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A B S T R A C T   

Coronavirus Disease 2019 (COVID-19), has already posed serious threats and impacts on the 
health of the population and the country’s economy. Therefore, it is of great theoretical signifi-
cance and practical application value to better understand the process of COVID-19 infection and 
develop effective therapeutic drugs. It is known that the receptor-binding structural domain 
(SARS-CoV-2 RBD) on the spike protein of the novel coronavirus directly mediates its interaction 
with the host receptor angiotensin-converting enzyme 2 (ACE2), and thus blocking SARS-CoV-2 
RBD–ACE2 interaction is capable of inhibiting SARS-CoV-2 infection. Firstly, the interaction 
mechanism between SARS-CoV-2RBD-ACE2 was explored using molecular dynamics simulation 
(MD) coupled with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy 
calculation method. The results of energy analysis showed that the key residues R403, R408, 
K417, and Y505 of SARS-CoV-2 RBD and the key residues D30, E37, D38, and Y41 of ACE2 were 
identified. Therefore, according to the hotspot residues of ACE2 and their distribution, a short 
peptide library of high-affinity SARS-CoV-2 RBD was constructed. And by using molecular 
docking virtual screening, six short peptides including DDFEDY, DEFEDY, DEYEDY, DFVEDY, 
DFHEDY, and DSFEDY with high affinity for SARS-CoV-2 RBD were identified. The results of MD 
simulation further confirmed that DDFEDY, DEYEDY, and DFVEDY are expected to be effective 
inhibitors. Finally, the allergenicity, toxicity and solubility properties of the three peptide in-
hibitors were validated.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19), has spread across the globe, imposing a heavy burden on society and the economy. Previous 
studies have shown that COVID-19 has a high degree of homology with SARS in 2003, so it was also named severe acute respiratory 
syndrome coronavirus 2 (SARS-COV-2) [1]. The family Coronaviridae is in the order Nidovirales. Members of this family are 
positive-sense single-stranded RNA viruses that are genetically categorized into the genera α-coronavirus, β-coronavirus, γ-corona-
virus, and δ-coronavirus [2,3]. SARS-CoV-2 is derived from β-coronavirus, and its gene mainly encodes four structural proteins: the 
nucleocapsid protein, the membrane protein, the envelope protein, and the spike protein [4]. Among them, the spike protein plays an 
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critical role in infection and entry into host cells [5]. The spike protein is club-shaped and exists as a trimer, with each monomer 
consisting of two domains (S1 and S2). While the S2 domain is embedded in the viral membrane, the S1 domain is exposed to the 
surface [6]. Previous studies revealed that the spike protein can exist in three conformational states: open (or up), semiopen and closed 
(or down) [7,8]. These conformations refer to the structure of the receptor-binding domain (RBD, residues 319–541) found on the S1 
domain [7,9]. Recent studies have shown that SARS-CoV-2 RBD first interacts with angiotensin-converting enzyme 2 (ACE2), induces 
the virus to fuse with the host cell membrane, allowing the coronavirus to infect the host cell [10,11]. Notably, SARS-CoV-2 RBD 
directly mediated the interaction with ACE2 to complete the infection process [12,13]. In addition, previous studies have shown that 
the host’s ability to be infected with SARS-CoV mainly depends on the affinity between RBD and host receptor ACE2 [141516171819]. 
Therefore, the development of inhibitors that inhibit SARS-CoV-2 RBD-ACE2 protein-protein interactions could effectively block the 
interactions, which is critical in the response to SARS-COV-2. 

At present, molecular dynamics (MD) simulation has emerged as the most common yet obvious method to investigate biomolecular 
interactions and conformational dynamics [20]. MD simulation-based binding free energy calculations has proven valuable. Mandal 
et al. [21] compared the RBD-ACE2 complex of the Variants of Concern with the Wild Type system by using all-atom MD simulations. It 
was observed that electrostatic interactions play a major role in the binding of the complexes. Similarly, by using all-atom MD sim-
ulations, Rath et al. [22] compared the interaction of Wild-type RBD-ACE2 complex with that of the latest Omicron variant of the virus. 
The residue wise interaction energies of the mutated residues and surface electrostatics imply that this energy change is favorable for 
the binding of ACE2 and the stability of the Omicron when compared to Wild-type. Inevitably, performing biochemical experiments on 
SARS-CoV-2 is time-consuming and requires sophisticated security operation. In the context of SARS-CoV-2, computational ap-
proaches have been widely used to predict binding affinities and evaluate the interactions that occur between protein-ligand and 
protein-protein complexes at the molecular level [23,24]. For instance, docking, ADMET properties calculation, MD and molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches were coupled to check the therapeutic potentials of N. sativa chief 
constituents against COVID-19 [25]. Kumar et al. [26] have screened FDA approved 2466 drugs against the predicted binding site at 
the RBD-ACE2 interface, leading to 6 drugs exhibited stable binding with RBD at the RBD-ACE2 interface after the verification of MD 
simulations. The computational studies are quick and easily performed to provide COVID-19 information. 

Except for small compounds, peptide inhibitors have been considered a major hotspot for drug development due to their high 
affinity to proteins, low toxicity, high inhibitory capacity and ease of synthesis [27]. Designing novel peptide inhibitors that can inhibit 
viral binding to ACE2 and prevent the virus from invading cells, is a possible treatment strategy. Jaiswal et al. [28] have identified a 
double helical inhibitor amantadine binding protein (ΔABP)-D25Y that binds at the receptor binding motif site of SARS-CoV-2 RBD 
with higher affinity than ACE2. Based on the known ACE2 binding sites on RBD, Cao et al. [29] developed two novel peptides named 
LCB1 and LCB3 with high binding affinity to the SARS-CoV-2 RBD and high neutralizing ability. However, the above peptides are still 
considered as large-size inhibitors, with ΔABP-D25Y, LCB1, and LCB3 having 60, 56, and 64 residues, respectively. In this regard, 
designing some smaller peptides would be more desirable since it will lower manufacturing costs with higher output and easier 
penetration into tissues and cells with high specificity. The allergenicity, toxicity, and solubility of peptides were assessed via bio-
informatics tools to verify the validity and potency of the construct. Campos et al. [30] identified the 7 mutations with strong binding 
affinity, high antigenicity, allergenicity, immunogenicity, and nontoxicity present in spike protein of all SARS-CoV-2 variants that we 
could readily use in the construction of prototype peptide vaccine. A novel multi-epitopes peptide vaccine construct against the 
Jaagsiekte retrovirus, Mahmoud et al. [31] predicted that these peptide vaccines include antigenicity, sensitization, toxicity, and 
stability. This type of analysis saves time, resources, and money for the pharmaceutical and vaccine industries [32]. 

In this work, molecular docking and MD simulation were used to design short peptide inhibitors that disrupt the binding of SARS- 
CoV-2 RBD to ACE2. First, the interaction and key residues were investigated. Then, short peptide inhibitors with a high affinity for 
SARS-CoV-2 RBD were designed based on the distribution of key residues using molecular docking. Secondly, MD simulations were 
performed to verify the affinity between the short peptide inhibitors and SARS-COV-2 RBD. Finally, the predicted results of bioin-
formatics tools showed that these peptides had no allergenicity, no toxicity and good water solubility. The novel peptides developed 
here as well as the overall strategy have a strong potential to lead to generally applicable anti-COVID-19 therapeutics. 

2. Materials and methods 

2.1. Molecular dynamics simulation 

The complex conformation of SARS-CoV-2 RBD-ACE2 was obtained from the Protein Data Bank database with PDB ID 6LZG [33]. 
Topology files of short peptides were generated using the ATB [34] website, and Gromos 54A7 force field [35] was selected. 

GROMACS 5.1.4 was used to analyze the movement of the complex structure in the all-atomic field of CHARMM27 [36]. First, a 
cubic box with a volume of 2343.04 nm3 was constructed, so that the proteins in the neighbor periodic box are at least 1.5 nm apart 
from each other. Then periodic boundary conditions were used. The remaining space in the box was filled with TIP4P [37], and 24 Na+

ions were added to balance charges. All molecules in the systems were optimized by steepest descent minimization performed for 5000 
steps with a maximum force constant value of 1000 kJ/mol/nm. After the geometrical optimization, the systems were equilibrated in 
isothermal isometric (NPT) ensemble for 100 ps at a timestep of 2 fs. The temperature of 310 K and the pressure of 1 atm were 
maintained by the Berendsen thermostat and the Parrinello-Rahman barostat [38], respectively. Particle Mesh Ewald (PME) method 
[39] was used to treat the long-range electrostatic interactions with a real space cutoff of 1.0 nm. The van der Waals interactions [40] 
were also cut off at 1.0 nm, with the appropriate cutoff corrections added to pressure and energy. All hydrogen bonds were constrained 
by the LINCS method [41]. After the equilibration, 100 ns MD production run at a timestep of 2 fs was performed for statistics. 
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2.2. Data analysis 

All trajectories were analyzed using the GROMACS package’s built-in programs and related plug-ins. The gmx rms and gmx mindist 
command were applied to calculate the root-mean-square deviation (RMSD) of the target protein and the distance between ligand and 
the target protein, respectively. The g_mmpbsa command [42] was applied to analyze the energy [43]. In addition, all images were 
rendered by applying the Visual Molecular Dynamics (VMD) software (http://www.ks.uiuc.edu/Research/vmd/) [44]. 

2.3. Bionic design of short peptide inhibitors 

The distance between the C-terminal and N-terminal of key residues of ACE2 was calculated using VMD software. Then, to design 
the molecular model of short peptide inhibitors, 20 common amino acids were docked with the gaps formed by the key residues of 
SARS-CoV-2 RBD by using AutoDock [45]. The filling process refers to previous researches [46,47]. And then, to screen out the short 
peptide inhibitors with high affinity to SARS-CoV-2 RBD, the candidate short peptide inhibitors were docked with the whole 
SARS-CoV-2 RBD using Vina [48]. 

2.4. Docking 

AutoDock [45] and Vina [48] were used to design short peptides with a high affinity to SARS-CoV-2 RBD. The AutoDock software is 
composed of the AutoGrid program responsible for calculating the relevant energy in the grid and the AutoDock program responsible 
for conformation search and evaluation of their affinity [49]. The receptor was treated as rigid entity whereas ligands were kept 
flexible to obtain the best fitting conformation with respect to the receptor complex. First, AutoDock was used to dock 20 common 
amino acids to the target regions of SARS-COV-2 RBD. Here, the grid spacing was set as 0.375 Å, and the center of the grid points was x 
= − 31.606, y = 33.577, z = 11.244. The grid size boundaries along X, Y, and Z axes were set as 40 Å × 80 Å × 40 Å, and the number of 
conformations obtained by docking is 300. Then, Vina software was used to perform docking screening for alternative short peptide 
inhibitors. Among them, the grid spacing was set as 1 Å, and the center of the grid points is x = − 32.358, y = 29.77, z = 21.005. The 
grid size boundaries along X, Y, and Z axes were set as 40 Å × 45 Å × 55 Å, and the number of conformations obtained by docking was 
10. 

2.5. Binding free energy calculations using MM-PBSA analysis 

MM-PBSA analysis was used to calculate the free energy of binding (ΔGbind) of the SARS-COV-2 RBD-ACE2 complex using 
g_mmpbsa. In MM-PBSA, the enthalpy change of the system is calculated by molecular mechanics (MM) method [50], the contribution 
of polar part to free energy in solvent effect is calculated by solving Poisson-Boltzmann (PB) equation [51], the contribution of the 
non-polar part of the solution effect to the free energy is calculated by the molecular accessible surface area (SASA) [52]. The basic 
principle is as follows: 

ΔGbind =ΔEMM + ΔΔGsol − TΔS 

The binding free energy of SARS-CoV-2 RBD and ACE2 was calculated on the finally 10 ns of MD simulation trajectories taking 200 
configuration snapshots. The per-residue energy contribution of the complexes was also estimated. The binding free energy of the 
system was estimated through the following equation, 

ΔGbind =ΔEelec + ΔEvdw + ΔGPB + ΔGSASA − TΔS  

The formula, ΔGbind is the binding free energy, ΔEMM is the intramolecular energy in vacuum, including electrostatic interaction 
(ΔEelec), van der Waals force (ΔEvdw), and Δ ΔGsol is solvation free energy, including polar solvation energy (ΔGPB) (calculated by PB 
equation) and non-polar solvation energy (ΔGSASA) (obtained by calculating molecular accessible surface area). The entropic energy 
(TΔS) is usually ignored because of its estimation is a slow process and yields a small value [53]. In this study, the binding free energy 
of the complex does not include the energy contributed by entropy. 

2.6. Allergenicity, toxicity and solubility prediction tool of peptides 

AllerTOP V.2 [54] (http://www.ddg-pharmfac.net/AllerTOP/), a novel model for allergen prediction using machine learning 
approaches, has been widely used to predict the allergenicity. The allergenic potential was evaluated using the AllerTOP V.2 web 
server by applying auto-cross covariance transformation to build a dataset of known allergens and developing alignment-independent 
models for allergen recognition based on the physicochemical properties of peptides. The tool uses five machine learning methods for 
protein classification, including partial least squares discriminant analysis, logistic regression, decision tree, naïve Bayes, and k-nearest 
neighbors. In addition, AllerTOP V.2 attempts to identify the most likely route of exposure AllerTOP V.2 outperforms other allergen 
prediction models, with a sensitivity of 94% [47]. AllerTOP V.2 was used to search for identical short (6–8) amino acid segments of the 
query protein that exactly match any segment of a known allergenic protein. ToxinPred [55] (http://crdd.osdd.net/raghava// 
toxinpred/) was used to distinguish the toxicity of peptides. It uses the following datasets to train and test SVM models: (1) a main 
dataset (1805 toxin sequences from experimentally validated peptides/proteins (positive examples) and 3593 non-toxin sequences 
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from SwissProt (negative examples)), (2) a main independent dataset (303 toxin sequences and 300 SwissProt non-toxin sequences), 
(3) an alternative dataset (1805 toxin sequences (positive examples) and 12,541 non-toxin sequences from TrEMBL (negative ex-
amples)), (4) and an alternative independent dataset (303 toxin sequences from SwissProt and 1000 non-toxin sequences from 
TrEMBL). Solubility is the measure of homogeneity of the system from the mixture of solute and solvent. It is considered as one of the 
vital parameters in drug concentration determination for a desired pharmacological response [56]. Poor solubility of drugs is a major 
issue in drug discovery and development. Solubility acts as a driving force to attain high drug concentration in blood for therapeutic 
effectiveness [57]. The solubility property of affinity peptides can be obtained from the peptide property calculator PepCalc.com 
(http://pepcalc.com/), which is freely available online and has been widely used. 

3. Results and discussion 

3.1. Structural stability of SARS-CoV-2 RBD and ACE2 complex 

RMSD value is often used to indicate the structural stability of the protein. The smaller the fluctuation of the RMSD value, the more 
stable the structure of the protein. Therefore, to judge whether the balance between ACE2 and SARS-CoV-2 RBD had been reached, the 
RMSD value of the complex was calculated (Fig. 1A). 

In Fig. 1A, the RMSD values rise rapidly at the early stage of the simulations, and fluctuated wildly within the following time. It 
indicates that initial conformation of the complex is not optimal, and they constantly adjust and optimize conformation to fit each 
other. In the last 50 ns, the fluctuation of RMSD value is relatively stable, which implies the complex conformation reaches a steady 
state. To assess the stability of the bound complexes and their conformations due to binding, superimposition of the initial structure 
and the final structure (averaged over the MD trajectory) of the SARS-CoV-2 and ACE2 complexes was performed and shown in Fig. 1B. 
Therefore, we chose the last 10 ns of simulation to calculate the binding energy. We only estimate the energy between residues at the 
binding interface of SARS-CoV-2 RBD and ACE2 in Fig. 2 due to computational requirements. As shown from the figure, ACE2 is closely 
integrated with SARS-COV-2 RBD. 

Fig. 1. The structural stability of the complex. The time evolution of RMSD values of SARS-CoV-2 RBD-ACE2 conformation (A). Superimposition of 
the initial (blue) and final (red) structures of SARS-CoV-2-ACE2 complex in MD simulations (B). Black arrows point to conformational deviations. 
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3.2. Free energy analysis based on MD simulation 

Previous studies have shown a significant error in the energy analysis based on a single conformation, but MD simulation can 
significantly reduce that [58,59]. Therefore, we also used MD simulation combined with the MM-PBSA method to calculate the total 
energy, and decomposed the binding free energy into four terms: van der Waals energy, electrostatic energy, polar solvation energy, 
and nonpolar solvation energy. 

Table 1 shows the energies between the binding interface of SARS-CoV-2 RBD and ACE2 in the last 10 ns. The total energy reach 
− 364.70 ± 64.74 kJ/mol, which indicates that there is a stronger binding tendency between them. It is easy to see that the electrostatic 
interactions (− 603.08 ± 72.94 kJ/mol) contribute the most of binding free energies in complexes of ACE2 with SARS-CoV-2 RBD, 
which is about 2 times higher than the van der Waals energy (− 305.02 ± 19.75 kJ/mol). However, the electrostatic energy is mainly 
offset by the polar solvated free energy (583.51 ± 104.67 kJ/mol). Thus, the non-polar energy composed of van der Waals energy 
(− 305.02 ± 19.75 kJ/mol) and SASA energy (− 40.10 ± 2.37 kJ/mol) plays an important role in their binding. Considering their 
physical and chemical properties, it can be found that ACE2 possesses 27 negative charges, and SARS-CoV-2 RBD possesses 2 positive 
charges. Therefore, this may be one of the reasons why the high electrostatic energy value. The strong electrostatic energy between 
them results in strong protein-protein interactions. 

Therefore, it can be concluded that both the non-polar and polar energy are the main forces promoting the interactions between 
SARS-CoV-2 RBD and ACE2, among which the electrostatic energy cannot be ignored. And our results are consistent with that of Cao 
et al. [60]. 

3.3. Free energy decomposition 

Not only is the MM-PBSA method often used to evaluate the interaction energy between protein and protein, but its energy 
decomposition can also be used to identify key residues of proteins [46,58,59]. To further analyze the energy contribution of each 
residue at the protein-binding interface, we decompose the binding energy into the energy contributed by each residue. 

Herein, residues whose absolute value of energy contribution is less than 5 kJ/mol are ignored. Fig. 3 reports the specific energy 
values contributed by residues of SARS-CoV-2 RBD-ACE2 and the distribution of these residues. As can be seen from Fig. 3, there are a 
large number of polar residues at their binding interface, and these polar residues contribute highly high energy. According to pro-
tein–protein interaction results, it is clear that the critical residues are predominantly on the α-helix of the ACE2. The 18 critical 
residues E22, E23, T27, F28, D30, E35, E37, D38, Y41, E56, E57, D67, E75, M82, E329, D335, D350, and D355 (Fig. 3B) in ACE2 have 
an important role in interactions of SARS-CoV-2 RBD, which is almost similar to the binding residues profile of ACE2 interface reported 
previously [61,62]. In addition, some residues with the ring also contribute to considerable non-polar energy. Whereas the hotspot 
residues in the SARS-CoV-2 RBD including R403, R408, K417, K424, K444, R454, L455, F456, R457, K458, K462, R466, F486, and 
Y505 are identified, which were in line with the findings of Yan et al. [6] Form Fig. 3A, the positively charged residues of SARS-CoV-2 
RBD are favorable for the combination of SARS-CoV-2 RBD and ACE2, while negatively charged residues have the opposite effect. In 
contrast, negatively charged residues of ACE2 contribute favorable energy, while positively charged residues are unfavorable for their 
binding (Fig. 3B). This is also the reason why the electrostatic energy is far greater than the sum of van der Waals energy and SASA 
energy (Table 1), and the electrostatic energy is mainly contributed by these residues. It consistent with an overall more compatible 
electrostatic interactions between RBD and ACE2 in the complex of SARS-CoV-2 than that in SARS-CoV [6]. 

In addition, the energy contributed by the residues of SARS-CoV-2 RBD is much greater than that of ACE2. Thus, it can be inferred 

Fig. 2. Three-dimensional structure of the complex conformation of SARS-CoV-2 RBD-ACE2. SARS-CoV-2 RBD and ACE2 were rendered in blue and 
red NewCartoon, respectively. Among them, these residues of the interface were rendered in blue and red Surf, respectively. 
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that the residues of SARS-CoV-2 RBD play a key role in their combination (Fig. 3A and B). On the one hand, most polar residues 
contribute favorable energy to their combination. On the other hand, hydrophobic residues (such as residues T27, F28, Y41, and M82 
of ACE2 and residues L455, F456, F486, and Y505 of SARS-CoV-2 RBD) also provide considerable non-polar energy. A large number of 
polar residues at the interaction interface suggested that electrostatic energy is the main factor, which is consistent with the findings of 
Wang et al. [63] The high-affinity interactions between them are caused by multiple residues of the binding interface. Previous study 
found that SARS-CoV-2 RBD was mainly recognized by ACE2 through polar residues [7], which is consistent with our results. 

Due to the negatively charged residues of ACE2 contribute favorable energy, the negative charged residues of SARS-CoV-2 RBD 
show highly repulsive energy values. The negatively charged residues of SARS-CoV-2 RBD are surrounded by the same charged res-
idues in ACE2, and thus electrostatic repulsion may easily occur between them to prevent the binding of the SARS-CoV-2 RBD to ACE2. 
Moreover, mutations in these negatively charged residues of RBD are often accompanied by enhanced transmissibility and virulence of 
SARS-CoV-2 [64]. For example, the residue variation of E484 plays an important role in the stronger ACE2 binding affinity. E484K in 
both Alpha and Beta variants of Spike-RBD would increase the binding energy to − 226.64 ± 2.8 and − 258.40 ± 4.71 kJ/mol, 
respectively. However, E484 in the WT and Gamma variants show highly repulsive energy values (212.50 ± 1.1 and 199.02 ± 0.84 
kJ/mol respectively) indicating there are unfavorable interactions between them [21]. 

Table 1 
The binding energy between SARS-CoV-2 RBD and ACE2, 
calculated from finally 10 ns molecular dynamics simulations.  

Energy components complex (kJ/mol) 

Van der Waals − 305.02 ± 19.75 
SASA − 40.10 ± 2.37 
Electrostatic − 603.08 ± 72.94 
Polar solvation 583.51 ± 104.67 
Binding − 364.70 ± 64.74 

* Polar = Polar solvation. 
* Nonpolar = Van der Waals + SASA + Electrostatic. 
*Binding = Polar + Nonpolar. 

Fig. 3. Binding energy decomposition. Herein, residues whose absolute value of energy is less than 5 kJ/mol are ignored. Specific energy values 
contributed by residues of SARS-CoV-2 RBD (A) and ACE2 (B). Distribution of residues of SARS-CoV-2 RBD and ACE2 (C), where the residues 
contributing favorable energy are shown in red, and the unfavorable energy are shown in blue. 
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3.4. Design of short peptides with high affinity for SARS-CoV-2 RBD 

Based on the results in Fig. 3, the best binding site of the short peptide inhibitors was determined and shown in Fig. 4A. The grooves 
that are conducive to the binding of short peptide inhibitors can be observed at the binding interface (Fig. 4A). The key residues R403, 
R408, K417, and Y505 of SARS-CoV-2 RBD and the key residues D30, E37, D38, and Y41 of ACE2 were also recognized, according to 
the energy decomposition in Fig. 3, and the distribution of these key residues was shown in Fig. 4B. As shown from Fig. 4B, the key 
residues of SARS-CoV-2 RBD are almost in one-to-one correspondence with that of ACE2. These key residues are located at the 
interaction interface, and are critical for their combination. 

Short peptides with a strong affinity for SARS-CoV-2 RBD were designed according to the distribution of key residues. Herein, we 
refer to previous researches, including amino acid localization and fragment linking methods [46,47] to construct short peptides. 
Fig. 4C shows the distribution of four key residues of ACE2 and the distance between the C-terminal and N-terminal of some residues. 
According to free energy decomposition and pair interaction analysis [46], four key residues D30, E37, D38, and Y41 of ACE2 were 
identified. Therefore, the molecular model (DX1X2EDY) of short peptide inhibitors was designed, where "X" can represent any one of 
20 common amino acids. 

Subsequently, 20 common amino acids were docked with the key regions formed by residues V401–N422, Y453–F456, and 
F490–Y505 of SARS-CoV-2 RBD, respectively. Due to X1X2 are inserted into the molecular motif (DX1X2EDY), which is built based on 
the binding fragment D30-E37 of ACE2, the RBD of SARS-CoV-2 were divided into two binding regions, region I and region II (Fig. 5A). 
According to the energy score and position of each amino acid after docking, the amino acid bound in region I is defined as "X1" and the 
amino acid bound in region II is defined as "X2". The binding energy is shown in Fig. 5B. “X1” amino acid was replaced with D, C, Q, and 
E; X2 amino acid was replaced with A, R, E, H, I, L, K, M, F, S, T, W, Y, and V, a total of 74 “DX1X2EDY” short peptide library was 
obtained. Finally, 74 short peptides were docked to identify the potential inhibitors for the RBD of SARS-CoV-2. Although all of the 
molecules bind actively with the SARS-CoV-2 RBD, but 6 affinity short peptides (DDFEDY, DEFEDY, DEYEDY, DFVEDY, DFHEDY, and 

Fig. 4. Design of short peptide inhibitors. The grooves formed by residues V401–N422, Y453–F456, and F490–Y505 of SARS-CoV-2 RBD (A). The 
groove was rendered in blue NewCartoon and Surf, respectively, and the key residues were represented in red Licorice and Surf, respectively. 
Distribution of key residues of SARS-CoV-2 RBD and ACE2 (B). SARS-CoV-2 RBD, ACE2, and the key residues were displayed in blue NewCartoon, 
red NewCartoon, and Licorice, respectively. Distribution of four key residues of ACE2 and the distance between C-terminal and N-terminal of the 
residues (C). 
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DSFEDY) have the highest binding affinity. 

3.5. Verification of the affinity between short peptides and SARS-CoV-2 RBD 

Because docking software only considers the flexibility of the ligands, and usually ignores the effect of solvation effect, the cal-
culations of affinity between ligands and proteins are often inaccurate [656667]. To further verify whether the short peptides have a 
high affinity with SARS-COV-2 RBD, MD simulation was carried out. Early studies reported that ligand-protein complex could reaches 
balance in 100 ns. [686970]. Therefore, we also use 100 ns MD simulation to verify the affinity. 

Fig. 6 shows the average value of the minimum distance between short peptides and SARS-CoV-2 RBD. And the value is between 
0.17 and 0.19 nm in six simulation systems, which suggests these short peptides and SARS-CoV-2 RBD have always maintained a 
relatively balanced state, and these short peptides are not far away from SARS-CoV-2 RBD. Moreover, to further observe whether the 
short peptides have moved away from the binding interface of SARS-CoV-2 RBD, the typical conformations of the short peptides-SARS- 
CoV-2 RBD at 100 ns were analyzed (Fig. 7). It can be found that DDFEDY, DEYEDY, and DFVEDY are located at the interface, while 
DEFEDY, DSFEDY, and DFHEDY tend to stay away from that (the blue region in Fig. 7), which indicate that these short peptides, 
including DDFEDY, DEYEDY, and DFVEDY are more likely to bind and remain on the interface and have high affinity with SARS-COV-2 
RBD. Therefore, DDFEDY, DEYEDY, and DFVEDY are expected to be effective inhibitors to prevent the protein-protein interactions 
between SARS-CoV-2 RBD and ACE2. 

To explore the affinity between these short peptides and SARS-CoV-2 RBD, we used the MM-PBSA to calculate the total binding 
energies of the protein complexes in Table 2. The last 10 ns of simulated trajectories of all the systems was used for MM-PBSA based 
binding energy calculations. Table 2 shows the binding energies of the four systems under study. DEYEDY and DDFEDY complexes 
showed average binding free energy − 456.66 ± 41.17 and − 388.92 ± 48.75 kcal/mol, while the average binding free energy of 
DFVEDY was − 315.87 ± 31.45 kcal/mol. It is observed that for both SARS-CoV-2 RBD and short peptide, electrostatic energy plays a 
crucial role in the interaction process. The van der Waals energy, electrostatic energy and non-polar energy are contributed actively to 
the total interaction energy. In contrast, polar energy has a positive contribution to the whole interaction process. Based on the above 

Fig. 5. The potential amino acids in X1 and X2. Two binding regions, region I and region II, were selected from residues V401–N422, Y453–F456 
and F490–Y505 of SARS-CoV-2 RBD. Region I and region II were set inside the red dashed line circle, respectively (A). The binding energy and 
positions of 20 amino acids, respectively (B). 

Fig. 6. The verification of the affinity. The average value of the minimum distance between short peptides and SARS-CoV-2 RBD during the whole 
simulation. The distance between the center of mass of the short peptide and the center of mass of SARS-CoV-2 RBD. 
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analysis, the van der Waals, electrostatic and non-polar interactions combinedly contribute to the stability of both the compounds. 
Thus, it was seen that the binding affinity of DEYEDY are the highest and DFVEDY the least among all the four systems under study. 

3.6. Allergenicity, toxicity and solubility prediction 

The allergenicity, toxicity, and solubility of above selected peptides were assessed via bioinformatics tools to endorse the validity 
and potency of the construct, some online networking tools were used. AllerTop V.2 and Toxinpred is widely used in antigenicity, 
sensitization, and toxicity analysis. It aims to predict allergens and non-allergens with high sensitivity and specificity [71]. Moreover, 
in addition to these parameters of peptides, the solubility of peptides is also important, good water solubility is also conducive to the 
role of peptides. Solubility is the measure of homogeneity of the system from the mixture of solute and solvent. It is considered as one of 
the vital parameters in drug concentration determination for a desired pharmacological response [56]. The studies [62,72] of Pei and 
Han designed new peptide inhibitors with seven residues based on the helical structure of ACE2. The allergenicity, toxicity, and 
solubility of these peptides were assessed (Table 3). However, QAKTFLD and GKGDFRI are predicted as possible allergens, and 
QAKTFLD peptide has been experimentally verified to have low cytotoxicity [62]. As for our peptides, they are non-immunogenic and 
non-toxic peptide. Due to AllerTOP V.2 was used to search for identical short (6–8) amino acid segments of the query protein and 
Toxinpred predicted a peptide sequence with length less than 50 residues, it is impossible to predict the allergenicity and toxicity of 
ΔABP-D25Y, LCB1, and LCB3. The results in Table 3 showed that DDFEDY, DEYEDY, and DFVEDY had no allergenicity, no toxicity and 
good water solubility, thus they would be excellent candidates to combat SARS-CoV-2. 

The binding free energy calculations study have based MD simulation is the first step towards designing peptide inhibitors to block 
SARS-CoV-2 entry into the host cell. The use of peptides as therapeutics holds great promises for the treatment of continuously evolving 
viral infection of SARS-CoV-2 [73,74]. For example, Han et al. [75] designed peptide inhibitors extracted from the peptidase domain of 
ACE2 and simulated their interaction with the RBD of SARS-CoV-2 using molecular dynamics simulation. The results showed that α1, 

2-helixes peptides, which could provide a highly specific and stable binding to the RBD of SARS-CoV-2, suggesting that these peptides 
could be used as therapeutics against COVID-19. Maas et al. [76] designed and synthesized lactam-based, single stapled 35-mer 

Fig. 7. The typical conformations of short peptides binding SARS-CoV-2 RBD at final 100 ns. The key residues of SARS-CoV-2 RBD were represented 
in red Licorice, the short peptides were represented in gray Licorice inside the red dashed line. SARS-CoV-2 RBD was displayed in blue and sil-
ver NewCartoon. 

Table 2 
The binding energies between the peptide inhibitors and ACE2 with SARS-CoV-2.  

List of Systems under 
study 

Van der Waal energy 
(kJ/mol) 

Electrostatic energy (kJ/ 
mol) 

Polar solvation energy 
(kJ/mol) 

SASA energy (kJ/ 
mol) 

Total binding energy 
(kJ/mol) 

ACE2 − 305.02 ± 19.75 − 603.08 ± 72.94 583.51 ± 104.67 − 40.10 ± 2.37 − 364.70 ± 64.74 
DEYEDY − 108.60 ± 21.60 − 833.49 ± 104.80 502.67 ± 89.20 − 17.24 ± 2.09 − 456.66 ± 41.17 
DDFEDY − 135.64 ± 19.07 − 816.16 ± 81.22 583.66 ± 89.16 − 20.78 ± 2.01 − 388.92 ± 48.75 
DFVEDY − 185.07 ± 20.33 − 787.81 ± 73.18 680.23 ± 74.02 − 23.24 ± 1.53 − 315.87 ± 31.45  
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peptides based on the hACE2 N-terminal Helix 1 to interact directly with the SARS-CoV-2 RBD. It efficiently inhibits SARS-CoV-2 
RBD-ACE2 binding and is resistant to degradation in the serum. However, in comparison with our structurally stable affinity pep-
tide inhibitors (DX1X2EDY), they differ in structural stability, composition and molecular weight. The studies [75,76] conducted by 
Han and Maas show the design of new peptide inhibitors by mutations to the α-1 helix, with the presence of non-significant residues 
leading to deformity in its helical structure and longer peptide chain with larger molecular weight. Utilizing this fact in our study, each 
residue in the bind surface of the ACE2 was estimated for functional significance and structural stability based on their binding energy 
and conformational stability. We designed a molecular model for DX1X2EDY short peptide inhibitors where non-significant residues 
were truncated. Affinity peptide inhibitors have numerous major advantages over small size, small molecular weights, easy synthesis, 
with high specificity and affinity. 

4. Conclusions 

In this study, MD simulations and molecular docking were used to explore the interactions between SARS-CoV-2 RBD and ACE2 and 
design short peptide inhibitors with high affinity for SARS-CoV-2 RBD. The results of energy analysis between SARS-CoV-2 RBD and 
ACE2 report that both non-polar and polar energies are the main forces promoting their binding. Moreover, considering that there are 
many polar residues at their binding interface, and these polar residues contribute extremely high favorable energy, electrostatic 
energy also plays an important role. In addition, the key residues R403, R408, K417, and Y505 of SARS-CoV-2 RBD and the key 
residues D30, E37, D38, and Y41 of ACE2 were finally gained according to the results of energy analysis. And then, based on the 
distribution of key residues, short peptide inhibitors, including DDFEDY, DEFEDY, DEYEDY, DFVEDY, DFHEDY, and DSFEDY, with 
high affinity for SARS-CoV-2 RBD were constructed. Finally, MD simulation results of short peptides-SARS-CoV-2 RBD complex and the 
computer predictions suggest that DDFEDY, DEYEDY, and DFVEDY are expected to be effective inhibitors to prevent the protein- 
protein interactions between SARS-CoV-2 RBD and ACE2, thus preventing viral infection. 

The sequence of SARS-CoV-2 has undergone frequent mutations, containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta 
(B.1.617.2), and Omicron (BA.1) variants [20]. These new variants may impair the efficacy of previously developed monoclonal 
antibody therapies [77]. Early data indicated that Omicron BA.2 sublineage had higher infectivity and more immune escape than the 
early wild-type (WT) strain, the previous variants of concern (VOCs), and BA.1 [78]. Cell culture infection assays [79,80] revealed that 
BA.2 variant was almost completely resistant to two therapeutic mAbs, casirivimab and idevimab, in contrast to their significant 
neutralizing activities against WT, Alpha, Gamma, and Delta. To test the efficacy of DDFEDY, DEYEDY, and DFVEDY, the large-scale 
analysis of variant protein structure docking has not been conducted yet. On the other hand, the methodological limitations stated 
above based on docking and simulation, the inhibitory potential of these short peptide in context to SARS-CoV-2 needs to be 
corroborated in further experimental attention. In addition, due to computational limitations, the prediction of allergenicity, toxicity 
and solubility of the affinity peptides also needs to be confirmed experimentally. It is recommended to compare our computational 
results with the designed peptides in vitro and in vivo, and eventually to clinical studies. 
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