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INTRODUCTION 
 

A disintegrin and metalloproteinase (ADAMs) are a 

family of membrane-anchored proteins with variety 

functions in multicellular organisms. ADAMs are 

important in both physiological and pathological 

processes and becoming promising molecules in 

targeted therapy [1]. Proteins of the family perform 

functions including proteolysis, cell adhesion, cell 

fusion, and cell signaling [1]. Among the 21 members 

of ADAM family, 13 are active enzymes. Other 

ADAMs lacked the catalytic site of Zn-binding 

sequence (HEXXHXXGXXH) or with destroyed 

metalloenzyme domain, resulting in proteolytically 

inactive [2]. However, these molecules were important 
in intracellular cell signal transduction [1].  

 

ADAM17 is a member of ADAM family, the ADAM17 

gene is located on chromosome 2p25, including 19exons 

and 18 introns (Figure 1A). Its protein is multi-domain 

that consist of a prodomain, a metalloenzyme or catalytic 

domain, a disintegrin domain, a cysteine-rich domain and 

a transmembrane domain (Figure 1B, 1C). ADAM17 was 

discovered in 1997 as the enzyme that could proteolysis 

TNF-α while it was regarded as adhesion proteins in the 

previous [3, 4]. These two properties enable ADAM17 to 

participate in cellular adhesion and proteolytic cleavage of 

various cell surface molecules [1]. Proteolysis is one of 

the important post-translational modification of 

transmembrane proteins, while the ADAM17-mediated 

ectodomain shedding is the main form of proteolysis [5]. 

More than 10% of all cell surface proteins and most of the 

transmembrane proteins need to be proteolytically cleaved 

to release soluble form to be active [6], and the proteolysis 

usually occurs at the membrane-adjacent part of the 
molecule [2]. At least 90 substrates were reported to be 

processed by ADAM17 [7], of which interleukin-6 

receptor (IL-6R), the pro-inflammatory cytokine tumor 
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necrosis factor α (TNFα) and the epidermal growth factor 

receptor (EGFR) were most important [5]. ADAM17 

knockout mice develop TGF-α related phenotype such as 

open eyes and wavy hair at birth, indicating that both 

TGF-α and TNF-α could be the substrates and cleaved by 

ADAM17 [8]. Lacking of ADAM17 (ADAM17-null 

mice) influenced the ADAM17-derived EGFR activation 

and result in defective valvulogenesis in newborn mice [7, 

9]. The proteolytically activated ADAM was localized 

mainly in the plasma membrane [10]. Protein cleavage 

can regulate cellular signaling and affect cell behavior, but 

the results always differs. Both substrate and receptor can 

be cleaved. The activation of either substrate or receptor 

can result in different biological functions which partly 

depend on the pathway the substrate or receptor involved 

in [11]. ADAMs could be tissue-specific and has 

preferences for certain proteins [2].  
 

Our review focuses on ADAM17, one of the most well 

studied ADAM enzymes. 

 

Functions of different domain of ADAM17 
 

Prodomain 

The prodomain of ADAM17 was the initial inhibitor of 

the enzyme, and the proteolytic cleavage of its 

prodomain was necessary for the activation of 

ADAM17 [12, 13]. Furin, a pro-protein convertase, was 

responsible for this reaction [14]. Isolated prodomain 

could inhibit the proteolytic process of ADAMs and 

acted as effective and selective inhibitors of active 

ADAMs [15]. Studies showed that deletion of the 

prodomain damaged the proteolytic activity of the 

protein [16] and the secretion of TNF-alpha was 

inhibited after the overexpression of prodomain of 

ADAM17 [13]. The prodomain may be not necessary 

for the transportation to cell surface, but it might play 

important role in the extracellular system [16]. 

Overexpression of ADAM17 with mutations in pro-, 

membrane-proximal- and cytoplasmic-domain showed 

different influences on the function of ADAM17. Of 

note, mutations in pro-domain resulted in the impaired 

proteolytic activity and cell membrane transportation, 

suggesting the crucial role of pro-domain for ADMA17 

activation, protein trafficking and proteolysis [17].  

 

Catalytic domain 

The catalytic domain or metalloenzyme domain of 

ADAM17 contains a catalytic site sequence with three 

histidine residues (HEXXHXXGXXH) and one 

glutamic residue, which are responsible for Zn-binding 

and the cleavage of peptide bonds. There are two highly

 

 
 

Figure 1. The structure of ADAM17. (A), Gene structure; (B), Generalized domains of ADAM17; (C), Conserved domains of ADAM17. 
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conserved and adjacent cysteine sulfhydryl motifs 

(cysteine-X-X-cysteine, CXXC), and the motifs were 

the targets for the exchange of protein’s thiol-disulfide 

[18]. The processing of various membrane bound 

proteins is heavily dependent on the catalytic domain 

[1]. For example, process the proTNF-alpha to a soluble 

form. As ADAM17 involved in various inflammatory 

diseases, the design of inhibitors of ADAM17 are 

becoming the targets of disease treatment [19]. The 

inhibition of ADAM17 by tissue inhibitors of metallo-

proteinases (TIMPs) was studied by the overexpression 

of catalytic domain of mouse ADAM17 and confirmed 

that TIPM-3 was the most important TIPM that 

involved in the regulation of the secretion of TNF-alpha 

[19]. On the other hand, the effective binding of TIMP-

3 with ADAM17 was due to the extension of TIMP-3 to 

the hydrophobic pocket of ADAM17 surface and the 

interaction through the binding edge with active-site 

cleft of ADAM17 [20]. 

 

Disintegrin domain 

Integrins are adhesion receptors mediate the 

interaction of cell-cell and cell-extracellular matrix 

(ECM), and participate in many cell progressions 

including cell adhesion, cell migration and 

proliferation [21]. Integrin is a prognostic indicator 

and up-regulated in many types of cancers [22]. 

Disintegrins are a family of small cysteine-rich 

peptides that could bind to integrins [23]. The 

disintegrin domain of ADAM17 could competitively 

inhibit the function of integrin and was first 

discovered in viper venom [24]. Later, disintegrins 

was confirmed in not only platelets but endothelial 

cells [1]. Studies showed that ADAM17 could bind to 

α5β1 integrin by the founding of the co-localization in 

Hela cells [25]. The binding of disintegrin and 

integrins mediate cell adhesion of itself and 

neighboring cells, activate various receptors and result 

in the initiation of several cell signaling pathways 

[21]. In addition, the disintegrin domain of ADAM17 

enabled cancer cells to interact with fibroblast and 

microenvironment, while soluble disintegrin impair 

this interaction and increased the proteolysis activity 

of ADAM17 [26]. 

 

Cytoplasmic domain 

Function experiments using truncating mutation of 

ADAM17 suggested that the transmembrane domain was 

necessary for the cleave of TNF-alpha. Lacking acids 

from amino-terminal of cytoplasmic domain increased the 

activity of ADAM17 mediated TNF-alpha shedding [27]. 

Of note, the cytoplasmic domain was critical for  

the activation of integrin-disintegrin binding-mediated 
magnification cascade of signaling pathways and other 

signaling like focal adhesion kinase (FAK), extracellular 

regulated kinase (ERK1/2), and protein kinase B 

(AKT/PKB) [28]. However, most of the activation of 

these signaling contribute to the progression and drug 

resistance of cancer treatment [28].  

 

Post translational modifications of ADAM17 
 

Post translational modifications of ADAM17 including 

the removal of pro-domain, and glycosylation or 

phosphorylation of the enzyme. It is not very clear 

whether there are differences in glycosylation of 

ADAM17 between normal and cancer cells and so does 

the relationship of glycosylation and enzymatic activity. 

Kinetic parameters analysis for hydrolysis of TNFα-

based substrates by insect- and mammalian-expressed 

human ADAM17 showed that glycosylation of 

ADAM17 can influence the enzyme activity in vivo 

[29]. Furthermore, zinc-binding and non-zinc-binding 

inhibitor of ADAM17 exhibit different potency, 

suggesting that glycosylation of ADAM17 may 

participate in the cell signaling regulation [29]. An 

experiment using TNFα substrate with and without a 

glycan moiety attached to test the change of ADAM17 

activity and results indicated that glycosylation 

enhanced ADAM17 activity [30]. N-linked glycol-

sylation sites on different domain ADAM17 also 

explained the glycosylation can be the important 

regulator of ADAM17 [31]. 

 

As to another important post-translational modification-

phosphorylation, including serine and threonine 

residues of its cytoplasmic domain was confirmed to be 

related to many diseases. Protein kinase C and kinase G 

(PKC, PKG) [32], extracellular-signal regulated kinase 

(ERK) [33], p38-mitogen-activated protein kinase (p38-

MAPK) [33, 34], phorbol ester (PMA) [35], Epidermal 

Growth Factor (EGF) [35] and phosphoinositide 

dependent kinase 1 (PDK1) [36] were kinases that 

confirmed to regulate the phosphorylation of ADAM17. 

The phosphorylation of the cytoplasmic tail of 

ADAM17 by ERK or p38-MAPK increase ADAM17-

mediated proteolysis of TNFα, which associated with 

the cell surface dimerization [37]. The C-terminal T735 

and/or S791 phosphorylation of ADAM17 in gastric 

epithelial cells induce the activation of ADAM17, while 

the threonine phosphorylation by p38 MAPK promote 

the tumorigenic activity of ADAM17, and the 

proportion of phospho-ADAM17 was highly correlate 

with KRAS mutation in lung adenocarcinoma [34]. 

Other studies also demonstrated that PMA and EGF 

induce the phosphorylation of ADAM17 on T735 and 

S819 by extracellular signal-regulated kinase [35]. 

PDK1 and phosphatidylinositol 3-kinase (PI3-K) 

contribute to the ADAM17 phosphorylation and induce 

EGF receptor activation which may enhance the 

therapeutic effects of EGFR inhibitors in non-small cell 

lung cancer (NSCLS) patients [36]. However, there are 
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controversy results showed that the activation of 

ADAM17 was independent of the intracellular portion 

of ADAM17 [38, 39]. Deletion of entire cytoplasmic 

portion of ADAM17 could shed the TNFα from the cell 

surface also [40]. 

 

ADAM17-related human diseases 
 

ADAM17 is essential in the maintenance of 

homeostasis. The dysregulation of ADAM17 involved 

in various pathological states including inflammation, 

tumorigenesis, and central nervous system diseases [2].  

 

Inflammation 

ADAM17-dependent cleavage of relevant substrates 

which are cytokines including TNFα, Interleukin-6, and 

their receptors-TNF receptors 1 and 2, IL-6 receptor 

occurred in inflammatory diseases.   
 

Increased TNF release is associated with numerous 

inflammatory conditions, and the inflammatory process 

regulated by TNFα was largely attributed to its soluble 

form that proteolysis from its membrane-bound form by 

ADAM17 [3]. As a result, it was possible that the 

diseases with upregulated circulating TNFα accom-

panied by enhanced ADAM17 activity [41]. This 

modification was confirmed in rheumatoid arthritis and 

osteoarthritis as active ADAM17 was detected in 

synovial and cartilage tissue in patients with these two 

diseases [41]. In endotoxin-activated macrophages, the 

TNF release was regulated via lipoprotein receptor-

related protein 1 (LRP1) mediated upregulation or 

downregulation of TIMP-3 (one of the endogenous 

inhibitors of ADAM17), and the levels of TIMP-3 could 

be changed following LPS stimulation [42]. All these 

results indicated that ADAM17 activity must be tightly 

regulated in inflammatory diseases. On the other hand, 

TNFα and its two receptors TNFRI and TNFR2 are all 

substrates of ADAM17 [40]. The signaling pathways 

via TNFR1 related to apoptosis or cell death while 

pathways via TNFR2 seems protective [43]. However, 

different receptors are sensitive to different forms of 

TNFα, TNFRI is mainly stimulated by soluble TNFα 

while TNFRII is mainly stimulated by transmembrane 

TNFα [44, 45]. The ratio of soluble/transmembrane 

TNFα was regulated by ADAM17, which elucidated 

one of the mechanisms of ADAM17 in the regulation of 

immune system [43]. 
 

Soluble IL-6R receptor was responsible for the pro-

inflammatory process and becoming an attractive 

therapeutic target. The activation of soluble IL-6R was 

carried out by the proteolytic cleavage of the IL-6R by 
ADAM17 [46]. Of note, one of the common characters 

of inflammation was the IL-6-induced shift of neutro-

phil to monocyte. However, neutrophil IL-6R shedding 

by ADAM17 may be the trigger of immune response to 

inflammation [47]. In addition, the cleavage of other 

members of interleukin family-IL-15Rα was mediated 

by ADAM17 as well, fibroblast cells with deficient 

ADAM17 usually accompanied with downregulated 

soluble IL-15Rα [48]. 

 

The molecular mechanism of ADAM17 participate in 

the inflammatory procedures was explored in several 

other different studies. ADAM activation was 

required for lymphocytes transfer across the high 

endothelial venules to lymph nodes which was the 

basis for mature dendritic cells initiate immune 

response [49]. Another immune cell-neutrophil was 

regulated by ADAM17 in the inflammatory response, 

ADAM-17 dependent L-selecting shedding down-

regulated its expression and directed neutrophils to 

inflammatory sites [18]. Reduction-oxidation reaction 

in disintegrin/cysteine-rich region of ADAM17 may 

be the mechanism of neutrophil-related L-selectin 

shedding [18]. Molecules took part in the activation of 

leukocyte such as vascular cell adhesion molecule, 

intercellular adhesion molecule-1 could be cleaved by 

ADAM17 as well [50]. 

 

Cancer 

ADAM family has been proved to be key regulators of 

cell signaling pathway in the tumor microenvironment 

and ADAM17 was widely involved in tumorigenesis 

and tumor progression [51–53].  

 

High expression of ADAM17 was confirmed to be 

related to more secretion of TGF-α and poor 

prognosis in breast cancer. In addition, increased 

TGFα and VEGF were seen in MDA-MB-231 breast 

cancer cells and thus influenced cell proliferation, 

invasion and angiogenesis [51]. One of the substrates 

of ADAM17, nectin-4, was easier to detect in breast 

cancer patients with metastasis [54]. In vitro studies 

indicated the enhancement of ADAM17 in cell 

proliferation, invasion and metastasis through the 

activation of PI3K-AKT signaling pathway [51]. In 

glioma, ADAM17 promoted brain tumor growth, 

invasion, metastasis, and contribute to stoke-induced 

neurogenesis [51]. In colorectal cancer, the activation 

of epidermal growth factor receptors (EGF-R) 

included the processing of membrane-bound EGF-R 

which induced by ADAM17. Inhibition of serine 

hydrolase monoacylglycerol lipase (MAGL) and 

transcription factor SATB2 could reduce tumor 

burden of colorectal cancer and was correlated with 

the downregulation of fibroblast growth factor-2 

(FGF-2) and vascular endothelial growth factor 
(VEGF) [55, 56]. However, the VEGF expression  

and cleavage of the VEGF-receptor (VEGF-R2)  

were regulated by ADAM17 [43]. Tyrosine 
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phosphorylation activate ADMA17 and lead to the 

angiotensin II-induced shedding of HB-EGF [57]. 

 

TNFα signaling pathway plays an important role in the 

tumorigenesis through the regulation of cell apoptosis, 

death, and survival [4]. Decreased cell membrane 

receptor-bound TNFα was detected in gastric cancer 

cells transfected with ADAM17-shRNA. P65, an anti-

apoptosis regulator, one of the molecules downstream 

TNFα, was reduced once ADAM17 downregulated, 

suggesting that ADAM17 promoted the development of 

gastric cancer through the regulation of TNFα signaling 

pathway [58]. Other studies showed that autonomous 

TNF-α-NF-κB and IL-6-STAT3 signaling are essential 

for tumor growth while ADAM17 turn on the signaling 

cascade by the shedding of TNFα [59]. 

 

The soluble (s)IL-6R-dependent trans-signaling 

mediated by ADAM17 was verified as one of the 

reasons for the development of many cancers including 

lung cancer, ovarian cancer, pancreatic cancer, 

colorectal cancer and hepatocellular cancer [60, 61]. In 

ovarian cancer patients, sIL-6Rα increased in malignant 

ascites and associated with poor prognosis. IL-6 trans-

signaling could influence the chemotherapy-induced 

apoptosis of endothelial cells and promote the migration 

of ovarian cancer cells [62]. Moreover, IL-6 could 

facilitate the progression of pancreatic cancer, while 

specific inhibitor of IL-6 trans-signaling by the gp130Fc 

protein could depress tumor growth and further 

decreased the microvessel density, reduced the number 

of distant metastases [60]. In hepatocellular cancer, 

HCC progenitor cells acquired autocrine IL-6 signaling 

and thus promote the tumor proliferation. Meanwhile, 

IL-6 trans-signaling was proved to be associate with the 

gender difference in the incidence of HCC [61]. All 

these studies suggested that ADAM17-mediated 

cleavage of the IL-6R is responsible for the tumori-

geneses and progression of cancer.  

 

Central nervous system diseases 

ADAM proteases were crucial in the development and 

regulation of central nervous system, especially axonal 

growth and myelination [63]. The expression of 

ADAM17 was higher in fetal brain tissue than adult 

brain tissue, suggesting the significant role of 

ADAM17 in the development of neuronal [3]. 

ADAM17 was detected in neurons and astrocytes, 

oligodendrocytes, and microglial cells. Cellular 

localization analysis found that ADAM17-positive 

neurons often co-localized with amyloid plaques, 

supporting its role in the pathological process of Aβ 

formation [64]. ADAM17-mediated cleavage of 
immunoglobulin superfamily recognition molecule L1 

was correlated with the cellular migration and neurite 

outgrowth [68]. Alzheimer's amyloid precursor protein 

(APP), which functioned in mediating neuronal 

migration and synaptic connectivity was verified as 

substrate of ADAM17 as well [65]. Four and Half LIM 

domain 2 protein (FHL2), one of the LIM domain 

proteins, involved in numerous protein-protein 

interaction and responsible for the generation of 

soluble and non-amyloidogenic fragment (sAPPα). 

FHL2 could bind to ADAM17 and co-localized with 

actin-based cytoskeleton. However, less ADAM17 was 

detected at the surface of macrophages in FHL2 loss-

of-function mice, suggesting that the expression of 

FHL2 could regulate ADAM17 and participate in 

neurogenesis [66]. 

 

On the other hand, ADAM17 play a role in synaptic 

plasticity. Neuronal pentraxin receptor, enriched at 

excitatory synapses, could be cleaved by ADAM17 

and release the pentraxin domain, which was 

necessary for the mGluR1/5-dependent long-term 

depression in hippocampus and complex coordination 

in both synapse strengthening and weakening [67]. 

ADAM17 is important for the synaptic connection 

formation as well. The processing of RA175/ 

SynCAM1, one cell adhesion molecule involved in 

the formation of functional synapse, could be 

inhibited by TNF-alpha protease inhibitor-1 (TAPI-1). 

Furthermore, the colocalization of RA175/SynCAM1 

and synaptophysin on dendrites was increased once 

TNF-alpha protease was blocked [68]. 
 

Other substrates of ADAM17 such as EGF-R showed 

significant effect on central nervous system and was 

detected in many types of nerve cells including cerebral 

cortical pyramidal cells, hippocampal pyramidal cells, 

Purkinje cells, anterior horn cells, and dorsal root 

ganglion neurons. Thus, EGF-R signaling which was 

important to the development of neuronal and synaptic 

plasticity could be influenced by ADAM17 [69]. As to 

heparin-binding (HB)-EGF, studies confirmed that it 

could stimulate the proliferation of CNS astrocytes and 

multipotent progenitors [70]. Moreover, HB-EGF was 

responsible for the developing of dopaminergic neurons 

of the ventral midbrain [71]. 
 

Taken together, these findings indicate the importance 

of the ADAM17 in the development and maintenance 

of neurons through ectodomain shedding of central 

nervous system-related membrane-bound proteins.   

 

ADAM17-related targeted therapy 
 

ADAM17 has been reported to be a regulator of many 

cellular events and be responsible for the cleavage of 
growth factors, receptors and adhesion molecules [1, 

72]. Human diseases including inflammatory, 

immune, degenerative diseases and cancer were 
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confirmed to be related to ADAM17. As a result, 

ADAM17-related targeted therapy is becoming the 

research hotspot and many of the new potential 

therapeutic agents have entered into the clinic [73, 74].  

 

T cell immunoglobulin and mucin domain-containing 

protein 3 (TIM3) was one of the cell surface receptors 

of CD4+ CD8+ T cells [75, 76]. TIM3 was identified as 

substrates of ADAM17, and soluble TIM3 could bind to 

carcinoembryonic antigen-related cell adhesion 

molecule 1 (CEACAM1), galectin9 and high mobility 

group protein B1 (HMGB1), and thus lead to reduced 

antitumor activity of immune cells [75, 77, 78]. On the 

other hand, shedding of membrane-bound CD16 by 

ADMA17 decrease the expression of IFNγ and other 

cytokines which are necessary for the activation of 

immune cells [73]. ADAM17 was associated with the 

increased soluble PD-L1 from tumor cells. This 

regulation of ADAM17 induce the apoptosis of T cells 

and compromise the killing effect of CD8+ T cells [74] 

(Figure 2). All these suggested that inhibitors of 

ADAM17 and may be correlated to the tumor targeted 

therapy selection.  

 

Nowadays, some of the ADAM17 inhibitors were 

conducted into deep study or entered clinical trials. 

Small molecules drug which was a dual inhibitor of 

ADAM17 and ADAM10 could suppress tumor growth 

and recover the sensitivity of breast cancer cells to 

EGFR inhibitor [79]. Antibody inhibitors binding both 

catalytic and noncatalytic domains of ADAM17 showed 

inhibition of the shedding of ADAM17 substrates 

including TNFα, TGFα, AREG, HB-EGF, and tumor 

necrosis factor receptor 1 (TNFR1) [80]. Prodomain of 

ADAM17 was also tested as inhibitor of ADAM17, it 

could inhibit the secretion of TNF-α by 5-7-fold 

depended on different concentration [81]. A stable form 

of the ADAM17 prodomain was generated and 

developed as the endogenous specifically inhibitor of 

cell-surface ADAM17 which not influence ADAM10. 

This protein inhibitor was verified to attenuate the 

disease models of sepsis, rheumatoid arthritis (RA) and 

inflammatory bowel disease (IBD) and reduce the 

secretion of TNFα [81]. In addition, tissue inhibitors of 

metalloproteinases (TIMPs) are the endogenous 

inhibitors of the matrix metalloproteinases, while 

TIMP3 could bind to the extracellular matrix. Thus, 

exogenously synthesized inhibitors focus on extra-

cellular domain of ADAM17 may be promising 

therapeutic agents.  

 

However, challenges such as adverse effect and non-

specific inhibition to other closest isozyme (ADAM10) 

are obstacles we need to resolve [73]. Of note, as 

ADAMs family are Zn2+- dependent proteases, most of 

the ADAM inhibitors directly target the active site zinc 

of zinc-binding moieties of ADAM17, it is hard to 

avoid off-target effects currently [30]. Multiple

 

 
 

Figure 2. Mechanism of ADAM17-mediated reduced antitumor activity of immune cells. Abbreviations: CEACAM1, 

carcinoembryonic antigen-related cell adhesion molecule 1; HMGB1, high mobility group protein B1; IRFs, interferon regulatory factors; 
sTIM3, soluble TIM3; sPD-L1, soluble PD-L1. 
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Table 1. The regulation network of miRNAs and ADAM17 in different human diseases. 

 

substrates of ADAM17 was another factor lead to the 

side effects of targeted therapy. Inhibitors targeting only 

a subset of substrates which are more specific is the 

research direction in the future.  

 

Regulation network of miRNAs and ADAM17 
 

Accumulating evidence suggested that ADAM17 was 

up-regulated in various cancers and was involved in 

tumor growth, invasion and metastasis. However, 

miRNAs function as upstream regulators in ADAM17 

cell signaling pathway and more and more studies focus 

on the regulation network of cancer-related miRNAs 

and ADAM family (Table 1) [82–87].  

 

Some miRNAs are mainly expressed as tumor 

suppressors, and ADAM17 were proved to be the direct 

target of miRNAs [82, 85]. In non-small cell lung 

cancer (miR-338-3p was down-regulated [83–85, 88]. 

However, miRNA-mediated overexpression of 

ADAM17 and activation of downstream substrates lead 

to the attenuation of suppressive function of miRNA 

[83–85]. Other tumor suppressor miR-152 showed an 

inversely correlation with the expression of ADAM17. 

miR-152-induced tumor suppression effect was partially 

mediated by down-regulation of ADAM17 expression 

[89]. In addition, positive and negative feedback loops 

have been described for ADAM and miRNA in cancer. 

High level of miR-145 decrease the expression of 

ADAM17, whereas ADAM17 negatively regulates 

miR-145 through cleaved substrates such as TNFα [82]. 

Increased TNFα in tumor microenvironment was 

responsible for more metastasis. Inhibitors of ADAM 

family were promising options for cancer treatment 
through reduction of ADAM substrates and increased 

tumor suppressive miRNAs in tumor microenvironment 

[90, 91].  

On the other hand, some miRNAs are closely related to 

the tumorigeneses and development of cancer which may 

responsible to the target genes and regulation network. 

miR-122 is a relative tissue specific miRNA which 

abundantly expressed in liver [92]. It is essential for the 

metabolism of cholesterol, glucose, lipid and iron 

homeostasis and it was the first miRNA carry out clinical 

trial in HCV infected patients [93]. Results from our 

research group confirmed the function of miR-122 in the 

regulation of gluconeogenesis and lipid metabolism in 

HepG2 cells [94]. Moreover, miR-122 was downregulated 

in HCC and correlated with more aggressive tumor 

behavior [95]. Targeted transportation of miR-122 to 

cancer cells using viral vector or liposomal nanoparticles 

resulted in tumor suppression in HCC animal models [93]. 

Circulating miR-122 was becoming a prognostic marker 

in patients with HCC [96]. Additionally, the mechanism 

that miR-122 involved in the regulation of a large number 

of target mRNAs has been explored as well. Microarray 

analysis and 3’-UTR synthetic miR-122 were used to 

identify the targets of miR-122, whereas CAT-1, 

ADAM17, BCL-w and interferon-inducible double-

stranded RNA-dependent activator (PRKRA) were 

confirmed [93]. Two independent expression microarray 

datasets analysis identified 32 candidate target genes of 

miR-122, most of which were enriched in the cell-cell 

signaling and gene transcription. ADAM17, one of the 

target genes of miR-122, was crucial in metastasis. The 

invasion, migration and angiogenesis were reduced in 

HCC mice model once ADAM17 was knocked down. 

miR-122 reduced angiogenesis, inhibit intrahepatic 

metastasis and functioned as tumor suppressor through the 

regulation of ADAM17 [97]. Overexpression of 

ADAM17 was also seen in other cancers including breast 

cancer, brain tumor and colorectal cancer [98–100]. Of 

note, ADAM17 was proved to be associated with invasion 

and metastasis either [98–100].  

miRNAs targeted ADAM17 Regulation network Pathology conditions Reference 

miR-152 miRNA↑, ADAM17↓ NSCLC Su et al. 2014 

miR-338 miRNA ↓, ADAM17↑ 
NSCLC Neuroblastoma. 

Gastric Cancer. HCC 

Chen et al. 2013; Hong et al. 

2020; Sun et al. 2015; Wang 

et al. 2015 

miR-122 miRNA ↓, ADAM17↑ HCC 
Li et al. 2012; Jopling 2012; 

Thakral et al. 2015 

miR-708 miRNA ↓, ADAM17↑ 
Idiopathic Pulmonary 

Fibrosis 
Liu et al. 2018 

miR-143, miR-145 miR-

148a, miR-152 
miRNA ↓, ADAM17↑ Colon Cancer Dougherty et al. 2020 

miR-326 miRNA↑, ADAM17↓ Hashimoto‘s Thyroiditis Liu et al. 2020 

miR-148 miRNA ↓, ADAM17↑ Nasopharyngeal Carcinoma Shi et al. 2020 

miR-145 Feedback Loop Renal Cell Carcinoma Doberstein et al. 2013 
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In other diseases, ADAM17 participated in idiopathic 

pulmonary fibrosis (IPF) via miR-708-3p/ADAM17/ 

STAT3 signaling pathway. miR-708-3p/ADAM17 axis 

aggravated IPF and miR-708-3p was verified 

concentrate in the lungs of animal models [101]. 

However, in Hashimoto's Thyroiditis (HT), the 

expression of miR-326 was closely related to the 

occurrence of HT via the regulation of TH17 cells 

differentiation [102].  

 

All these results suggested that miRNAs functioned as 

the upstream regulators of ADAM17 and the miRNA–

ADAM17 link participated in various pathological 

process and diseases. 

 

CONCLUSIONS 
 

In this review, the functions of different domains and 

post-translational modifications of ADAM17 have been 

performed. The links of ADAM17 with different 

physiological and pathophysiological processes and 

human diseases are well discussed. As the important 

role of ADAMs in transcriptional regulation and 

maintenance of homeostasis, we analysis the regulation 

network of ADAM17 and miRNAs. The ADAM17 is 

not simply the target gene of miRNAs, the dual 

regulation and feedback loops between ADAM17 and 

miRNAs are also needed to be further understand. All 

these may contribute to the understanding of ADAM17 

and thus provide new insights on the development of 

more selective ADAM inhibitors and reagents of 

targeted therapy. 
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