARK
200k RNASim is also included in the test data.

The human mitochondrial genome dataset is a sample for highly similar dataset. The dataset contains 672
human mitochondrial genomes with maximum length 16579 bp and minimum length 16556 bp. The percentage
identity is >97% for this dataset. 200k RNASim dataset is used as dataset with moderate level of similarity with
minimum sequence length as 748 and maximum sequence length as 1836. 16 s rRNA dataset is used for testing
the performance on less similar sequence set. It has minimum length 807 bp and maximum length 1629 bp.
Details of test datasets are provided in Table S1 of Supplementary Material. In order to compare results with other
tools, tests are performed on single node cluster and multi node cluster. Spark cluster was set up on single node
with 3.6 GHz 4 core CPU, 64 bit Ubuntu OS and 64 GB memory. In order to test the improvement due to parallel
implementation, SPARK-MSNA was tested with more number of nodes. Figure 4 shows the execution time taken
by SPARK-MSNA with 1, 2, 4, 8, 16 and 32 nodes. Large data sets of 1.4 GB and 3.4 GB are used for testing the
improvement in execution time with number of nodes. Multi node cluster set up is used to compare performance
with HAlign II. A cluster of 12 servers with intel Xeon E5-2620 processor with 8 cores and Spark 2.3.0 were used
for the testing. Figure 5 shows the speedup of execution time due to additional nodes and Fig. 6 shows the weak
scalability of the algorithm. Table S2 of Supplementary Material shows the test results of various algorithms
using test datasets. Figure 7 shows the performance comparison of SPARK-MSNA with HAlign, HAlign II and
PASTASPARK. MAFFT & MUSCLE had limitations in processing datasets of size more than 1 GB. Considering
the high volume of genome sequence data generated by NGS techniques and the predicted transition to person-
alized and precision medicine, there is a pressing need on MSA tools/algorithms to support data sets of hundreds

Figure 6.  Weak scalability of SPARK-MSNA.

Figure 7.  Performance comparison of SPARK-MSNA with other algorithms.

https://doi.org/10.1038/s41598-019-42966-5

9Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

of GBs/TBs. SPARK-MSNA provided better optimum results with better memory utilization & average SP score
compared to HAlign II with slightly high execution time.

Average SP score is used for comparing the alignment accuracy. SP score is calculated as the number of pairs
of residues correctly aligned. The score is calculated as

Σ Σ= =S S/i
M

i i
M

ri1 1
r r

where, M is the length of the sequence, Mr is the length of the reference sequence, Si is the score of the ith column
and Sri is the score of ith column in reference sequence. Si is calculated as normalized total score of column i, with
pair value calculated as 2 if residues are aligned, 1 if one of the alignments has a gap and 0 otherwise. The test
results show that SPARK-MSNA performs better in terms of memory utilization and accuracy, but has increased
execution time compared to HAlign II. Progressive alignment and the refinement step increases the execution
time, but that helps in achieving a better alignment. The reduced matrix alignment guided by knowledge base
leads to reduction in memory utilization. MAFFT and MUSCLE provide better average SP score compared to
SPARK-MSNA, but they are unable to handle large volume of dataset. MAFFT and MUSCLE failed to deal with
datasets of size more than 1 GB. PASTASPARK is able to handle the large volume of data, but the execution time
is much higher compared to HAlign II and SPARK-MSNA.

The modified Needleman-Wunsch algorithm for pairwise alignment of unmatched segments plays a crucial
role in reducing the memory utilization for SPARK-MSNA. In the pairwise alignment step, HAlign II uses com-
plete 2 × 2 matrix for alignment, whereas, SPARK-MSNA uses limited diagonals (approx. 2% of diagonals) to
calculate the alignment. This modification provides up to 50% reduction in the memory utilized (depending on
sequence similarity)13. The trade-off is between execution time and alignment accuracy. SPARK-MSNA provides
a better balance between the two by providing an optimum performance in terms of computational time and
memory while retaining an average SP Score close to MAFFT.

The knowledge base guides the bounded dynamic programming for pairwise alignment. Hence, a rich knowl-
edge base results in better performance and better accuracy. For highly similar sequences, the improvement is
highly significant as very less number of matrix cells (diagonals) are included in the alignment. As the similarity
decreases, the number of matrix cells needed in the alignment increases and for highly different sequences, com-
plete matrix is needed in the alignment, which makes it similar to normal dynamic programming. This is evident
in the test result of 16 s rRNA dataset, where the memory utilization is similar to that of HAlign II.

In order to test the efficiency of knowledge base, we added the knowledge base layer (training layer) to HAlign
II and tested the same using mt. genome and 16 s rRNA datasets. Table S3 of Supplementary Material shows the
test results. Results show that, knowledge driven bounded dynamic programming helps in achieving improved
execution time and memory utilization. Average SP score remains same as HAlign II as the underlying alignment
strategy remains the same in both algorithms (Centre star). This shows the importance of knowledge driven algo-
rithms, which can learn from their experiences are key to improving the performance of MSA.

Complexity Analysis.  The most important feature of SPARK-MSNA is the improved time and space com-
plexity. The first stage of SPARK-MSNA is construction of Suffix tree. The Ukkonen’s algorithm using MapReduce
model is adapted here. For one DNA sequence of length m, the time complexity for building suffix tree is O(m).
For n sequences, the complexity is O(nm). The second stage is searching the suffix tree for all possible pair com-
binations of n DNA sequences. The search would incur a cost of O(m) for one sequence pair and we have nC2
pairs. So, the complexity of search becomes O(n2m). Building guide tree based on the similarity measure obtained
from search is the next step. This incurs a linear cost of O(n). Due to less number of dimensions and cardinality
involved in pattern matching, the complexity of learning layer becomes O(k).

Pairwise alignment of unmatched segments of sequence pairs is the next step. Since we are adopting the mod-
ified Needleman-Wunsch algorithm, the complexity becomes +O kx O kd() (2), where k is the segment length, x
is the difference length of segments involved in pairwise alignment and d is the number of diagonals to be popu-
lated. For highly similar sequences, →x and d k0 , hence the complexity will be O(k). In traditional dynamic
programming approach, the complexity is O(k2). The last step of summing up the alignment results to form the
final alignment would incur a cost of O(nm). The learning step involves one pairwise alignment of the most dis-
tant segment pair and it incurs a cost of O(k2), if the learning is not available in the knowledge base.

Building the knowledge base is not part of the main flow of the algorithm. It is part of the training phase and
hence it does not add to the overall complexity of the algorithm. Whenever the appropriate learning is missing
in the knowledge base, the learning step is implemented to enhance the knowledge base. Modified dotlet algo-
rithm is performed to get the number of diagonals. The alignment is performed on the most distant segment of
sequences and in such scenarios, there would be an additional O(m2) added to the complexity of the algorithm,
where m is the sequence length.

The overall complexity of SPARK-MSNA is + + + + +O m O n m O n O k O k O nm() () () () () ()2 . Considering
n m, the best case complexity is O(m). As the similarity between sequences decreases, number of unmatched

segments and the number of diagonals to be populated for alignment increases, this will make the worst case
complexity as O(m2). Same is the case when learning step is involved.

Discussion
In this work, we have focused on improving the efficiency of MSA involving large DNA sequences by utilizing
its similarity feature and improving the performance with learning layer and parallel execution. The test results
and complexity shows that, SPARK-MSNA provides a better trade-off compared to other MSA tools/algorithms
in handling similar large scale DNA/RNA sequences. SPARK-MSNA provides better alignment and memory

https://doi.org/10.1038/s41598-019-42966-5

1 0Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

utilization with a comparable execution time with large sequences. In best case scenario, SPARK-MSNA reduces
the memory utilization up to 50% along with better alignment compared to HAlign II. In worst case scenario,
where we cannot reduce the number of matrix cells to be processed in the pairwise alignments, the complexity
remains similar to HAlign II. Test results with learning layer added to centre star approach shows that a knowl-
edge driven approach helps in improving the performance in terms of execution time and memory. Knowledge
driven algorithms, which can learn from experience and use the learnings in future alignments are instrumental
in handling large scale datasets.

The proposed knowledge base uses only similarity feature for learning. Adding more features in knowledge
base and alignment approach to utilize those additional features could provide a better result in future. RDD
persistence using kyro serialization instead of raw data format for improved memory utilization is also planned
as a future enhancement.

References
	 1.	 Needleman, S. & Wunsch, C. A general method applicable to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology 48, 443–453 (1970).
	 2.	 Thompson, J., Higgins, D. & Gibson, T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680 (1994).
	 3.	 Katoh, K. & Standley, D. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability.

Molecular Biology and Evolution 30, 772–780 (2013).
	 4.	 Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797

(2004).
	 5.	 Dean, J. & Ghemawat, S. MapReduce. Communications of the ACM 51, 107 (2008).
	 6.	 Sadasivam, G. & Baktavatchalam, G. A novel approach to Multiple Sequence Alignment using hadoop data grids. International

Journal of Bioinformatics Research and Applications 6, 472 (2010).
	 7.	 Zhao, G., Ling, C. & Sun, D. SparkSW: Scalable Distributed Computing System for Large-Scale Biological Sequence Alignment. 2015

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, https://doi.org/10.1109/ccgrid.2015.55 (2015).
	 8.	 Zou, Q., Hu, Q., Guo, M. & Wang, G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy.

Bioinformatics 31, 2475–2481 (2015).
	 9.	 Wan, S. & Zou, Q. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed

and parallel computing. Algorithms for Molecular Biology 12 (2017).
	10.	 Su, W., Liao, X., Lu, Y., Zou, Q. & Peng, S. Multiple Sequence Alignment Based on a Suffix Tree and Center-Star Strategy: A Linear

Method for Multiple Nucleotide Sequence Alignment on Spark Parallel Framework. Journal of Computational Biology 24, 1230–1242
(2017).

	11.	 Abuín, J. M., Pena, T. F. & Pichel, J. C. PASTASpark: multiple sequence alignment meets. Big Data. Bioinformatics 33, 2948–2950
(2017).

	12.	 Bellman, R. On the Theory of Dynamic Programming. Proceedings of the National Academy of Sciences 38, 716–719 (1952).
	13.	 Vineetha, V. & Nair, A. S. DDGARM: Dotlet Driven Global Alignment with Reduced Matrix. International Journal of Advanced

Research in Computer Science and Software Engineering 7, 70–74 (2017).
	14.	 Feng, D.-F. & Doolittle, R. F. Progressive sequence alignment as a prerequisitetto correct phylogenetic trees. Journal of Molecular

Evolution 25, 351–360 (1987).
	15.	 Ukkonen, E. On-line construction of suffix trees. Algorithmica 14, 249–260 (1995).
	16.	 Mccreight, E. M. A Space-Economical Suffix Tree Construction Algorithm. Journal of the ACM 23(2), 262–272 (1976).
	17.	 Farach-Colton, M., Ferragina, P. & Muthukrishnan, S. On the sorting-complexity of suffix tree construction. Journal of the ACM 47,

987–1011 (2000).
	18.	 Hunt, E., Atkinson, M. P. & Irving, R. W. A database index to large biological sequences. work 26, 27 (2001).
	19.	 Bedathur, S. & Haritsa, J. Engineering a fast online persistent suffix tree construction. Proceedings. 20th International Conference on

Data Engineering, https://doi.org/10.1109/icde.2004.1320040.
	20.	 Cheung, C.-F., Yu, J. X. & Lu, H. Constructing suffix tree for gigabyte sequences with megabyte memory. IEEE Transactions on

Knowledge and Data Engineering 17, 90–105 (2005).
	21.	 Phoophakdee, B. & Zaki, M. J. Genome-scale disk-based suffix tree indexing. Proceedings of the 2007 ACM SIGMOD international

conference on Management of data - SIGMOD 07, https://doi.org/10.1145/1247480.1247572 (2007).
	22.	 Gusfield, D. Linear-time construction of suffix trees. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology (1997).
	23.	 Weiner, P. Linear pattern matching algorithms. Switching and Automata Theory. SWAT'08. IEEE Conference Record of 14th Annual

Symposium on, 1–11 (1973).
	24.	 Junier, T. & Pagni, M. Dotlet: diagonal plots in a Web browser. Bioinformatics 16, 178–179 (2000).
	25.	 Muja, M. & Lowe, D. G. Fast Approximate Nearest Neighbors With Automatic Algorithm Configuration. Proceedings of the Fourth

International Conference on Computer Vision Theory and Applications, https://doi.org/10.5220/0001787803310340 (2009).
	26.	 Kanungo, T. et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis

and Machine Intelligence 24, 881–892 (2002).
	27.	 Zaharia, M. et al. Spark: Cluster computing with working sets. HotCloud, 10.10-10, 95 (2010).
	28.	 Satish, U. C., Kondikoppa, P., Park, S.-J., Patil, M. & Shah, R. MapReduce based parallel suffix tree construction for human genome.

2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), https://doi.org/10.1109/padsw.2014.7097867
(2014).

	29.	 Thompson, J. D., Koehl, P., Ripp, R. & Poch, O. BAliBASE 3.0: Latest developments of the multiple sequence alignment benchmark.
Proteins: Structure, Function, and Bioinformatics 61, 127–136 (2005).

Acknowledgements
This work has been supported by State Inter University Centre of Excellence in Bioinformatics (SIUCEB),
AiCADD and DBT-BIF.

Author Contributions
V.V. designed and prepared the source code of the algorithm and drafted the manuscript. B.C.L. and A.S.N.
guided the research with contributions to the design of algorithm, helped designing the manuscript and revised
it critically.

https://doi.org/10.1038/s41598-019-42966-5
https://doi.org/10.1109/ccgrid.2015.55
https://doi.org/10.1109/icde.2004.1320040
https://doi.org/10.1145/1247480.1247572
https://doi.org/10.5220/0001787803310340
https://doi.org/10.1109/padsw.2014.7097867

1 1Scientific Reports | (2019) 9:6631 | https://doi.org/10.1038/s41598-019-42966-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42966-5.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42966-5
https://doi.org/10.1038/s41598-019-42966-5
http://creativecommons.org/licenses/by/4.0/

	SPARK-MSNA: Efficient algorithm on Apache Spark for aligning multiple similar DNA/RNA sequences with supervised learning

	Methods

	Progressive Alignment.
	Suffix Trees to enhance alignment of similar sequences.
	Modified N-W algorithm for pairwise alignment.
	Supervised learning layer.
	Parallel implementation with Spark.

	Results and Discussion

	Test results on simulated data.
	Comparison with other tools.
	Complexity Analysis.

	Discussion

	Acknowledgements

	Algorithm 1 (Main flow):.
	Algorithm 2 (Knowledge Base creation/learning).
	Algorithm 3 (Nearest Neighbor).
	Figure 1 Sample flow of SPARK-MSNA algorithm.
	Algorithm 4A (Map function for Suffix tree construction).
	Algorithm 4B (Map function for pairwise alignment).
	Figure 2 Flow chart of SPARK-MSNA algorithm.
	Figure 3 Execution time of SPARK-MSNA decreases as similarity of input sequences increase.
	Figure 4 Improvement in execution time of SPARK-MSNA with more number of nodes.
	Figure 5 Speedup in execution time due to additional compute nodes.
	Figure 6 Weak scalability of SPARK-MSNA.
	Figure 7 Performance comparison of SPARK-MSNA with other algorithms.
	Table 1 Sample knowledge base constructed for testing.
	Table 2 Execution time taken by SPARK-MSNA for datasets with different similarity.

