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The histone modification state of genomic regions is hypothesized to reflect the regulatory activity of the underlying
genomic DNA. Based on this hypothesis, the ENCODE Project Consortium measured the status of multiple histone
modifications across the genome in several cell types and used these data to segment the genome into regions with
different predicted regulatory activities. We measured the cis-regulatory activity of more than 2000 of these predictions
in the K562 leukemia cell line. We tested genomic segments predicted to be Enhancers, Weak Enhancers, or Repressed
elements in K562 cells, along with other sequences predicted to be Enhancers specific to the H1 human embryonic stem cell
line (H1-hESC). Both Enhancer and Weak Enhancer sequences in K562 cells were more active than negative controls,
although surprisingly, Weak Enhancer segmentations drove expression higher than did Enhancer segmentations. Lower
levels of the covalent histone modifications H3K36me3 and H3K27ac, thought to mark active enhancers and transcribed
gene bodies, associate with higher expression and partly explain the higher activity of Weak Enhancers over Enhancer
predictions. While DNase I hypersensitivity (HS) is a good predictor of active sequences in our assay, transcription factor
(TF) binding models need to be included in order to accurately identify highly expressed sequences. Overall, our results
show that a significant fraction (~26%) of the ENCODE enhancer predictions have regulatory activity, suggesting that
histone modification states can reflect the cis-regulatory activity of sequences in the genome, but that specific sequence
preferences, such as TF-binding sites, are the causal determinants of cis-regulatory activity.

[Supplemental material is available for this article.]

It is widely reported that specific combinations of covalent histone

modifications reflect the regulatory function of underlying geno-

mic DNA sequence (Strahl and Allis 2000). As part of the ENCODE

Project, the genomic locations of a variety of covalent histone

modifications were determined by chromatin immunoprecipita-

tion sequencing (ChIP-seq) in a number of cell types and cell lines.

Two studies used these data to train computational models that

predict different functional regions of the human genome. These

unsupervised learning algorithms, Segway (Hoffman et al. 2012)

and ChromHMM (Ernst and Kellis 2010, 2012), take functional

genomics data as input (DNase-seq; FAIRE-seq; and ChIP-seq of

histonemodifications, RNA polymerase II large subunit [POLR2A],

and CTCF) and return segmentation classes, which are then as-

signed a hypothesized function using current knowledge of his-

tone modification function. As part of the ENCODE Project, these

two sets of predictions were consolidated to create a unified an-

notation of the entire human genome with seven functional

classes in multiple cell types. These segmentations include Tran-

scription Start Site, Promoter Flanking, Transcribed, CTCF-bound,

Enhancer, Weak Enhancer, and Repressed or Inactive segments

(The ENCODE Project Consortium 2012; Hoffman et al. 2013). If

histone modifications accurately reflect the regulatory activity of

their associated DNA, then these segmentation classes should have

measurably different cis-regulatory activities.

In this study we tested whether the segmentation classes de-

termined by ENCODE have different effects on gene regulation in

their predicted cell type. We used the accepted operational defi-

nition of enhancer activity as the ability to modulate expression

of a reporter gene under control of a basal promoter. We used CRE-

seq, a massively parallel reporter assay, to determine whether (1)

sequences in the Enhancer, Weak Enhancer, and Repressed classes

drive expression that is different from that produced by negative

controls, (2) sequences in different segmentation classes drive

different levels of gene expression, and (3) sequences control gene

expression levels consistent with their predicted segmentation

labels. We find that segmentation predictions drive distinct levels

of expression. In particular, enhancer predictions drive expression

that is different from the expression levels driven by negative

control sequences. We find that chromatin features can distin-

guish highly expressed sequences with some accuracy, but tran-

scription factor (TF)-binding preferences better identify the most

highly expressed sequences.

Results

CRE-seq library and measurements

We used a high-throughput multiplexed reporter assay (Kwasnieski

et al. 2012; Melnikov et al. 2012; Patwardhan et al. 2012; Sharon

et al. 2012) to characterize the regulatory activity of 2100 randomly

chosen sequences annotated as Enhancer, Weak Enhancer, or

Repressed. Specifically, we tested sequences with the following

annotations in the K562 cell line: 600 Enhancer regions, 600Weak

Enhancer regions, and 300 Repressed regions. In order to test the

cell-type specificity of the segmentation predictions, we also tested
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600 Enhancer predictions from the H1-hESC cell line that are not

annotated as Weak Enhancers or Enhancers in K562 cells.

We sought to establish an empirical null distribution as a

negative control for activity in this assay, againstwhich to compare

the activities of sequences from the different segmentation classes.

We randomly selected 284 sequences from each class of predictions

and scrambled the nucleotide sequence of each while maintaining

dinucleotide content, in order to preserve basic sequence features of

the segment such as CpG frequency and nucleosome favoring sig-

nals. We designed our experiment to compare the expression dis-

tribution for each segmentation class to the expression distributions

from their corresponding scrambled negative controls. Including

predicted cis-regulatory elements (CREs) and scrambled negative

controls, our final experimental design included 3237 distinct re-

porter gene constructs (Supplemental Data 1).

We used CRE-seq, a massively parallel reporter gene assay

(Kwasnieski et al. 2012), to simultaneously measure the expres-

sion of all constructs.We first synthesized 13,000 unique 200-mer

DNA sequences using array-based oligonucleotide (oligo) synthesis

(LeProust et al. 2010). EachpredictedCREwas replicated four timeson

the array, and each replicate was tagged with a unique nine–base-pair

(bp) barcode, providing redundancy in the expressionmeasurements.

The 200-bp limit of oligonucleotide synthesis, along with the

requirement to include priming sites and restriction enzyme

sites, limited our tested CREs to 130 bp of each segmentation

prediction. For the Enhancer and Weak Enhancer classes, we

selected the entire region of 300 short (121–130 bp) genomic

segments, and the central 130 bp of 300 longer genomic segments

(>130 bp). Because only a small fraction of Repressed segments are

<130 bp in length, we tested only central sequences from this class.

We chose the center because it is an unbiased portion that does not

incorporate additional histone or sequence features beyond the al-

gorithms’ output. This allows us to appropriately test the predictive

power of the segmentations. Finally, we used the array-synthesized

oligos to create a library of these CREs cloned upstream of theHsp68

minimal promoter in which each reporter construct contains a

unique sequence barcode in its 39 UTR (Kwasnieski et al. 2012). The

resulting plasmid library was then transfected into K562 cells, and

RNA was isolated after 22 h.

To measure CRE activity, we quantified the level of each

barcode in the transfected cells using RNA-seq, and normalized

the RNA barcode counts by the abundance of each barcode in the

plasmid DNA pool. The RNA/DNA ratio of barcode counts is a

quantitative measure of the expression driven by each CRE in the

library (Supplemental Data 2, 3; Kwasnieski et al. 2012). We

performed four independent transfections in K562 cells and

found that our expression measurements are precise, displaying

high reproducibility between biological replicates (R2 range:

0.95–0.97) (Fig. 1A). To test the robustness of our measurements,

we used a luciferase assay to measure expression driven by 12

individual CREs upstream of theminP basal promoter. Expression

in the luciferase assay exhibits strong agreement with the batch

CRE-seq expression measurements upstream of the Hsp68 pro-

moter (R2 = 0.70) (Fig. 1B; Supplemental Fig. 1), demonstrating

that our assay accurately measures cis-regulatory activity and that

our results have little dependence on the choice of minimal

promoter.

Expression of segmentation classes

We compared the activity of each class of segmentation prediction

to the activity of its corresponding negative control distribution of

scrambled sequences. We used two metrics to classify individual

segmentations as ‘‘active’’ or ‘‘inactive’’ with respect to this nega-

tive control expression distribution (Table 1). First, we computed

the fraction of CREs within a segmentation class that drives ex-

pression higher than that of the 95th percentile of the matched

scrambled expression distribution. We recognized that CREs may

be active even if they drive expression below the 95th percentile of

the control, so we also used a second metric to capture some of

these sequences. We compared the 16 replicate measurements for

eachCRE (four barcodes perCRE in four independent experiments)

with the distribution of all of the scrambled controls (Wilcoxon

rank sum test, one-tailed, P < 0.05, Bonferroni correction with N =

3236). We conducted the same test for each scrambled CRE to

estimate the fraction of scrambled sequences that drive activity

(Table 1, square brackets). By both of these metrics, a significant

number of Enhancer and Weak Enhancer predictions are active

(Fig. 1C,D; Table 1). In contrast, neither the K562 Repressed re-

gions nor the H1-hESC Enhancer regions show activity that is

significantly different from their scrambled negative controls

(Fig. 1E,F; Table 1). Enhancer and Weak Enhancer regions show

distinct levels of activity from both the K562 Repressed and H1-

hESC Enhancer regions (Wilcoxon rank sum, P < 0.01). Moreover,

segmentations from the Repressed category did not repress ex-

pression below the fifth percentile of their matched scrambled

controls, suggesting that these sequences are transcriptionally in-

active and not repressive (Supplemental Table 1). We get the same

results regardless of whether the sequences are short segmenta-

tions included in their entirety, or longer predictions from which

we included only the central 130 bp (Supplemental Fig. 2). This

result indicates that our expression measurements are not biased

by the method of choosing 130-bp sequences for testing. Taken

together, we conclude that sequences annotated as Enhancer and

Weak Enhancer segments have increased levels of activity over their

corresponding null distributions, and that different segmentation

classes produce distinct median levels of activity in our assay.

Our previous work (White et al. 2013) showed that CRE-seq

can detect repression below basal promoter activity, particularly

when theminimal promoter has detectable expression on its own.

In this experiment we chose the Hsp68 promoter because it drives

expression in the 48th percentile of the library of genomic se-

quences. Many sequences, both segmentation predictions and

scrambled sequences, drove expression that was significantly

lower than the scrambled distribution, indicating that we can de-

tect repression in this assay. However, we observed no significant

increase in the number of sequences with repressive activity in the

segmentations as compared with the scrambled sequences, sug-

gesting that the segmentations do not repress expression below

what is expected by chance (Wilcoxon rank sum Test, P < 0.05,

Bonferroni correction) (Supplemental Table 1). We conclude that

Enhancer, Weak Enhancer, and Repressed segmentations do not

have the ability to repress the Hsp68 promoter.

Unexpectedly, we found that sequences classified as Weak

Enhancers drive a higher median level of activity than sequences

classified as Enhancers (P = 3.7 3 10�4 by Wilcoxon rank sum)

(Supplemental Fig. 3). The difference between the two classes is

even greater when comparing the fraction of CREs we designated

as ‘‘active’’ relative to theirmatched scrambled sequences (Table 1).

Compared to Weak Enhancers, segmentations in the Enhancer

class have higher GC content (Supplemental Fig. 4B), a sequence

feature associated with higher cis-regulatory activity (Landolin

et al. 2010; Lidor Nili et al. 2010; White et al. 2013). Indeed,

scrambled sequences derived from the Enhancer class drive ex-
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pression higher than scrambled sequences from the Weak En-

hancer class (Supplemental Fig. 4A). Therefore, despite having

higher GC content, a feature associated with higher expression, the

Enhancer predictions drive expression lower than the Weak En-

hancer predictions. This suggests that some additional determinant

is responsible for the higher activation of segments labeled asWeak

Enhancers.

We asked whether differences in covalent histone modifica-

tions correlate with the difference in expression between Weak En-

hancers and Enhancers. We compared the levels of all histone

modifications (Hoffman et al. 2013) that were measured in K562

cells between the two classes.Weak Enhancers were segmented from

Enhancers by their lower levels of thehistonemodificationH3K27ac

(Fig. 2B; Creyghton et al. 2010), thought to signify active enhancers,

andH3K36me3 (Fig. 2D; Barski et al. 2007), often thought to signify

a transcribed gene body but recently also found in silenced genes

(Chantalat et al. 2011). Surprisingly, lower levels of both of these

covalent histone modifications are associated with higher expres-

sion of enhancers in our assay (Wilcoxon rank sum test, P < 10�5)

(Fig. 2A,C), even within the Enhancer or Weak Enhancer classes

(Supplemental Fig. 5). We did not find an association of H3K27ac

signal in the larger context (up to 500 bp surrounding the selected

regions). In one study, ‘‘dips’’ in the levels of H3K27ac correlated

with enhancer activity (Kheradpour et al. 2013), which is consistent

with our observation that lower levels of H3K27ac are more

predictive of enhancer activity. However, in our data we did not see

correlation between the H3K27ac ‘‘dip score’’ and cis-regulatory

activity. Thus, Weak Enhancers may have more activity than

Figure 1. Reproducible expression measurements show differences in expression by segmentation class. (A) Representative scatterplot showing ex-
pression of each CRE in two biological replicates (R2 = 0.95, range of R2 between all replicates: 0.95–0.97). Dashed black line is line of equality and blue line
is best fit. (B) Correlation between CRE-seq and luciferase assays. Expression driven by 12 CREs was measured in individual luciferase assay (upstream of
minP promoter, x-axis) and batch CRE-seq assay (upstream of Hsp68 promoter, y-axis). Luciferase expression is normalized to the Renilla transfection
control, and CRE-seq expression is normalized to the basal promoter alone. Error bars represent the standard error of the mean. Blue line is best fit. R2 =
0.70. (C–F ) Histograms of genomic CRE expression measurements in K562 cells. Each class is compared to scrambled controls with equivalent GC and
dinucleotide content (gray). Dashed lines are the fifth and 95th percentiles of the scrambled distributions. (C ) K562 Enhancer class (blue), (D) K562Weak
Enhancer class (green), (E ) K562 Repressed class (red), (F ) H1-hESC Enhancer class (orange).
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Enhancers in part because they have lower enrichment of H3K27ac

and H3K36me3, which associate with higher activity in our assay.

These histone modifications do not fully explain the expression

differences between these two classes, indicating that other se-

quence featuresmust explain the higher activity ofWeak Enhancers.

Sequence and chromatin features

We searched for sequence and chromatin features that could predict

activity across all segmentation classes in our assay. Two primary

sequence features (PSFs) (GC content and minor groove width as

estimated by ORChID2 [Rohs et al. 2009; Bishop et al. 2011] score)

and six chromatin features (The ENCODE Project Consortium

2012; Hoffman et al. 2013) (DNase I HS from Duke; DNase I HS

from University of Washington [UW]; FAIRE-seq; and ChIP-seq

of H3K4me1, H3K36me3, and RNA polymerase POLR2A) are sig-

nificantly enriched in sequences that drive high expression in our

assay (Wilcoxon rank sum test, P < 0.05 Bonferroni correction with

N = 16) (Supplemental Table 2). We used these data to develop

a quantitative model that distinguishes active CREs from inactive

CREs. Of these eight features, DNase I HS (UW) signal best separated

the active from inactive sequences (AUC = 0.685) (Fig. 3A,B),

suggesting that DNA accessibility is a good indicator of the cis-

regulatory potential of a sequence (Thurman et al. 2012). No other

single feature performed as well as DNase I HS signal and all other

single features had AUC lower than 0.6 (Supplemental Table 2). A

logistic regressionmodel with the above-mentioned six chromatin

features and two PSFs improves the classification of active se-

quences (AUC = 0.733) (Fig. 3A), but onlymarginally above that of

DNase I HS alone. However, even among those CREs with a high

DNase I HS score (UW DNase I HS score > 5, 685/2096 CREs pass

this threshold), the active CREs are enriched for seven chromatin

features, suggesting that there is some additional information in

the histonemodifications beyondDNase I HS despite the fact that

DNase I HS is by far the most predictive feature (Supplemental

Table 3). As chromatin and PSFs can only classify active sequences

to a moderate level, we hypothesized that additional sequence-

specific binding features, such as TF-binding motifs, may better

explain expression.

We investigated whether the inclusion of TF-binding specific-

ities improved our ability to explain the expression differences we

observed in our assay. Using several libraries of TF-binding models

(Newburger and Bulyk 2009; Jolma et al. 2013; Mathelier et al.

2014),we searched formotifs enriched or depleted in activatedCREs

and found 50 significant, nonredundant motifs (Supplemental Ta-

ble 4). A logistic regression model that incorporated these binding

models performs better at distinguishing active sequences than the

chromatin and PSF model (AIC [Akaike 1974]: 1881 vs. 1729 for

model with motifs; AUC = 0.802) (Fig. 3A). We performed fivefold

cross-validation on all of the models and observed little decrease in

predictive power, suggesting that our model is not over-fit (Sup-

plemental Table 5). The predicted motif for activator protein 1

(AP-1), a heterodimer of TFs in the FOS and JUN families (Hess et al.

2004), is the most significantly enriched motif in highly expressed

CREs. In addition, the most significant motif found in a discrimi-

native denovomotif analysis (Bailey 2011) was highly similar to the

AP-1 motif (E = 0.0041) (Gupta et al. 2007). Among segmentations

with a predicted AP-1 motif, DNase I HS (Duke) is the only chro-

matin feature significantly enriched in those that are active (Sup-

plemental Table 3), suggesting that DNase I HS provides some

additional information beyond the presence of the AP-1 motif. The

expression drivenbyCREswith predictedAP-1motifs is significantly

higher than the expression driven by sequences without the motif

(log2 ratio of 0.96, P < 2.2 3 10�16) (Fig. 3C). Furthermore, highly

expressing CREs are significantly enriched for sequences that are

bound by FOS and JUN family TFs in K562 cells (P = 8.83 10�10 by

Fisher’s exact test, odds ratio = 4.2) (Fig. 3D; The ENCODE Project

Consortium 2011). These data suggest that AP-1 is responsible for

the activity of many enhancers in K562 cells, as previously reported

Table 1. Percentage of active CREs by segmentation class

Segmentation
prediction

Active >95%
scrambled

Active by
Wilcoxon

K562 Enhancer 11.3% [5.30%] 26.0% [12.68%]
K562 Weak Enhancer 25.7% [5.32%] 39.17% [15.1%]
K562 Repressed 5.35% [4.98%] 7.00% [7.39%]
H1-hESC Enhancer 4.34% [5.30%] 11.33% [14.1%]

For each ENCODE segmentation class, the table shows the percentage
of all genomic CREs that are active with the percentage of matched
scrambled controls that are active in square brackets. Activation was de-
termined by comparing CRE expression to the 95th percentile of matched
scrambled controls (Active >95% scrambled) or by statistically comparing
replicate measurements of expression to matched scrambled control
distribution (Active by Wilcoxon, Wilcoxon rank sum test, P < 0.05, cor-
rected using Bonferroni method with N = 3236).

Figure 2. Lower H3K27ac and H3K36me3 signals are associated with
higher Weak Enhancer expression. Boxplots showing that H3K27ac signal
(A) and H3K36me3 signal (C ) are depleted in active CREs compared to
inactive CREs. H3K27ac signal (B) and H3K36me3 signal (D) are also de-
pleted in Weak Enhancers compared to Enhancers. Active CREs are those
above the 95th percentile of scrambled distribution (Table 1).
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(Muthukrishnan and Skalnik 2009; Kheradpour et al. 2013), and, as

a consequence, the enhancers’ histone modification state.

Discussion
In this study we directly tested the cis-regulatory activity of seg-

mentation predictions based on histone modification data from

the ENCODE Project. We found that these predictions were cell

type-specific in K562 cells and could accurately distinguish en-

hancer sequences from non-enhancer sequences. Our results sug-

gest that combinations of TF-binding preferences, not histone

modifications alone, are most predictive of actively expressing

genomic sequences, a result supported by other attempts to define

the sequence features of enhancers (Heinz et al. 2010; Lee et al.

2011; Arvey et al. 2012; Gorkin et al. 2012; Smith et al. 2013). These

results support a model where TF binding and subsequent tran-

Figure 3. Chromatin features and sequence-specific binding identify active sequences. (A) Receiver operating characteristic (ROC) curve shows that
a logistic regression model (‘‘Model comprehensive’’) incorporating sequence-specific binding motifs, chromatin features, primary sequence features
(PSFs), and TF-ChIP data is best able to identify active sequences. Of logistic regression models with fewer features, one with sequence-specific binding
motifs (‘‘Model motifs’’) does best, followed by a model incorporating chromatin and primary sequence features (‘‘Model chromatin and PSF’’), and
a model with only significant TF-ChIP features (‘‘Model TF-ChIP’’). Minor groove width as predicted by ORChID2 score, GC content, and DNase I HS are
also shown. Area under the curve (AUC) is indicated in legend. (B) Boxplot showing that active CREs are enriched in high DNase I HS signal over inactive
CREs. (C ) Boxplot showing that CREs with at least one predicted AP-1 motif drive expression higher than CREs with no AP-1 predicted motifs. (D) CREs
overlapping with ChIP-seq peaks for a FOS (FOS or FOSL1) family member and a JUN (JUNB or JUND) family member, the constituent proteins of AP-1,
drive expression higher than unbound CREs.
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scriptional regulation configure the immediate chromatin environ-

ment (Struhl and Segal 2013), leading to the constellation of histone

modifications observed in segments with high cis-regulatory ac-

tivity. However, even our model incorporating all of the available

features is only moderately predictive (AUC = 0.84) and cannot

quantitatively predict expression level. This suggests that more

complex features determine the quantitative expression levels

controlled by enhancers.

We conclude that the Repressed segmentation class consists

mostly of sequences with no transcriptional activity rather than

cis-regulatory sequences that actively repress transcription. We

have previously shown transcriptional repression by short en-

hancers (White et al. 2013), indicating that the length of CREs we

tested cannot explain the lack of observed repression. There are

two possible explanations for whywe did not see repression in this

assay. First, the Repressed segmentation class contains mostly se-

quences with predicted low activity by either the ChromHMM or

Segway algorithms, with only a small fraction of the sequences

predicted to have repressive activity by these algorithms. Second, it

is possible that we are unable to predict combinations of histone

modifications that signal repression such that no segmentation

successfully defines repressive activity. Because a large fraction of

regulated gene expression works through the activity of tran-

scriptional repressors, identifying combinations of histone modi-

fications that reflect repression is still an important challenge.

Only a small fraction (;26%) of predicted enhancer sequences

had activity in this assay. It is therefore possible that a large fraction

of the predictions in ChromHMM/Segway are false positives. Al-

ternatively, many sequences might score as false negatives in this

assay. The short length and episomal nature of the expression assay

could contribute to false negatives, although we emphasize that the

accepted operational definition of an enhancer is a sequence that

modulates the activity of an episomal reporter gene. In addition, our

comparison of segmentations to scrambled controls does not allow

us to find active sequences that express at low levels. Finally, it is

possible that some sequences might only be active in the context of

the genome or when paired with a different minimal promoter se-

quence. While the relative number of active sequences between

classes in our assay should be accurate, as the same experimental

design was utilized for all sequences, our estimates should be taken

as a lower bound of the number of active sequences.

Finally, we conclude that combinations of histone modifica-

tions often identify functional enhancers, but our interpretation of

these combinations needs to be refined. In particular, high levels of

the covalent histone modifications H3K27ac and H3K36me3 are

thought to mark active enhancers and transcribed gene bodies or

even heterochromatic regions (Barski et al. 2007; Creyghton et al.

2010; Chantalat et al. 2011). Among segments marked as En-

hancers or Weak Enhancers, lower enrichment of these modifi-

cations is found at segments with high activity in this assay. This

finding suggests that the precise function of these modifications

needs to be explored, as it is clear that there is no simple linear re-

lationship between the level of these modifications and expression.

Methods

CRE-seq library construction
A pool of 13,000 unique 200-mer oligos was ordered through a
limited licensing agreement with Agilent Technologies. Oligos were
structured as follows: 59 priming sequence (GTAGCATCTGTCC)/
NheI site/CRE/HindIII site/XhoI site/SphI site/barcode/SacI site/39

priming sequence (CGACTACTACTACG). A more detailed diagram
of array sequence is provided in Supplemental Figure 6.

The plasmid library was prepared as previously described
(Kwasnieski et al. 2012), except using primers CF166 and CF167
(Supplemental Table 6) and an annealing temperature of 57°C. The
amplified library product was purified on a polyacrylamide gel as
previously described (White et al. 2013). The library plasmid
backbone, CF10, was created from the plasmid pGL4.23, by clon-
ing dsRed-Express2 between the Acc65I and FseI sites. Purified li-
brary amplicons were cloned into CF10 using NheI and SacI. We
prepared DNA from 100,000 colonies to generate PL7_1. We then
cloned the Hsp68 promoter driving DsRed into PL7_1. A cassette
containing the Hsp68 promoter was amplified from pGL-hsp68
with primers CF121 and CF168 (Supplemental Table 6). pGL-
hsp68 was created by amplifying the Hsp68 promoter from
hsp68LacZ (kind gift of M. de Bruijn, Oxford Stem Cell Institute,
Oxford, UK) using primers JKO25F and JKO25R (Supplemental
Table 6). TheHsp68DsRed ampliconwas cloned into library PL7_1
by using HindIII and SphI, creating library PL7_2.

Cell culture and transfection

K562 cells were maintained in Iscove’s modified Dulbecco’s me-
dium (IMDM) with 10% fetal bovine serum and 1% amino acids
(Life Technologies). The plasmid library was purified by phenol-
chloroform extraction and ethanol precipitation before trans-
fection. The Neon transfection system (Life Technologies) was
used to transfect the plasmid library. For each replicate, 1.2million
cells were pelleted by centrifugation, washed with PBS and resus-
pended in 100 mL of Buffer R. Twenty-seven micrograms of plas-
mid library DNA alongwith 3 mg of pMax-GFP as a positive control
was transfected into the cells by using three 10-msec pulses at
1450V. The transfected cells were seeded into T-25 flasks with 5mL
of the growth medium and incubated at standard conditions.
Transfection efficiency was >90% (data not shown).

Selection of segmentation predictions

Segmentation predictions (The ENCODE Project Consortium 2012;
Hoffman et al. 2013) were downloaded from the Ensembl Genome
Browser (Flicek et al. 2013) and converted to UCSC notation.
We filtered predictions that overlapped with the ENCODE DAC
Blacklisted Regions (http://moma.ki.au.dk/genome-mirror/cgi-bin/
hgFileUi?db=hg19&g=wgEncodeMapability) or RepeatMasker re-
gions (http://www.repeatmasker.org/species/homSap.html).We also
removed predictions that contained restriction site sequences that
we intended to use for cloning sequences into a plasmid library. To
select H1-hESC Enhancer predictions, we removed H1-hESC En-
hancer predictions that overlapped with K562 Enhancer or Weak
Enhancer predictions. Next we sorted predictions by chromosome,
and separated them by length into long (>130 bp) and short (121–
130 bp). To choose the predictions to test, we selected lines of this file
at regular intervals, so the tested CREs span all chromosomes of the
human genome. Genomic and scrambled CRE sequences are listed
in Supplemental Data 1. All genomic coordinates used are from
hg19.

Preparing samples for RNA-seq

RNAwas extracted from K562 cells 22 h after transfection using the
PureLink RNAmini kit (Life Technologies) and then excessDNAwas
removed using the TURBO DNA-free kit (Applied Biosystems), fol-
lowing the manufacturer’s instructions. First, strand cDNA was
synthesized from the RNAusing SuperScript II Reverse Transcriptase
(Life Technologies). Both the cDNA samples and the DNA from the
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original plasmid library were prepared for sequencing using a cus-
tom protocol as previously described (Kwasnieski et al. 2012).
Briefly, we used PCR amplification of the sequence surrounding
the barcode in the RNA transcript or plasmid using primers CF150
and CF151b (Supplemental Table 6). We then digested the PCR
product using SphI and XhoI and ligated Illumina adapter se-
quences (MO576/582, MO577/583, MO578/584, MO579/585)
(Supplemental Table 6) to these amplified sequences. Two lanes of
the Illumina HiSeq machine were used to sequence this barcode
region from the cDNA and DNA, and reads that perfectly matched
the first 13 expected nucleotides were counted, regardless of quality
score. This resulted in 77.5 million reads from the cDNA, across
four biological replicates, and 34.8 million reads from the DNA.
Only barcodes with $50 reads in the DNA pool and $3 reads in
the cDNA pool were used for downstream analysis. The expres-
sion of each barcode was calculated as (cDNA reads)/(DNA reads)
and then normalized to the expression of the basal promoter
alone (Supplemental Data 2). The expression of each CRE in each
biological replicate was calculated as the mean of the expression
of each BC associated with it, and the overall expression of each
CRE was calculated as the mean of its expression in each bi-
ological replicate. The standard error of the mean (SEM) was
calculated as previously described (Kwasnieski et al. 2012) (Sup-
plemental Data 3).

Luciferase assays

Plasmid pGL-CBRwas created by inserting the click-beetle red (CBR)
luciferase gene (from pCBR-Control Vector [Accession Number
AY258592], Promega) into pGL4.23 (Promega) at the XbaI andNcoI
sites. pGL-CBR contains the minP basal promoter from pGL4.23.
Twelve individual CREs from the oligo library were amplified by
PCR and inserted into pGL-CBR at the NheI and HindIII sites to
form individual pGL-CBR-CRE plasmids. The 46-bp cis-regulatory
element containing the HS II enhancer from Ney et al. (1990) was
also cloned into pGL-CBR using annealed oligos POS1 and POS2
(Supplemental Table 6), also at the NheI and HindIII sites of pGL-
CBR, to create a positive control pGL-CBR-CRE plasmid. Each pGL-
CBR-CRE plasmid, along with the original pGL-CBR, was then
transfected into K562 cells individually in triplicate using the Neon
transfection system. Each transfection used 4 mg pGL-CBR-CRE
plasmid with 0.4 mg Renilla control plasmid (pRL-CMV, Promega)
and 2 3 105 cells. Transfected cells were then seeded into 12-well
plates with 1mL of growthmedia. Twenty-six hours later, each well
was split into two wells, each in a separate 24-well plate (Krystal 24
Well Black Assay Plate, MidSci). These were then immediately im-
aged using I IVIS 50 (Caliper; exposure time 10–60 sec, binning 8,
field of view12, f/stop1, open filter),with one plate imaged forCBR-
luciferase using 535 mM D-luciferin (Gold Biotech), and one plate
imaged for Renilla using 400 nMCoelenterazine (Biotium Inc.). The
CBR-luciferase signal of each transfection samplewas normalized by
the corresponding Renilla signal, and the expression of each CRE
was determined by the mean of the three transfections (Supple-
mental Data 4).

Data sources

We used the normalized chromatin ChIP-seq, FAIRE-seq, and
DNase-seq data used in the integrated segmentation of the genome
by Hoffman et al. (2013), which can be accessed at https://sites.
google.com/site/anshulkundaje/projects/wiggler. These included
(all from K562 cell line): CTCF, Duke DNase I, UWDNase I, FAIRE,
H3K27ac,H3K27me3,H3K36me3,H3K4me1,H3K4me2,H3K4me3,
H3K9ac, H4K20me1, RNA POLR2A, and Control. These data were
produced by the ENCODE Consortium (The ENCODE Project

Consortium 2012). The signal associated with each CRE we ana-
lyzed was the average signal over that segment.

The TF-binding matrices were taken from three databases:
JASPAR vertebrate (146 matrices) (Mathelier et al. 2014), uniPROBE
(757 matrices) (Newburger and Bulyk 2009), and high-throughput
SELEX (820 matrices) (Jolma et al. 2013). FIMO (Grant et al. 2011)
was used to find binding sites in the CREs used in the assay (both
genomic and scrambled), using the default options with a P-value
threshold of 10�4. The AP-1 binding matrix that was enriched
in highly expressed sequences in our assay was from JASPAR
(MA0099.2).DREME (Bailey 2011)wasused for discriminativemotif
finding, using the sequences activated over the 90th percentile of
the scrambled distribution as the positive group and all other se-
quences as the negative group, with the maximummotif length set
at 12 bp and all other default options. The TOMTOM web module
(http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi) (Gupta et al.
2007) was used to find similar motifs, using default options.

TF ChIP-seq data were obtained from http://hgdownload.cse.
ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/.
GC-content and ORChID2 (Rohs et al. 2009; Bishop et al. 2011)
scores were calculated from the nucleotide sequences of the CREs.

Logistic regression models

A logistic regression model was developed to predict sequences
activated over the scrambled 90th percentile. The parameters for
the model were chosen from a filtered list of available genomic
data and sequence features. Each of the three sets of parameters
was filtered separately: histone data including PSFs (GC-content
andORChID2 scores), bindingmatrices, and a set of peaks from TF
ChIP-seq. Those scores that had a significantly different distribu-
tion of values in the active CREs (expression >90th percentile of
the matched scrambled distribution) vs. the inactive CREs passed
the filter. For the parameter set with histone data and PSFs and the
parameter set with binding matrices, we used the Wilcoxon rank
sum test (two-tailed, P < 0.05, corrected using Bonferroni with N =

16 for histone andN = 1687 for bindingmatrices). For the TF ChIP-
seq peak data (which is in binary form), we used Fisher’s exact test
(P < 0.05, corrected using Bonferroni with N = 16). Seventy-three
binding matrices, eight histone with PSF parameters (including
GC-content and ORChID2 scores), and eight TF ChIP-seq param-
eters passed the filter. The bindingmatrices were further filtered to
remove those that showed nearly identical binding patterns across
the CREs ($99% similar), resulting in 50 binding matrices.

A logistic regression model for predicting actively expressed
CREs was created for each of the three sets of parameters separately
andwith all sets of parameters together (66 total parameters). Only
additive terms were used. We then created receiver operating
characteristic (ROC) curves attempting to correctly predict the
activated CREs (>90th percentile of the matched scrambled dis-
tribution). The area under the curve (AUC) was calculated for each
model as well as the best performing histone parameter (UW
DNase I HS), GC-content, and ORChID2 scores. Additionally,
fivefold cross validation was used to ensure our models were not
over-fit. The CREs were split into five training groups, and the
model was trained on the data holding out each group in turn
(beginning with the filtering of the parameters) and tested on the
group held out. AUC was calculated for each of these sets, and the
mean AUC from the five sets was calculated (Supplemental Table 5).
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