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Abstract

Background: Avoidance to look others in the eye is a characteristic symptom of
Autism Spectrum Disorders (ASD), and it has been hypothesised that quantitative mon-
itoring of gaze patterns could be useful to objectively evaluate treatments. However,
tools to measure gaze behaviour on a regular basis at a manageable cost are missing.
In this paper, we investigated whether a smartphone-based tool could address this
problem. Specifically, we assessed the accuracy with which the phone-based, state-of-

Check for

article the-art eye-tracking algorithm iTracker can distinguish between gaze towards the eyes

and the mouth of a face displayed on the smartphone screen. This might allow mobile,
longitudinal monitoring of gaze aversion behaviour in ASD patients in the future.

Results: We simulated a smartphone application in which subjects were shown an
image on the screen and their gaze was analysed using iTracker. We evaluated the
accuracy of our set-up across three tasks in a cohort of 17 healthy volunteers. In the
first two tasks, subjects were shown different-sized images of a face and asked to alter-
nate their gaze focus between the eyes and the mouth. In the last task, participants
were asked to trace out a circle on the screen with their eyes. We confirm that iTracker
can recapitulate the true gaze patterns, and capture relative position of gaze correctly,
even on a different phone system to what it was trained on. Subject-specific bias can
be corrected using an error model informed from the calibration data. We compare
two calibration methods and observe that a linear model performs better than a previ-
ously proposed support vector regression-based method.

Conclusions: Under controlled conditions it is possible to reliably distinguish between
gaze towards the eyes and the mouth with a smartphone-based set-up. However,
future research will be required to improve the robustness of the system to roll angle

of the phone and distance between the user and the screen to allow deployment in a
home setting. We conclude that a smartphone-based gaze-monitoring tool provides
promising opportunities for more quantitative monitoring of ASD.
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Background

Autism spectrum disorders (ASD) describes a set of developmental disabilities char-
acterised by “deficits in social communication and social interaction” [1]. As the name
“spectrum” suggests, the nature of the impairments and their severities vary from person
to person, with some subjects being able to complete university degrees and live inde-
pendent lives, whereas others need life-long assistance with daily living [2]. Despite this
variability there are certain commonalities: Already in one of the earliest accounts of
autism, the author noted that the subject “never looked into anyone’s face” [3]. A series
of eye-tracking studies since then have established that, when shown the image of a face,
ASD patients spend less time fixating on the eyes and more time exploring the mouth or
objects in the surroundings (see [4] for an extensive review). In fact, gaze abnormalities
are one of the criteria used to diagnose ASD [1].

While abnormal gaze behaviour is not the cause for the difficulties which subjects
with ASD experience, it has been proposed that it might provide a quantifiable feature
for monitoring the condition over time, and to evaluate the efficacy of treatments [4,
5]. However, a key challenge that has prevented further exploration of this idea so far
has been the lack of access to a suitable eye-tracking device. Traditional eye-tracking
devices are inconvenient for widespread home use, as they are costly, often not very
portable, and require expertise to set up and run [6, 7]. But thanks to recent advances
new solutions are emerging that allow eye-tracking using only the camera of a laptop or
smartphone. These approaches use machine-learning techniques, such as support vector
methods [8], Gaussian processes [9], or neural networks, [10, 11], and hold great poten-
tial for longitudinal gaze behaviour monitoring in ASD patients. We envision the devel-
opment of a mobile-monitoring tool in which patients regularly perform a series of tests
on their smartphone that measure their gaze behaviour and so provide insights into the
development of their condition over time.

The aim of the present study was to prototype a smartphone-based gaze-monitoring
framework, assess its accuracy on healthy volunteers, and identify key challenges to be
overcome on the way to the clinic. The test set-up employed imitates that of, for exam-
ple [12], in which the subject is shown the image of a face and one compares fixation
time on the eyes to fixation time on the mouth. To estimate the gaze location, we used
the convolutional neural network iTracker [11], which to the best of our knowledge has
the best-reported performance on a smartphone in literature. The network was trained
on the largest eye-tracking dataset to-date, consisting of around 1.2 million images of
1271 subjects recorded under home-use conditions. The authors report a mean Euclid-
ean Error of 2.04 cm, with further reduction to 1.04 cm through a number of refinement
steps (data augmentation, restriction to phone images, and calibration) [11]. We test the
set-up on 17 healthy volunteers, and evaluate its accuracy for 2 different types of tasks:
(i) separating between gaze towards the eyes and towards the mouth of a face, and (ii)
resolving a more fine-grained gaze pattern (see Fig. 1 for an overview of our methods).
In addition, we investigated how the accuracy is influenced by the distance between the
eyes and the mouth, and how well accuracy can be improved through calibration. We
compare two calibration methods: (i) a support vector regression (SVR)-based method
proposed in [11], and (ii) a linear transformation-based method proposed by us. The
SVR uses 128 features extracted from the final layer of the neural network to adjust the
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Fig. 1 Study overview. We evaluated if iTracker [11] can provide a cheap, widely deployable method for
tracking gaze behaviour using smartphones in ASD patients. a Example of the data collection set-up. We
recorded subjects alternating between fixating on the eyes and the mouth of a face printout attached to

the screen. Arrows indicate the sequence in which the different facial features were visited. Based on the

so obtained videos, we evaluated how well iTracker can distinguish between the two gaze locations. b—e
True gaze locations for each of the four tasks in our study. b Task 1: A 4x4 grid of points used for calibration. c
Task 2: A face to test how accurately iTracker can separate gaze towards the eyes from gaze focussed on the
mouth. d Task 3: Enlarged version of ¢, to test if separating eyes and mouth improves the ability to distinguish
between gaze towards the eyes, and gaze towards the mouth. e Task 4: Subjects trace out a circle. f Outline
of the data processing work flow: The obtained videos were split into frames, pre-processed, and gaze

predictions obtained with iTracker. Predictions may be refined using a further calibration step

prediction, whereas the linear transformation merely translates points and rescales dis-
tances. We make our eye-tracking pipeline available online (https://github.com/ms234
/iTrackerWrapper), and hope that our work will serve as a stepping stone to the crea-
tion of a tool which will help to improve the understanding and treatment of ASD in the

future.

Results

iTracker captures patterns but its predictions are biased

Figure 2 illustrates the results for one of the subjects in our study (Subject 8). Estimates
for eyes and mouth cluster into easily distinguishable distinct patches (Fig. 2d, g). This
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Fig. 2 Results for one subject in our study (Subject 8). Crosses mark iTracker’s predictions. Points in matching
colour indicate the true gaze locations for those predictions. Shaded areas represent the phone screen, and
for Task 2 and 3 also the outline of the eyes and mouth. a—c Gaze estimates for Task 1. d—f Estimates for Task
2. g-i Gaze estimates for Task 3. j-I Estimates for Task 4. In the top row (a, d, g, j), the raw output of iTracker is
shown. The middle and bottom row of the panel show these predictions corrected using either a SVR-based
(b, e, h, k) or alinear transformation-based calibration method (¢, f, i, I). Overall, iTracker manages to capture
the true underlying pattern, although it appears shifted and scaled with respect to the reference (a, d, g, j).
Calibration can rectify this, resulting in good overlap between true and estimated gaze positions (middle and
bottom row; see also Fig. 3). Moreover, we find that the simple linear transformation performs better than the
SVR-based method (compare middle and bottom row)

separation is more pronounced in Task 3 than Task 2, where separate clusters for the
left and right eye become visible. However, for neither task are the clusters centred on
the eyes and mouth of the face on the screen. Instead they appear systematically shifted
towards the right side of the screen. A similar pattern holds true for all subjects, with
the magnitude and direction of the bias being conserved across different tasks for
each subject but varying between subjects (for further examples see Additional file 1:
Figures S1-S4).

In order to assess the accuracy with which the gaze location can be identified from the
collected data, we classified estimates to belong to either the eye or mouth according to
which they were closer to. The error of this classification is shown in Fig. 3. In Task 2,
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Fig. 3 Quantification of iTracker's Error without and with calibration. a Error in distinguishing between gaze
towards eye and mouth of a face on screen (Task 2; Fig. 1c). Points were classified by which feature they were
closest to. Shown is the proportion of wrongly assigned frames for each subject. Following calibration, both
accuracy and variance improve. b Results for Task 3, which was similar to Task 2, but with an enlarged face in
which eyes and mouth are further apart (Figure 1d). Performance appears more variable than for Task 2, but
after post-processing with the linear calibration method very good accuracy and robustness is achieved. ¢
Participants traced out the outline of a circle (Task 4; Fig. Te). Shown is the mean Euclidean distance between
the prediction and the true outline of the circle for each subject. Again calibration reduces variance and
improves accuracy

on average 33.23% of a subject’s frames are miss-classified (95% CI [24.08%, 42.39%]). In
Task 3, we observe a reduction in the mean classification error to 28.65%, albeit the dif-
ference is not statistically significant (95% CI [17.23%, 40.08%]; Wilcoxon Signed-Rank
Test, V = 93, p value = 0.21). In addition, there is large variation in accuracy between
subjects, in particular for Task 3 (Fig. 3a, b).

Calibration significantly improves robustness

While the performance of the SVR-based calibration method proposed in [11] reduces
the error for Task 2 (Wilcoxon Signed-Rank Test: V = 110, p value = 0.03), it does not
provide a statistically significant improvement for Task 3 (Wilcoxon Signed-Rank Test:
V =79, p value = 0.29; see also Fig. 3). Visual inspection of the gaze predictions sug-
gests that this might be due to a tendency to cluster the points around the centre of the
screen, thereby loosing structure previously visible in the data (see Fig. 2e, h, and k, and
Additional file 1: Figures S1-S4).

Motivated by the observation that iTracker’s estimates appeared to be linearly shifted
with respect to the reference points (e.g. Fig. 2b, g), we evaluated a calibration method
based on a linear transformation. As we illustrate for one subject in Fig. 2f, i, the esti-
mates now overlap well with the true gaze locations. Accordingly, compared to the
unadjusted iTracker output, the mean classification error for Task 2 is reduced to 17.67%
(95% CI [9.38%, 25.96%]; Wilcoxon Signed-Rank Test: V = 106, p value = 0.01). For
Task 3, this is even reduced to only 5.44% (95% CI [2.56%, 8.31%]; Wilcoxon Signed-
Rank Test: V = 77, p value < 0.01). As such, the linear transformation yields as good of,
and for Task 3 an even better, reduction in error than the SVR-based method (Wilcoxon
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Signed-Rank Test for Task 2: V = 75, p value = 0.41; Wilcoxon Signed-Rank Test for
Task 3: V=130, p value < 0.01; see also Fig. 3).

Moreover, calibration also improves the robustness of classification. In particular for
Task 3, the variance in accuracy between different subjects is significantly lower if cali-
bration is applied (Fig. 3b; Levene Test: F value = 4.54, df = (1.46), p value = 0.03851).
Whereas not statistically significant, reductions in variance are also noticeable for Task 2
(Fig. 3a; Levene Test: F value = 0.67, df = (1.46), p value = 0.42).

iTracker can resolve fine-grained movement

While our main aim was to assess the feasibility of distinguishing between two facial
landmarks, it was also of interest how well iTracker could resolve a more fine-grained
temporal sequence (Task 4). Figure 2j illustrates for one subject that iTracker’s estimates
capture the correct shape, and temporal sequence of the trajectory. They are also system-
atically shifted and contracted, but this can again be addressed with calibration (Fig. 2k,
1). For further examples, see Additional file 1: Figures S1-S4.

We show the accuracy of the estimates as the Euclidean distance to the true gaze loca-
tion in Fig. 3c. Without calibration, the mean Euclidean error is 2.30 cm (95% CI [1.92
cm, 2.69 cm]). Calibration with SVR yields a mean error of 2.21 cm (95% CI [1.99 cm,
2.43 cm]), although the reduction is not statistically significant (paired T test: df = 15, ¢
= 0.52, p value = 0.61). In contrast, the linear transformation yields a statistically signifi-
cant reduction in the average error to 1.93 cm (95% CI [1.61 cm, 2.26 cm]; paired T test:
df=15,t =241, p value = 0.03).

Discussion

Advancements in gaze-tracking technology for tablets and phones suggest that soon
eye tracking could be performed routinely in an everyday setting. Such systems hold the
potential for the development of novel, gaze-based digital biomarkers to monitor disabil-
ities, such as ASD. In the present study, we investigated the feasibility of developing such
a tool with the current state-of-the-art technology, iTracker, and evaluated the accuracy
based on specific biomarker-relevant tests performed with healthy volunteers.

Overall, iTracker allows distinction between gaze towards the eyes and the mouth of
a face shown on the screen. While distinction is possible for the smaller of the two faces
used in this study (17.67% =+ 8.29%), performance is significantly more robust when the
distance between eyes and mouth is maximised (5.44% =+ 2.88 %; Fig. 3a, b). We, thus,
recommend to place the eyes and mouth as far apart as possible on the screen. In addi-
tion, we find that more fine-grained temporal sequences can be resolved with acceptable
accuracy, as shown for Task 4 (Fig. 2). Our results thereby also independently confirm
the error estimates for iTracker reported in [11] (2.04 cm; here: 2.30 =+ 0.38 ¢cm), and
furthermore indicate that iTracker’s performance is relatively robust to the phone type
used: iTracker was trained on iPhones whereas we used Android devices.

Moreover, in accordance with [11], we find that accuracy can be improved by post-
processing the predictions with an error model trained on a calibration data set col-
lected at the start of the experiment. However, we observed that while the SVR-based
method proposed in [11] reduced the distance between true gaze location and the esti-
mates, it tended to do so by clustering the predictions in the centre of the screen, loosing
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spatial structure previously visible (e.g. Fig. 2e, h, and k). As an alternative, we tested a
simple linear error model to shift the estimates and rescale distances. Under the condi-
tions of our experiment, this outperformed the SVR-based method and preserved the
structure in the data better. We hypothesise that this is due to the small number of data
points available for calibration (only 16 distinct locations), resulting in over-training of
the SVR. In addition, the highly controlled circumstances of our experiments will have
helped to reduce the error making a linear error model sufficient. It seems likely that in
less-controlled environments (e.g. difficult lighting conditions, tremor when holding the
phone), a non-linear model such as the SVR might be required. It would be important
in the future to investigate this issue further and trial other statistical techniques, such
as generalised linear models, to develop a method that can robustly correct for errors
induced by differences in phone hold, lighting conditions, and visual appearance (e.g.
skin colour). It might also prove beneficial to explicitly incorporate data such as gyro-
scope data to allow further personalisation.

Although we did not explore this question in detail, we noticed a strong dependence
of iTracker’s performance on the distance between the screen and the user’s face (Addi-
tional file 1). In preliminary experiments, we found that the phone had to be held very
close to the face for accurate and consistent performance (at most 20 cm). This distance
is shorter than the distance most users would usually hold the phone at, and as such in
a practical setting would require a test to ensure this distance is kept. We also noticed
an influence of the phone angle on performance, although we were unable to clearly
characterise the relationship. Given that the target population includes young children
with challenging behaviour and cognitive disabilities, such sensitivity to the phone hold
imposes serious restrictions on its use. Research to improve robustness should be a pri-
ority in developing this technology further.

To use iTracker, one has to accurately identify the face and the eyes in the image.
Despite a long-lasting history of research in this area, a state-of-the-art available imple-
mentation failed surprisingly many times. We were only able to segment 74.7% of the
frames. Similarly, Krafka et al. [11] who used the inbuilt iOS algorithm reported a 61%
segmentation rate (only 1,490,959 of 2,445,604 had both face and eye detection [11]).
Considering the large amount of potentially insightful data that are lost, this issue should
be given further attention.

A great challenge in developing and benchmarking eye-tracking devices is to obtain
accurately labelled validation data. In this study, we aimed to ensure accurate labelling
of our data through manual validation. As a result, our data are likely biased towards
easy images, since a human observer had to be able to identify the gaze location. Thus,
the reported accuracies should be seen as best-case estimates. For further validation, it
would be helpful to compare the performance of iTracker with that of a professional eye-
tracking device. In addition, it could be interesting to repeat our experiment with other
eye-tracking algorithms for phones, such as MPIIGaze [10], to compare their accuracies.

The aim of this study was to evaluate whether smartphone-based gaze monitoring is
sufficiently accurate and robust to be employed in ASD research. This is the reason why
we worked with healthy volunteers instead of patients. After the observed sensitivity to
the phone hold is addressed, this study should be repeated with a cohort of ASD patients
to investigate whether it can capture the differences in gaze patterns in practice. It would
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also be interesting to test if it can recapitulate the attraction towards non-social extrane-
ous objects in visual scenes, or indeed the reduced time spent looking at the screen dur-
ing the test, that has been found even more predictive of autism than aversion of direct
eye contact [13]. If so, this might provide an alternative marker that could be monitored
with a smartphone-based framework. Based on our analyses it seems plausible that such
differences might be detectable, as the eyes and mouth in Task 2 were only 3 cm apart.
Moreover, while we chose to focus our application on ASD, some of our results might
be transferable to other mental disorders characterised by alterations in gaze behaviour.
Tasks such as Task 4, for example, could be used to assess smooth pursuit dysfunction
in Multiple Sclerosis [14, 15]. By presenting a prototype, and making our code publicly
available, we hope to stimulate future research into these directions.

Conclusions

We simulated a smartphone application in which participants are shown images of faces,
and examined the accuracy with which iTracker [11] could distinguish between gaze
fixations on eyes and mouth. We conclude that comparing gaze fixations towards the
eyes and the mouth of a face shown on the screen is feasible with current technology.
A calibration step will be required and care will have to be taken that the phone is held
sufficiently close to the face. But, provided this is the case, we confirmed it is possible
to obtain accurate estimates of the gaze position. Accuracy can be further improved
by maximising the distance between eyes and mouth of the face shown on the screen.
Future research should explore how iTracker performs under different recording condi-
tions, to develop solutions to improve its robustness to the distance between the phone
and the user and the angle at which the phone is held at, and explore the optimal calibra-
tion strategy. Assuming these concerns are addressed, we are confident that it will be
soon possible to monitor gaze behaviour using smartphone-based applications.

Methods

Data collection

To benchmark iTracker’s accuracy, we carried out a proof-of-principle study on 17
healthy volunteers, in which we collected a set of front-camera images from phones
for which the subject’s true gaze focus was known. The purpose of the study was solely
to assess the accuracy of the software, with no medical implications. Eight of the sub-
jects were based in Oxford, UK, and nine in Basel, Switzerland. All subjects were over
18 year old, and gave written consent to participate in the study. The phones used were
a Samsung Galaxy S4 (8 subjects), and a Samsung Galaxy S7 (9 subjects). Participants
were seated in front of a neutral background (white or grey wall), and were instructed
to hold the phone at < 20 cm distance from their head at head height. Spectacle wear-
ers were asked to take off their glasses. Participants carried out four tasks in which they
traced out specific patterns on the screen with their eyes (Fig. 1a—e) while a video was
taken. The patterns consisted of a set of way points printed on a piece of paper, which
was attached to phone screen and was meant to simulate the smartphone application
(Fig. 1a). Participants traced out the patterns by focussing on each way point for about
1s, after which they changed their focus to the next way point. Timing was enforced
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through use of a metronome. Subjects were allowed to trace out the pattern using their
finger and follow their finger with their eyes. The four tasks consisted of:

« Task 1 Calibration Grid: A 4 x 4 grid of points on the screen which was used for cali-
bration (Fig. 1b).

« Task 2 Original Face: Participants were shown the image of a face, and alternated
their focus between the eyes and the mouth of the face, following the sequence:
mouth, left eye, mouth, right eye (Fig. 1a, c). The pattern was repeated 5 times. Dis-
tance between eyes and mouth: 3.1 cm.

+ Task 3 Enlarged face: As Task 2, but with a digitally enlarged version of the same face
(Fig. 1d). Distance between eyes and mouth: 4.3 cm.

« Task 4 Circle: A circle on the screen consisting of 12 way points (Fig. le).

Data processing and gaze prediction

Frames were extracted from the videos at 30fps and reviewed manually. Frames in
which subjects blinked, or accidentally looked elsewhere on the screen were manually
reallocated or excluded. The number of frames extracted for each task varies between
subjects (see Additional file 1: Table S1). Next, the images were processed and gaze
predictions were obtained with iTracker. The required crops of the face and eyes were
extracted using the Viola—Jones detector in OpenCV [16], and rescaled and centred fol-
lowing the instructions in [11] and [17]. One subject (Subject 13) had to be excluded at
this point from further analysis, as the face detection algorithm was unable to identify
the face and eye regions. A significant number of frames from other subjects were also
affected (see Additional file 1: Table S1). In total, we obtained 16,517 labelled images,
distributed across 16 subjects, which we based our analysis on. Due to better perfor-
mance in preliminary benchmarking tests (not shown), we chose the basic version of
iTracker (“itracker_iter_92000.caffemodel” at [18]), instead of the also provided “25x
train-augmented” version. Our pipeline is implemented in Python 2.7 [19], using scikit-
video [20], opencv-python 3.1.0. [16], and Caffe 1.0 [21]. Our code is available at: https://
github.com/ms234/iTrackerWrapper.

Error metrics

Accuracy of automatic classification was evaluated with the following error metrics: For
Tasks 2 and 3, we classified predictions according to which facial feature they were clos-
est to (left, right eye, or mouth), as measured by Euclidean distance to the centre of that
feature, and we report the proportion of misclassified frames per subject. Task 4 was
mainly assessed visually. However, we also report the mean Euclidean distance between
the predicted gaze focus and the true gaze focus for each subject (in centimetres).

Calibration methods

We compared the improvements achieved by two calibration methods: (1) the SVR-
based calibration method proposed in [11], and (2) a linear transformation-based
method proposed by us. The methods were trained on the data collected in Task 1,

and then applied to correct the predictions from Task 2—4. Accuracy was evaluated as
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before. The SVR-based method was implemented following [11], using the e1071 pack-
age in R [22]. The linear transformation was motivated by the observation that the gaze
patterns captured by iTracker were shifted and stretched compared to the true patterns
(see Fig. 2 for an example). Thus, we used a linear transformation to translate the predic-
tions so that the centroid of the predictions coincided with the centroid of the true dots.
In order to correct the length scale, we chose the transformation so that so that the vari-
ance in distance from the centroid is preserved between the set of predictions and the
set of true gaze locations. It can be shown that the transformation which satisfies these

requirements is given by,
¥ =axX+by, and y=a,j+by,

where (fc, 5/) is the original prediction, (56, 5/) is the corrected prediction, and
ay =

ay = » by =y —axfly, and by =y — ayfly.

>
xm‘xq,\,

>
am‘eqm

Here, iy and uy denote the mean, and axz and 03,2 denote the variance of the x- and
y-coordinate values of the grid points in Task 1. Similarly, /i, and /i, stand for the mean,
and 62 and &yz stand for the variance in x- and y-coordinate values of the predicted

positions.

Statistical analyses

Performance was compared using paired t-tests, if the data followed a normal distribu-
tion (p value from Shapiro Wilk Test > 0.05 for both samples). Otherwise, we used Wil-
coxon Signed-Rank Tests. To compare inter-subject variance in performance prior and
post calibration, we used a Levene test for homoscedasticity. The post calibration sample
for this test was obtained by pooling the results for both calibration methods. All statis-

tical analyses were carried out in R version 3.4.0. [23].

Additional file

Additional file 1. The Appendix contains gaze predictions for four further subjects from the study, and a table with
a detailed overview of the results for each subject. Finally, we also present preliminary work on the inuence of the
distance between the user and the phone on iTracker’s accuracy.
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Authors’ contributions

MS performed data collection, and carried out the analysis. LD carried out data collection. FL, CG, ML, and MDV
developed the initial idea for the study, and oversaw the project. All authors contributed to the design of the study and
writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank the volunteers from CIBIM and Roche for helping in collecting data for this project. In addition,
we would like to thank two anonymous reviewers for their feedback that allowed us to tie in this paper more closely with
the practicalities of ASD research.


https://doi.org/10.1186/s12938-019-0670-1

Strobl et al. BioMed Eng OnLine (2019) 18:51 Page 11 of 12

Competing interests
FL and CG are employees of F. Hoffmann-La Roche AG, Basel, Switzerland. ML and LD are consultants to F. Hoffmann-La
Roche AG, Basel, Switzerland. MS and MV declare that they have no competing interests.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable
request.

Consent for publication
All subjects have consented that their data may be utilised in this publication.

Ethics approval and consent to participate

Given the non-intrusive, non-clinical nature of our study, and given that previous work this study was extending ([11])
did not seek ethics approval either, we did not apply for approval for our study. However, all participants were over 18,
fully informed about the aims of the study, and gave written consent to participate.

Funding

This research was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre
(BRQ), and by funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Medical Research
Council (MRC) [Grant Number EP/L016044/1].

Publishers’ Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

"' Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter,
0X2 6GG Oxford, UK. ? Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Magnolia Drive,
12902 Tampa, USA. > Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center, F.
Hoffmann-La Roche Ltd, Basel, Switzerland. * Department of Engineering Science, Institute of Biomedical Engineering,
University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK.

Received: 11 February 2019 Accepted: 12 April 2019
Published online: 03 May 2019

References

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 2013. https://doi.
0rg/10.1176/appibooks.9780890425596.

2. Autistic Self Advocacy Network. About Autism. www.autisticadvocacy.org/about-asan/about-autism. The National
Autistic Society. 2017. http://autisticadvocacy.org/about-asan/about-autism/.

3. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943,;2:217-50. https://doi.org/10.1105/
tpc.11.5.949.

4. Black MH, Chen NTM, lyer KK, Lipp OV, Bolte S, Falkmer M, Tan T, Girdler S. Mechanisms of facial emotion recogni-
tion in autism spectrum disorders: insights from eye tracking and electroencephalography. Neurosci Biobehav Rev.
2017;. https://doi.org/10.1016/j.neubiorev.2017.06.016.

5. Vidal M, Turner J, Bulling A, Gellersen H. Wearable eye tracking for mental health monitoring. New York: Elsevier;
2012. https://doi.org/10.1016/j.comcom.2011.11.002.

6. Hansen DW, Ji Q. In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans Pattern Anal Mach
Intell. 2010;32(3):478-500. https://doi.org/10.1109/TPAMI.2009.30.

7.  FujiokaT, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, Jung M, Arai S, Matsumura Y, Fujisawa TX, Narita K,
Suzuki K, Tsuchiya KJ, Mori N, Katayama T, Sato M, Munesue T, Okazawa H, Tomoda A, Wada Y, Kosaka H. Gazefinder
as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in
male adolescents and adults. Molecular Autism. 2016;7(1):19. https://doi.org/10.1186/513229-016-0083-y.

8. XuP Ehinger KA, Zhang Y, Finkelstein A, Kulkarni SR, Xiao J. TurkerGaze: crowdsourcing saliency with webcam based
eye tracking. 2015. https://doi.org/10.1103/PhysRevD.91.123531. arXiv:1504.06755.

9. Nel E-M, Zielinski P. Opengazer: open-source gaze tracker for ordinary webcams (software). 2015.

10. Zhang X, Sugano Y, Fritz M, Bulling A. Appearance-based gaze estimation in the wild. In: Proceedings of the
IEEE computer society conference on computer vision and pattern recognition. 2015. p. 4511-20. https://doi.
org/10.1109/CVPR.2015.7299081.

11. Krafka K, Khosla A, Kellnhofer P, Kannan H. Eye tracking for everyone. In: IEEE conference on computer vision and
pattern recognition. 2016. p. 2176-84. https://doi.org/10.1109/CVPR.2016.239.

12. Corden B, Chilvers R, Skuse D. Avoidance of emotionally arousing stimuli predicts social-perceptual impairment in
Asperger’s syndrome. Neuropsychologia. 2008;46(1):137-47.

13. Chita-Tegmark M. Attention allocation in ASD: a review and meta-analysis of eye-tracking studies. Rev J Autism
Develop Dis. 2016;3(3):209-23. https://doi.org/10.1007/540489-016-0077-x.

14. McDonald WI, Halliday AM. Diagnosis and classification of multiple sclerosis. Br Med Bull. 1977;33(1):4-8. https://doi.
org/10.1093/oxfordjournals.omb.a071393.

15. Mastaglia FL, Black JL, Collins DWK. Quantitative studies of saccadic and pursuit eye movements in multiple sclero-
sis. Brain. 1979;102(4):817-34. https://doi.org/10.1093/brain/102.4.817.

16. [TSEEZ.The OpenCV reference manual, 2.4.9.0 edn. 2014. ITSEEZ.


https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
http://www.autisticadvocacy.org/about-asan/about-autism
http://autisticadvocacy.org/about-asan/about-autism/
https://doi.org/10.1105/tpc.11.5.949
https://doi.org/10.1105/tpc.11.5.949
https://doi.org/10.1016/j.neubiorev.2017.06.016
https://doi.org/10.1016/j.comcom.2011.11.002
https://doi.org/10.1109/TPAMI.2009.30
https://doi.org/10.1186/s13229-016-0083-y
https://doi.org/10.1103/PhysRevD.91.123531
http://arxiv.org/abs/1504.06755
https://doi.org/10.1109/CVPR.2015.7299081
https://doi.org/10.1109/CVPR.2015.7299081
https://doi.org/10.1109/CVPR.2016.239
https://doi.org/10.1007/s40489-016-0077-x
https://doi.org/10.1093/oxfordjournals.bmb.a071393
https://doi.org/10.1093/oxfordjournals.bmb.a071393
https://doi.org/10.1093/brain/102.4.817

Strobl et al. BioMed Eng OnlLine (2019) 18:51 Page 12 of 12

20.
21.

22.

23.

. Krafka K, Khosla A, Kellnhofer P, Kannan H. GazeCapture Project. www.gazecapture.csail.mitedu. 2017. http://gazec

apture.csail.mit.edu/index.php. Accessed 7 Dec 2017.

. Krafka K, Khosla A, Kellnhofer P, Kannan H. 2017. https://github.com/CSAILVision/GazeCapture. Accessed 7 Dec 2017.
. The Python Software Foundation, Python Language Reference, Version 2.7. www.python.org. The Python Software

Foundation. 2017.

Scikit-Video. 2017. https://github.com/scikit-video/scikit-video.github.io.

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture
for fast feature embedding. 2014.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C-C, Lin C-C. e1071: Misc functions of the Depart-
ment of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https:/cran.r-project.org/package=e1071.
R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. R Foundation for Statistical Computing. https://www.r-project.org/. 2017.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC



http://www.gazecapture.csail.mit.edu
http://gazecapture.csail.mit.edu/index.php
http://gazecapture.csail.mit.edu/index.php
https://github.com/CSAILVision/GazeCapture
http://www.python.org
https://github.com/scikit-video/scikit-video.github.io
https://cran.r-project.org/package=e1071
https://www.r-project.org/

	Look me in the eye: evaluating the accuracy of smartphone-based eye tracking for potential application in autism spectrum disorder research
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	iTracker captures patterns but its predictions are biased
	Calibration significantly improves robustness
	iTracker can resolve fine-grained movement

	Discussion
	Conclusions
	Methods
	Data collection
	Data processing and gaze prediction
	Error metrics
	Calibration methods
	Statistical analyses

	Authors’ contributions
	References




