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Abstract

Previous theories predict that human dorsal anterior cingulate (dACC) should respond to decision 

difficulty. An alternative theory has been recently advanced which proposes that dACC evolved to 

represent the value of “non-default,” foraging behavior, calling into question its role in choice 

difficulty. However, this new theory does not take into account that choosing whether or not to 

pursue foraging-like behavior can also be more difficult than simply resorting to a “default.” The 

results of two neuroimaging experiments show that dACC is only associated with foraging value 

when foraging value is confounded with choice difficulty; when the two are dissociated, dACC 

engagement is only explained by choice difficulty, and not the value of foraging. In addition to 

refuting this new theory, our studies help to formalize a fundamental connection between choice 

difficulty and foraging-like decisions, while also prescribing a solution for a common pitfall in 

studies of reward-based decision making.

The dorsal anterior cingulate cortex (dACC) currently stands out as one of the most 

extensively studied regions of the brain, and yet its basic functions are still a matter of 

intensive debate1–7. Historically, functions attributed to this region have included the 

encoding of pain5, surprise3, 8, value9, and level of cognitive demand5, 10, 11, including the 

difficulty posed by conflict between competing choices12–16.

A recent study by Kolling, Behrens, Mars, and Rushworth17 (KBMR) presented a 

significant and intriguing detour from previous approaches to understanding the function of 

this region. The authors echo previous proposals that the dACC is responsive to the value of 

choice options. However, they propose that this is restricted to the value of diverging from 

one’s default behavior in a given context. They suggest that this function has its 

evolutionary roots in the encoding of the overall value of foraging for food in a new patch 
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rather than continuing to engage the current food patch. To test this, they designed a task to 

model foraging decisions. KBMR showed that, in this task, dACC activity was positively 

associated with the value of “foraging” for better rewards and negatively associated with the 

value of “engaging” currently available ones (the default behavior). Their conclusion, that 

dACC is involved in foraging decisions per se, has already had a significant impact on 

theorizing regarding the function of this region1, 18 and has generated several high-profile 

follow-up studies that reach similar conclusions19–21.

In the present work, we challenge KBMR’s interpretation of their findings and present 

strong evidence that dACC’s role in foraging-like decisions is instead connected with 

decision difficulty.

Although it has not been widely remarked, standard theories of foraging imply an intimate 

relationship between foraging and decision difficulty. Figure 1 illustrates the dynamics of 

foraging, focusing on two quantities: the rate of intake within a patch (blue line), and the 

value of foraging, i.e., leaving for another patch (green line). According to optimal foraging 

theory22, 23, 24, the best moment to leave a patch is when these two values coincide. If (like 

KBMR) we view foraging choices as involving comparisons between two values or utilities, 

it appears that the optimal moment to forage is precisely the moment at which the value-

based decision becomes most difficult, that is, the moment at which the values to be 

compared are most similar.

A more careful look at the pattern described above (Fig. 1) forces a reconsideration of 

KBMR’s findings. Note in particular the relationship between foraging value (green) and 

decision difficulty (proximity of green and blue). These two are closely linked: As foraging 

value rises, so does decision difficulty. This correlation raises a serious concern, in 

connection with the theory advanced by KBMR and related work. Specifically, it suggests 

that foraging value and decision difficulty might be confounded in the experiments that 

motivate the theory.

We show here, based on two fMRI experiments, not only that these two factors have been 

confounded in previous studies, but that when they are adequately dissociated, dACC 

activity is found clearly to track choice difficulty rather than foraging value. We begin with 

a replication of the KBMR study, revealing a fundamental problem with the measure of 

choice difficulty used in that study, and introducing a more principled measure based on 

observed choice behavior. In a second experiment, we take advantage of features of the 

KBMR task that distinguish it from standard foraging tasks to deconfound choice difficulty 

from foraging value. When we do this, we obtain precisely the opposite result from the one 

they reported: Anterior cingulate activity in foraging tasks tracks choice difficulty rather 

than foraging value. The set of results we report highlight (1) a fundamental point about the 

structure of foraging-like tasks, and the potential role of dACC in the performance of such 

tasks, and (2) a key methodological consideration in studies of value-based choice.
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Results

In Experiment 1 we scanned 15 human participants while they performed KBMR’s original 

foraging task. Each trial involved two stages of decision-making (Fig. 2a). In Stage 1, the 

participant was offered a pair of potential rewards (the engage set) and a set of six 

alternative possible rewards (the forage set), all presented as abstract symbols designating 

numerical points that could be earned. The participant could choose to proceed directly to 

Stage 2 (engage option) or first swap the current engage pair for a new pair randomly 

selected from the forage set as many times as they wished (forage option). Each swap 

generated a new forage set but incurred a cost (a designated number of lost points, as well as 

a time delay). Choosing to engage advanced the trial to Stage 2, at which time a probability 

was paired with each of the two options in the engage set, a choice was made between the 

two reward-probability pairs, and the chosen reward was received — based on the outcome 

of a random draw — with the corresponding probability.

KBMR reported three key findings from this task. First, in Stage 1 they found a strong bias 

to engage. Second, they found that dACC tracked the degree to which the points offered for 

each option favored the foraging option — that is, increased its relative value (RVforage) as 

compared to the engage option. Third, in Stage 2, they found no prepotent bias between the 

two options (left vs. right), and found that dACC activity increased as the expected value of 

the two engage options became more similar. We replicated all of these findings (Fig. 3a–b; 

Supplementary Fig. 1). KBMR point out that the third finding is consistent with accounts 

that predict that dACC activity should track the difficulty of a given choice4, 14, but argue 

that the second finding cannot be explained in these terms. Critically, they argue that a 

difficulty account of dACC should predict greatest activity when choices to forage and 

engage were equivalent in point value (that is, at RVforage = 0). But this was not so; rather, 

dACC activity continued to increase past this point, as forage value continued to increase. 

KBMR interpreted this as evidence that dACC activity coded the value of the foraging 

option and not choice difficulty. Furthermore, noting the strong overall bias to engage, they 

argued that the default action was to engage and that the association of dACC activity with 

the value of foraging was consistent with a role in encoding the value of the non-default 

action. For Stage 2, they postulated that the unchosen option was prima facie the non-

default, and thus dACC activity increased as its value increased (i.e., it became more similar 

to the chosen one).

KBMR’s task confounds foraging value and choice difficulty

On the surface, KBMR’s evidence for a foraging account of dACC may seem persuasive. 

However they depend upon a problematic assumption, namely that difficulty was greatest 

when the points offered for the two options were most similar (that is, when RVforage was 

closest to zero). The validity of this assumption can be checked against the empirically 

observed choice behavior, by plotting RVforage against the observed frequency of choices to 

forage. If KBMR’s assumption is correct, then the point on the curve at which RVforage 

equals zero should coincide with the point at which the forage and engage options each had 

a 50% likelihood of being selected, the empirical indifference point. It should similarly 

coincide with the point at which decisions take the longest, reflecting a maximum in choice 
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difficulty. For the unbiased choices made in Stage 2, we see that both conditions hold (Fig. 

2c, black curves). However, in Stage 1, neither is the case: KBMR assumed that choice 

difficulty would reach its maximum at RVforage = 0. Our results showed that both the 

empirical indifference point (Fig. 2b, left) and the point of longest response times (RTs) 

(Fig. 2b, right) aligned at a similar RVforage value, but that this point was substantially to the 

right of RVforage = 0.

Given these observations, a more appropriate measure of choice difficulty would adjust the 

inferred value of the options such that RVforage is shifted to the right, and centered on each 

participant’s empirical indifference point. To identify these empirical indifference points we 

fit a standard model of decision making4, 25–29 to each participant’s choice and RT data (red 

curves in Fig. 2b–c; see Methods and Supplementary Fig. 2). The best fit of the model to 

these behavioral data required setting the indifference point, on average, at RVforage = 1.65, 

significantly to the right of 0 (SE = 0.26, t(14) = 6.5, p = 1.4 × 10−5; Fig. 2b), and consistent 

with the observed bias to engage. We use each participant’s estimated shift from this zero-

point to generate estimates of relative foraging value that better match their empirical choice 

behavior. We refer to this corrected estimate as RVforage-C.

While these analyses reveal a problem with KBMR’s index of difficulty, they also uncover a 

more serious concern: When a more appropriate index of difficulty is applied (based on 

RVforage-C), it becomes evident that KBMR’s experimental design confounded foraging 

value and choice difficulty (Fig. 4a). To see this, consider the range of foraging choices used 

in their study. As shown in Figure 2b, this range is reasonably evenly distributed around the 

zero point for RVforage, but not for RVforage-C. Critically, the vast majority of choices fell to 

the left or near participants’ actual choice indifference points, resulting in a high correlation 

between foraging value and an estimate of value similarity (choice difficulty) based on the 

absolute magnitude of RVforage-C (−|RVforage-C|; average Spearman’s ρ = 0.80, t(14) = 14.1, 

p = 1.2 × 10−9). Accordingly, when we regress BOLD activity on this measure of difficulty 

that accords more directly with observed behavior, we identify the same regions of dACC as 

KBMR found to track foraging value in Stage 1 and the value of the non-default (i.e., 

unchosen) option in Stage 2 (Fig. 3c and 5a–b).

Difficulty explains dACC activity better than forage value

KBMR’s original analyses thus appear both to incorrectly model choice difficulty, and to 

confound it with foraging value. As suggested above, the latter is a consequence of the range 

of choices tested in their study. Critically, in this range both interpretations of the findings 

— in terms of foraging or difficulty — make the same prediction: activity of dACC should 

increase as the value of foraging increases and the pair of options approaches the 

indifference point (Fig. 4a). However, the two theories make different predictions as the 

value of foraging increases further, and begins to strongly favor selection of that option. The 

foraging theory predicts that dACC activity should continue to increase (or perhaps 

asymptote) in this range, as foraging continues to increase in value. In contrast, a difficulty-

based account predicts that dACC should decrease past the indifference point, as the value 

of foraging more decisively exceeds that of engagement and thus choices become easier. In 

other words, the foraging account predicts a monotonic relationship between foraging value 
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and dACC activity, whereas the difficulty account predicts a non-monotonic relationship, 

with activity maximal at the point of indifference and dropping off as one option or the other 

becomes more clearly preferred and choices for that option are correspondingly more 

probable.

Experiment 2 (N=14) tested these predictions. We used a modified version of KBMR’s task 

that maintained an engage bias (Mindifference_point = 5.0, SE = 1.3, t(13) = 3.9, p = 0.0018; 

see also Supplementary Fig. 1) but included choice sets that spanned a wider range, from 

ones that strongly favored the engage option to others that strongly favored the forage option 

(Fig. 4a–b; see Methods). When testing a range of foraging values comparable to 

Experiment 1, we again find a linear relationship between foraging value and dACC activity 

(Supplementary Fig. 3). However, as we test value ranges that increasingly favor the forage 

option (using a sliding windowed analysis) we see that dACC’s relationship with foraging 

value becomes less positive and then reverses such that, at the upper end of foraging values, 

dACC has a significant negative correlation with foraging value (see also Supplementary 

Fig. 8). The results of Experiment 2 thus clearly demonstrated a non-monotonic relationship 

between foraging value and dACC activity, whereby activity was least when the choice 

options strongly favored either engaging or foraging, and greatest when they were 

equiprobable (Fig. 5c). Furthermore, as in Experiment 1, we found that choice difficulty 

explained dACC activity at both stages of the task (Fig. 5d). Finally, because choice 

difficulty and foraging value were orthogonal in this task (Mρ = 0.07, t(13) = 0.8, p = 0.45), 

we were also able to directly compare the ability of each to predict dACC activity. We did 

so by entering them into the same general linear model, and found a significant effect of 

difficulty (t(13) = 2.8, p = 0.014) but not foraging value (t(13) = 0.47, p = 0.64) 

(Supplementary Fig. 4a). Two additional tests confirmed that dACC activity in this study 

was in fact better accounted for by difficulty than foraging value. First, a direct contrast of 

the regressors in the aforementioned GLM showed a significantly greater average parameter 

estimate for difficulty than foraging value (paired t(13) = 2.2, p = 0.046; see also 

Supplementary Fig. 4b). Second, we performed a Bayesian model comparison over the 

separate GLMs that accounted only for foraging value or only for choice difficulty, and 

found that the difficulty model was favored across dACC (Supplementary Fig. 4c), 

including within our a priori ROI (Supplementary Fig. 4d). These findings weigh heavily in 

favor of choice difficulty and against foraging value as an account of responses in dACC.

In keeping with analyses performed in KBMR’s study, the analyses above assume that 

choice difficulty is a simple linear function of value similarity. Further analyses show that 

our findings hold for alternate formulations of difficulty that instead focus on the relative 

likelihood of choosing one option or another, based on either the decision model described 

above (the drift diffusion model25; Supplementary Fig. 5b), or a simpler model of the 

decision process (i.e., a logistic regression; Supplementary Fig. 5c). These measures of 

difficulty have the benefit of accounting for nonlinearities in choice behavior (Fig. 2b–c and 

4b), including the tendency for choice probabilities to asymptote beyond a certain point on 

the relative value scale. Of course, it is worth noting that similar activations are found when 

simply regressing dACC activity on RT, which is assumed to provide a “model-free” 

estimate of difficulty for two-alternate forced-choice tasks like this one. However, because 
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RT is a noisy estimate of difficulty we tested for and found a significant contribution of our 

earlier model-based estimate of difficulty (−|RVforage-C|) to dACC activity even after 

removing variance accounted for by RT (tExp1(14) = 4.0, p = 0.0013, tExp2(13) = 2.4, p = 

0.034). Thus, despite the close relationship between choice difficulty and RT on this task (as 

in many), we were still able to rule out a simple “time-on-task” (i.e., purely RT-based30, 31) 

account of the choice difficulty effects we observed in dACC.

Consistent with the inherent relationship between foraging value and choice difficulty in 

standard foraging settings (Fig. 1), the potential for confounding these two variables lurks in 

any study that attempts to link dACC to foraging/non-default valuation. This appears to be 

the case for three prominent neuroimaging studies that have been argued to support 

KBMR’s foraging account. Mobbs and colleagues21 had participants perform an analog to a 

dynamic patch-leaving task, and showed that dACC activity increased as conditions favored 

leaving the patch (more competition and/or less reward for current resources) and decreased 

as conditions favored staying. As illustrated in Figure 1, to the extent that participant 

behavior in any way approximated optimal foraging, dACC activity was simultaneously 

indexing choice difficulty. Two additional studies – one by Boorman and colleagues19, the 

other a more recent study from Kolling and colleagues20 – employed tasks that shared 

properties with KBMR’s. In both studies, participants made risky choices partly based on 

explicit values manipulated by the experimenter and partly based on an inherent bias toward 

the safest (most probable) of the outcomes available. Again their key analyses show that 

dACC activity increased with the value of the non-default option (or conversely decreased 

with the value of the default). We simulated choices in both of these contexts, including 

approximations to all relevant decision-making parameters (including bias), and found that 

choice difficulty increased under the relevant conditions in which these experiments found 

increasing dACC activity (Methods 6; Supplementary Figs. 6 and 7).

Taken together with our neuroimaging findings, these analyses make clear the importance of 

properly estimating choice difficulty in studies of reward-based choice. Of course, difficulty 

is not the only domain-general decision parameter that needs to be accounted for when 

attempting to relate dACC activity to valuation in in the context of decision-making. We 

describe additional factors that may have contributed to the foraging value findings in 

KBMR and some subsequent work in Supplementary Figs. 7–9. For instance, in KBMR’s 

data we found foraging value to be correlated with the degree of surprise participants might 

have experienced when encountering their option set (based on past experience), and found 

that this surprise signal correlated with activity in a rostral region of dACC in both of our 

experiments (Methods 7; Supplementary Fig. 9), consistent with previous context-general 

accounts2, 3, 8, 32–35. We also highlight potential concerns arising from ROI selection36, as 

well as some fundamental inconsistencies in the predictions made by foraging accounts 

across the relevant papers (Supplementary Figs. 7–8). All in all, when considered alongside 

our findings on decision difficulty, these additional considerations only further undermine 

the theoretical conclusions of the papers in question.
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Discussion

KBMR’s foraging account of dACC predicts that the region tracks the value of the current 

non-default option (e.g., switching to a new patch or performing a different task), 

irrespective of and potentially obviating any role the dACC has in tracking choice difficulty. 

We have provided strong evidence that refutes this prediction, showing instead that dACC 

responds to foraging value only to the extent that it offers a proxy for choice difficulty. This 

conclusion resonates with two closely related theories of dACC function, which focus 

respectively on conflict monitoring and value comparison. Conflict monitoring 

accounts14, 15 predict that dACC should track one’s level of indifference in a decision-

making task because higher-indifference trials require the allocation of greater control, and 

may be aversive for the same reason. The value comparator account4 similarly predicts 

greater dACC involvement on more difficult choice trials, but instead because this region is 

assumed to be directly involved in the process of comparing the values of one’s options 

(using an accumulator model similar to the one used to model the present data). We do not 

purport to adjudicate between these two accounts with the current data, and note that doing 

so may in general be difficult, as the two make a number of overlapping predictions (see 

Refs. 4, 14, 37).

Both conflict and value comparator theories share in common the assumption that dACC’s 

role in decision-making and/or cognitive control is general rather than specific to a particular 

decision-making context. One implication of our findings is therefore to argue against a 

specific role for dACC in foraging-like decisions. Rather, to the extent that dACC is 

responsive to a “non-default” option, our results are consistent with previous theories which 

propose that this reflects its role in engaging the control processes needed to override the 

(typically more automatic) default option. We recently described an integrative theory of 

dACC function, which proposed that the dACC is responsible for estimating the expected 

value of control-demanding behaviors and selecting which to execute (EVC theory2). Like 

KBMR, this theory predicts that dACC activity should track the expected reward for 

engaging in non-default behavior, inasmuch as these can be considered to be control-

demanding. However, the EVC theory specifies that determining the expected value of a 

controlled behavior also requires estimating the demands for control as well as the costs of 

control itself. Both of these quantities should correlate with choice difficulty, whereas the 

value of the outcome (i.e., the expected reward) can in principle be dissociated from 

difficulty (as in Exp 2). As we have shown, KBMR’s findings provide evidence only for 

dACC’s role in encoding the costly or demanding nature of control (or the extent of 

comparison necessary for difficult choices), and not its value per se.

The present work also illustrates how a widely used quantitative model of decision making 

can provide an estimate of choice difficulty in the presence of strong biases toward one 

option (or one attribute19) — a situation that otherwise risks confounding difficulty and 

value. In such cases, there is guaranteed to be a range of values for which the relative value 

of the less favored (i.e., non-default) option appears to be positive and increasing, 

simultaneous with the difficulty of the decision. (As discussed in the Introduction, the 

extreme case of this is represented by optimal behavior in a classic patch-leaving foraging 

task.) The degree to which this range of options dominates in a given study can be evaluated 
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qualitatively by comparing relative value and RT distributions (in KBMR’s study these 

showed a strong positive relationship; Fig. 2b). Extracting this information from RTs further 

requires that the subject respond immediately upon reaching a decision (non-default 

valuation studies, as with many other neuroimaging studies, typically forbid responses 

within an initial window of approximately 2–4s17, 19, 20). More generally, our findings 

highlight the risks of estimating choice difficulty in value-based decision tasks based on 

objective value (e.g., points), without taking account of behavioral data (i.e., choice and RT 

distributions). Here as well, the use of a formal model quantitatively fit to the behavioral 

data can be helpful.

In summary, our study corroborates the importance of dACC in foraging decisions, but not 

for the reasons reported by KBMR. Rather than reflecting the value of the foraging option 

itself, their findings and ours suggest that dACC activity can be most parsimoniously and 

accurately interpreted as reflecting choice difficulty or a correlate thereof (such as total 

evidence accumulated), as has been observed in a large number of other contexts. 

Importantly, in a changing environment, indifference may mark the optimal point of 

transition between default and foraging behavior, and thus explain its engagement in the 

context of the task introduced by KBMR. These observations should help unite the large 

existing literature on dACC function with the more recent one that has begun to emerge 

concerning its involvement in foraging decisions.

Online Methods

1. Participants

Healthy right-handed individuals were recruited to participate in a neuroimaging study 

involving choices and rewards. 15 individuals completed Experiment 1 (9 female; Mage = 

23.5, SDage = 4.1) and 14 independent individuals completed Experiment 2 (8 female; Mage 

= 20.6, SDage = 2.4). Additional participants were excluded a priori for excessive head 

movement (1), incomplete sessions (4), misunderstanding instructions (assessed during a 

structured post-experiment interview; 2), or not meeting KBMR’s criterion of foraging on at 

least eight trials (6). Of the 14 included participants in Exp 2, we excluded one of three trial 

blocks for one participant who reported falling asleep during that block. No statistical tests 

were used to pre-determine sample sizes but our sample sizes are within the standard range 

in the field. Participants provided informed consent in accordance with policies of the 

Princeton University institutional review board.

2. Procedure

Experiment 1 followed the procedure described by KBMR17 (Fig. 2a). Briefly, participants 

learned fixed reward values associated with 12 abstract symbols. Participants then 

performed a decision task that proceeded in two stages. In Stage 1, the participant chose 

whether to engage a pair of symbols offered or to forage for a better pair from a set of six 

other symbols also shown. Each time they chose to forage, the current engage pair was 

swapped out for a random pair from the forage set. Foraging came with an explicit search 

cost that was indicated at the start of Stage 2 by a colored box surrounding the search set, 

and feedback regarding this cost was provided within the delay period that was also incurred 
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when choosing to forage. Search costs were associated with point losses of varying (but 

known) magnitudes, and were incurred on 70% of forage choices; the remaining forage 

choices were associated with no point loss. Once the participant chose to engage the offered 

pair (and no longer forage, or not to forage in the first place), they proceeded to Stage 2. In 

Stage 2, each of the two symbols was independently and randomly assigned an explicit 

probability of success (range: 20–90%) and the participant chose which of the two symbol-

probability pairs (gambles) they would like to play. If the gamble chosen was successful, the 

participant received the full reward value associated with that symbol. Participants were 

given feedback both after each forage choice (regarding whether they incurred the search 

cost) and after making their Stage 2 choice (regarding the success of both the chosen and 

unchosen options). Rewards received were tallied by a progress bar shown at the bottom of 

the screen; each time this bar filled to a goal line, the participant received $1.00 and the bar 

restarted.

Jittered Poisson-distributed intertrial intervals (ITIs) were added between choosing to forage 

and receiving feedback regarding whether the search cost was incurred on that trial (range: 

2–6s; M = 3.0s); between foraging feedback (1–2s duration) and the next Stage 1 choice set 

for that trial (range: 2–4.5s; M = 2.7s); between choosing to engage and being shown the 

engage probabilities (range: 3–8s; M = 4.5s); between making a Stage 2 choice and being 

given feedback (range: 3–8s; M = 4.5s); and between Stage 2 feedback and beginning Stage 

1 of the next trial (range: 2–4.5s; M = 2.7s).

Relative to KBMR’s experiment, our procedure only differed in that participants in our 

study were able to submit a response as soon as they were provided with the relevant 

information at a given stage. KBMR, by contrast, included a jittered “monitor phase” at the 

start of each stage that prevented participants from responding for 2–4s at the start of Stage 

1 and 1–4s at the start of Stage 2, resulting in truncated RT distributions that preclude 

modeling with the drift diffusion model (DDM; see section 4.2). In order to maintain similar 

overall timing, we buffered ITIs immediately following Stage 1 and Stage 2 responses by an 

additional 2.7s or 1.8s (the average length of the respective monitor phases) minus the RT 

on that trial (i.e., any extra time that would have been captured by the monitor phase during 

the response period was instead added to the ITI, without the participants’ knowledge).

As in the original experiment, Exp 1 included 135 trials, broken up into 2 blocks, and the 6 

forage and 2 engage values presented at the start of each trial were drawn at random, without 

replacement, from a uniform distribution of the 12 total symbol values. This necessarily 

resulted in an over-representation of trials in which the average forage and engage values 

were similar, relative to those in which forage values were much higher or much lower than 

engage values. In order to explore the distribution of relative forage values more fully, 

particularly those trials in which the relative value of foraging exceeded the individual’s 

subjective indifference point, Exp 2 made a number of modifications.

First, we used a much wider distribution of potential reward values (69 rather than 12). In 

order to accomplish this without imposing excess memory load on our participants, we used 

explicit numeric reward values (2–70) during the task rather than abstract symbols, and all 

explicit reward values were scaled down by a factor of 10 relative to Exp 1 (where the range 
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shown was 20–130 points). These scaled-down numeric values mapped onto similar 

monetary reward values as in Exp 1 (e.g, the point value ‘100’ in Exp 1 was associated with 

similar monetary reward as the point value ‘10’ in Exp 2) – we therefore apply this constant 

scaling factor to Exp 1 values during modeling to allow more direct comparison between the 

studies. Search costs were also indicated numerically rather than with the color of the search 

box. Furthermore, rather than uniform random sampling of forage and engage values on 

each trial, forage and engage values were preselected across trials so as to uniformly sample 

a range of relative forage values. Specifically, for each session we randomly sampled sets of 

forage and engage values until we found ten within each of twenty relative forage value 

ranges (where relative foraging value is defined as the difference between the average of the 

initial foraging set and the average of the pair of initial engage options) evenly spaced 

between approximately −29 and 56. This resulted in a total of 200 trials, performed across 3 

task blocks. An asymmetric value range was used to account for the strong baseline bias to 

engage observed in the original task. Trial order was randomized and, aside from this initial 

arrangement of Stage 1 values, all other sampling of values (e.g., forage/engage options after 

choosing to forage, probabilities in Stage 2) proceeded as in Exp 1.

In order to slightly shorten and reduce the complexity of the individual trials, Exp 2 also 

used deterministic search costs rather than including a possibility that the search cost would 

not be incurred. As a result, the feedback portion of the forage delay was removed and the 

ITI between choosing to forage and receiving the next forage/engage options was set to a 

range of 2.3–7s (M = 3.0). The range of search costs used was otherwise the same as in Exp 

1 (appropriately scaled, as described above). In spite of these differences, behavior was 

qualitatively similar in the two studies (see Supplementary Fig. 1). While average Stage 1 

RTs were faster in Exp 2 (two-sample t(27) = −2.3, two-tailed p = 0.030), possibly owing to 

the larger number of trials and/or numeric rather than symbolic reward (reducing the need 

for episodic memory retrieval), the average range of RTs was similar (t(27) = 0.71, p = 

0.48), as was the pattern of regression estimates for relevant decision variables for both task 

stages. While Exp 2 participants also exhibited a smaller overall bias, individual difference 

analyses performed by KBMR (see also ref. 20) indicate that their account predicts that these 

participants should if anything encode foraging value more strongly (i.e., exhibit a stronger 

“readiness” to forage) than participants in Exp 1 (see legends to Supplementary Figs. 1 and 

7).

Stimulus presentation and response acquisition was performed using Matlab (MathWorks) 

with the Psychophysics Toolbox38. Participants responded with MR-compatible response 

keypads.

3. Image acquisition

Scanning was performed on a Siemens Allegra 3T MR system. Following KBMR, we used 

the following sequence parameters for volumes acquired during task performance: 3mm3 

isotropic voxels, repetition time (TR) = 3.0s, echo time (TE) = 30ms, flip angle (FA) = 87°, 

43 slices, with slice orientation tilted 15° relative to the AC/PC plane. At the start of the 

imaging session, a high-resolution structural volume (MPRAGE) was also collected, with 
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the following sequence parameters: 2mm × 1mm × 1mm voxels, TR = 2.5s, TE = 4.38ms, 

FA = 8°.

4. Behavioral analysis

4.1. Relative value—We first estimated the relative value of the options at each stage 

(Stage 1: forage vs. engage, Stage 2: left vs. right). These values were used as regressors to 

identify regions that tracked relative value (and/or its absolute value) and, crucially, were 

also used as proxies for drift rate when modeling choices with the DDM (see the following 

section).

For Stage 2, determining relative value simply involved comparing the expected values 

(reward magnitude × probability) of the two options, as in the original paper. For Stage 1 we 

used KBMR’s primary measure of relative foraging value, which they refer to as search 

evidence (see their Eqs. S2–S5, reproduced as Eq. 1 below). Determining this quantity, 

involved comparing the average value of the engage pair (consisting of reward values R1 

and R2, whose exact probabilities P1 and P2, each 55% in expectation, will be revealed in 

Stage 2), weighted by the ratio of the two values (in order to account for a possible 

preference for easier Stage 2 choices), to the average over all n possible pairs drawn from 

the current forage set (similarly weighted):

(1)

where Voffer = 0.55 * (w1 * R1 + w2 * R2), , and w2 = 1 − w1

Note that RVforage omits the explicit cost of foraging on any given trial. In KBMR’s study 

this factor was instead included as a separate regressor in their imaging analyses, so we have 

done the same to remain consistent with their approach. However, we note that additional 

analyses (not shown here) confirm that all of our findings are robust to including this cost in 

RVforage, as estimated above. They are also robust to replacing the RVforage equation above 

with one that makes no assumptions about offer weighting and simply subtracts the average 

value of engaging and the forage cost from the average value of foraging.

Following the original paper, we also performed a logistic regression to predict forage 

choices based on the minimum/maximum of the engage set, the search cost, and the 

minimum/mean/maximum of the forage set, including an intercept term. This intercept term 

was significantly biased toward engaging in both experiments (Supplementary Fig. 1a), 

consistent both with the previous results and with our finding that these explicit reward 

values alone fail to fully describe the inputs to the decision process. We also use this logistic 

regression to generate a more “model-free” estimate of choice difficulty, relative to the 

DDM (see Supplementary Fig. 5c). We do this by generating the log-odds of choosing to 

forage vs. engage on each trial based on the choice values (the ones entered into the logistic 

regression), and the best-fit regression weights (including the intercept). Choice difficulty 

was defined as the negative absolute value of this log-odds term.
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4.2. Modeling behavior—In order to identify individual subjective indifference points 

(i.e., the points at which choices were most difficult) at each stage of the task, we fit 

behavioral data (choices and RTs) with the DDM25. The model represents the decision 

process as a particle drifting towards one of two decision boundaries (e.g., forage vs. 

engage) with a drift rate that determines how much faster it moves towards one or the other 

(before some amount of Gaussian noise is additionally inserted into the process). The DDM, 

and variants thereof, have been shown to provide a reasonable approximation for value-

based decision processes such as in the foraging task4, 26–29, with the value of one option 

relative to another typically being treated as a proxy for drift rate. Notably, this model is at 

the heart of the value comparator account of dACC function4, which suggests that dACC 

activity should reflect the accumulated activity in the DDM over time. As KBMR point out 

when attempting to rule out both accounts, conflict and comparator theories both predict that 

dACC activity should be greatest when choices are most difficult. Using the DDM to 

identify when choices were most difficult therefore allows us to respond most directly to 

KBMR’s presumed lack of support for this prediction.

We used relative value at each stage (as defined above) to generate distributions of predicted 

choice probabilities and RTs, which were then fit to the data. We used the five-parameter 

version of the DDM; of these, we fixed the starting point of the decision process (0.0) but 

allowed the coefficient on decision noise, decision threshold, non-decision time, and value 

scaling factor (d below) to vary by participant and decision stage. Crucially we also included 

an offset term (c below) that was added to all relative values within a given stage when they 

were translated into drift rates. The equation for drift rate was therefore as follows:

(2)

where the presumed relative value (RV) for a given choice is modified by the offset tem (c; 

this can also be thought of as a “latent cost”) and the scaling factor (d).

This allowed the distribution of drift rates to shift relative to the assumed distribution of 

relative values. In practical terms, if the assumed relative values were missing an additional 

fixed value (e.g. a subjective cost or bonus for foraging that was not expressed in the explicit 

values shown), this term would absorb that value by shifting the subjective indifference 

point accordingly. Like all other free DDM parameters described above, this offset term was 

allowed to vary by participant and trial stage.

We generated predicted choice probabilities and average RTs (threshold-crossing times) for 

a given set of parameters based on an analytical solution to the DDM (see appendix to 

ref. 26). We fit the predictions of the DDM to our data in order to identify the participant and 

trial phase-specific DDM parameters that minimized a combination of (a) the negative log 

likelihood of our choice data and (b) the sum of the squared error for our RT data (after log-

transforming both the actual and expected RTs). We optimized these model fits using a 

version of the fminsearch function in Matlab that implements bounded parameter ranges.

RVforage-C was generated by combining the original values of RVforage with the best-fit 

offset term (c) for that individual and choice stage. Our primary measure of choice difficulty 
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was the negative absolute value of these corrected values of RVforage (−|RVforage-C|). Note 

that this measure implicitly assumes that the hidden cost estimated by our offset parameter 

was in a similar value currency as the explicit values that went into RVforage. However, we 

also used the DDM to generate an alternative measure of choice difficulty that was agnostic 

on this front (Supplementary Fig. 5b). Similar to the approach described above for our 

logistic regression analysis, we used the best-fit parameters for each participant to determine 

the predicted likelihood of choosing one option rather than the other on each trial (i.e., 

likelihood of choosing to forage rather than engage in Stage 1, likelihood of choosing the 

option on the right rather than the left in Stage 2). We then defined choice difficulty with 

respect to the absolute distance between the predicted choice likelihood and indifference 

(i.e., 50%) for that decision, with indifference being considered the point where choices 

were most difficult.

5. fMRI analysis

Imaging data were analyzed in SPM8 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK). Functional volumes were motion corrected, 

normalized to a standardized (MNI) template (including resampling to 2mm isotropic 

voxels), spatially smoothed with a Gaussian kernel (5mm FWHM), and high-pass filtered 

(0.01 Hz cut-off). Separate regressors were included for the Stage 1 and Stage 2 decision 

phases, as well as for the feedback associated with foraging (only in Exp 1) and with Stage 2 

choices. These regressors were all modeled as stick functions and the two decision phases 

were further modulated by parametric regressors (as described below).

We ran the following variations on this whole-brain GLM; unless otherwise noted, similar 

regressors were included for both stages of the task (for stage 1, we use relative value to 

refer to the value of forage versus engage; for stage 2, we refer to the value of the chosen 

versus unchosen option):

1. Parametric regressors for linear effects of relative value (RV) (Figs. 3a and 5c).

2. Parametric regressors for explicit value similarity (−|RVuncorrected|) (Fig. 3b).

3. Parametric regressors for choice difficulty (−|RVcorrected|) (Figs. 3c and 5d; see also 

variants in Supplementary Fig. 5).

4. Parametric regressors for RV and choice difficulty (Supplementary Fig. 4a–b).

5. Parametric regressors for linear and quadratic factors of RV (Fig. 5c inset).

6. Parametric regressors for RT and choice difficulty.

7. Parametric regressors for RV by choice at Stage 1 (forage vs. engage; 

Supplementary Fig. 8).

8. Separate event regressors for each of six (Exp 1) or eight (Exp 2) binned quantiles 

of relative value in Stage 1 and (in a separate GLM) the same for choice difficulty. 

Additional bins were used for Exp 2 because of the larger number of trials and 

wider range of relative values tested.
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For all GLMs above, Stage 2 outcomes and (when appropriate) Stage 1 outcomes were each 

modeled with an additional regressor. GLM #8 also included an event regressor for the onset 

of Stage 2 decisions, without additional parametric modulators. Also, in order to test for 

relative variance captured in a simultaneous regression, the default serial orthogonalization 

procedure in SPM was turned off for parametric regressors in GLMs #1–4, and these GLMs 

also included an additional regressor for the explicit forage cost on each trial (see Section 4 

above). Conversely, to provide a strong test against a pure time-on-task account, GLM #6 

did implement serial orthogonalization (i.e., tested for an effect of choice difficulty after 

removing variance accounted for by RT). For display purposes, all whole-brain t-statistic 

maps are shown at a voxelwise uncorrected threshold of p < 0.01 (corresponding to the z > 

2.3 criterion used in KBMR’s study).

We used GLM #1 and #3 for our Bayesian model comparison of choice difficulty versus 

foraging value in Exp 2. Since we were comparing the two accounts for dACC’s role in 

foraging choices specifically, these GLMs were modified only to exclude parametric 

modulators from Stage 2. To perform these model comparisons, we first employed SPM’s 

Bayesian equivalent of the first-level analyses described above39, which produced within-

participant log-evidence maps for each GLM. These log-evidence maps were aggregated 

into a formal Bayesian model comparison at the group level with a random-effects 

analysis40 that produced voxel-wise estimates of exceedance probability for each of the 

models being compared. An additional Bayesian model comparison related the difficulty 

and foraging value models to a “baseline” model in which all of the relevant task events 

were modeled with indicator functions (as with all of our GLMs) but no additional 

parametric modulators were included.

For our sliding window analysis of foraging value (Supplementary Fig. 3), we used a variant 

of GLM #1 whereby only a certain subset of trials was modulated by the foraging value 

parameter. This subset was determined by rank-ordering trials by foraging value, and 

selecting those that fell within a certain percentile range window (e.g, 0th–50th percentiles). 

All foraging trials outside this window were modeled with a single indicator variable and no 

parametric modulation. We performed two sets of windowed analyses, one using windows 

of 70% per GLM, the other using windows of 50% per GLM. Consecutive windows were 

shifted by 10 percentiles, resulting in 86% and 80% overlap between consecutive windows 

in the respective analyses.

Our critical analyses (particularly in Exp 2) relied on a region-of-interest (ROI) approach. 

We extracted beta estimates from a sphere (9mm diameter) drawn around peak dACC 

coordinates from the relative foraging value contrast (from GLM #1 above; Fig 3A; MNI 

coordinates [x,y,z]: 4, 32, 42). While this results in a circular analysis for Fig. 5a (which is 

shown for visual comparison to the patterns of difficulty-related activity in Fig. 5b), we 

chose these coordinates to provide the strongest bias in our Exp 2 analyses of relative value 

(Fig. 5c and Supplementary Figs. 3, 4 and 8) in favor of detecting the same linear pattern of 

activity as in Exp 1. This ROI is used for all other dACC ROI analyses described in the 

paper, with the exception of the forage choice analyses shown in Supplementary Fig. 8e 

(right panel). For this analysis, an ROI was drawn around the peak dACC coordinates from 

Exp 2’s sliding analysis of foraging value (Supplementary Fig. 3b) focusing on the 20th–70th 
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percentile window, which showed the strongest linear foraging value effect across the two 

windowed analyses (coordinates: 6, 28, 34). Unless otherwise indicated, statistical 

inferences for these ROI analyses was performed with two-tailed one-sample t-tests.

6. Simulating the role of choice difficulty in more recent studies of dACC and non-default 
value

A few studies have attempted to provide supporting evidence for dACC’s role in non-default 

valuation since KBMR’s study was published. In particular, Boorman et al. (2013)19 and 

Kolling et al. (2014)20 engaged participants in different kinds of risky choice settings and 

exploited their default risk aversion in order to explore dACC responses to the increasing 

relative value of a non-default (riskier) option (see figure legends to Supplementary Figs. 6 

and 7). We examined the possibility that choice difficulty might account for their relevant 

findings. To this end, we simulated sets of agents to make decisions in each of these choice 

contexts. These simulated decision-makers simply made choices based on a set of decision 

parameters (including decision noise) that were passed through a binary logistic (Kolling et 

al.) or trinary softmax (Boorman et al.) function, which simultaneously served to provide us 

with the relative probabilities of each of the choices. These choice probabilities were used to 

estimate choice difficulty, based either on the proximity to indifference (50%) for the binary 

choices, or the Shannon’s entropy of the choice probabilities for the trinary choices. 

Depending on the relevant set of dACC results, we either show the average choice difficulty 

for different conditions (Supplementary Fig. 7b, left) or show the beta estimates resulting 

from regressing choice difficulty on a relevant decision variable (Supplementary Figs. 6, 

bottom, and 7b, middle and right).

Decision parameters and trial values were chosen to produce behavioral patterns 

approximating those reported for a given study (Supplementary Figs. 6, top, and 7a left/

right; compare to Fig. 2D in ref. 19 and Figs. 1C/2A in ref. 20, respectively), and in each 

case included a parameter that served to bias choices toward the currently most probable19/

safer20 of the choice options. For simplicity, and without loss of generality, we assumed full 

knowledge of the outcome probabilities on each trial of Boorman et al.’s study, which were 

randomly selected on each trial rather than varying gradually over time. We also note that 

the qualitative patterns of results shown in Supplementary Figs. 6 and 7 were robust to 

variations in decision parameters that provided similar qualitative fits to the observed 

behavior in a given experiment. Collectively, these results comport with the intuition 

(emphasized in the main text) that choosing against a bias becomes easier as more reward is 

offered for the already-biased option and/or as less reward is offered for the alternative (non-

default) option(s). In other words, choice difficulty increases alongside foraging/non-default 

value (within a certain range; see Fig. 1). Additional analyses from ref. 20 are discussed in 

the legend to Supplementary Fig. 7.

7. Foraging value prediction errors

KBMR provide additional support for their foraging value account by showing that dACC 

activity increased with foraging value both when participants chose to engage and when 

they chose to forage (intuitively, though by no means necessarily, including trials that 

strongly favored foraging; see Fig. 2b). As shown in Supplementary Fig. 8, this result did 
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not replicate in our Exp 1 and in fact showed a robust effect in the opposite direction in Exp 

2. It is therefore possible that KBMR’s finding of foraging value signals for both types of 

forage choice was a byproduct of the choice difficulty effect we describe in the main text 

(and/or selection bias; see Supplementary Fig 8d). However, we noted that the skewed 

distribution of RVforage values in the original experiment (Fig. 2b) may have also resulted in 

a greater proportion of unexpected/surprising (and perhaps therefore more salient) choice 

sets at the upper end of the RVforage spectrum. Assuming such surprise occurred particularly 

frequently for trials on which participants chose to forage, it would have made it difficult to 

disentangle foraging value on those trials from surprise (cf. unsigned prediction error) at the 

infrequent configuration of values that would encourage foraging (for related arguments, see 

ref. 41). This fact is particularly relevant given that dACC has been previously associated 

with prediction errors8, 32–35 and interpreted in more basic terms unrelated to foraging value, 

including for the relevance of surprise as a signal of control demands2, 3.

As a coarse measure of the degree to which a given choice set was likely to have generated 

such an unsigned prediction error signal, we simply took the absolute difference of each 

trial’s RVforage from the observed mean RVforage up to that point. We found that this was in 

fact correlated with RVforage in our replication study (Exp 1), conditional on their choice 

whether or not the participant chose to forage on a given trial. In particular, we see a strong 

positive correlation between RVforage and RVforage surprise on the trials where subjects 

chose to forage (Mρ = 0.89, t(14) = 31.4, p = 2.2 × 10−14). This correlation reversed on trials 

where subjects chose to engage (Mρ = −0.54, t(14) = −10.6, p = 4.5 × 10−8). These estimates 

of foraging value prediction error were used to generate the whole-brain analyses shown in 

Supplementary Figure 9.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The role of choice difficulty in a standard foraging setting
In a typical patch-leaving scenario, an animal faces the recurring decision whether to 

continue harvesting a patch with decreasing marginal returns (e.g. fewer ripe fruits; blue 

line) or leave for a new patch. The expected value of switching to a new patch (green line) 

accounts for the expected reward in the new patch, as well as the travel time between 

patches (gray region). An optimally foraging animal will exit the patch at the point where 

blue and green lines meet (dashed horizontal black line), which is also their indifference 

point between these options. Dashed blue and green lines indicate theoretical values of 

staying and switching that an optimally foraging animal typically would not encounter 

(having already departed the patch), but that could theoretically be examined with a task like 

KBMR’s that examines cross-sections through a foraging-like context (see Fig. 2). For 

simplicity, here we assume a situation where the value of each new patch, the (exponential) 

reward decay rate, and the travel time to a new patch remain constant across patches.

Shenhav et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. KBMR’s estimates of value and choice difficulty do not align with behavioral data
a) Schematic of an example trial in KBMR’s task. In Stage 1 (upper panels), participants are 

offered a pair of potential rewards (large numbers). They can choose to forage for a better 

pair of rewards from the set shown at the top of the screen (smaller numbers in the red box), 

in which case a random pair from that set is swapped with the current offer and they incur a 

forage cost (shown at left below red box) and a delay until the new choice is shown. They 

can forage as many times as they prefer (or not at all) before opting to proceed to Stage 2 

(lower panel) and engage in the selected choice. At that point, a probability is randomly 

assigned to each reward (height of violet bar beside each number), and they choose which 

reward-probability pair to attempt. They receive the outcome of this gamble as points that 

accumulate at the bottom of the screen (not shown). While potential rewards were indicated 

numerically in Experiment 2 (as shown here), abstract symbols with learned reward 

associations were used in the original task and Experiment 1. b–c) Choice (left panels) and 

RT data (right panels) from the two stages of Experiment 1 (black curves). Gray bars show 

the histograms of trial frequencies. In Stage 1 (b), both the indifference point in the choice 

curve and the peak in response times exhibit a clear (and comparable) shift to the right of 

RVforage = 0. In contrast, in Stage 2 (c), both the indifference point and RT peak coincide 
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with RVright = 0. Red curves in each figure show the predicted RTs and choice probabilities, 

and corresponding indifference points (vertical dotted lines) based on fits of the decision 

making model (see Methods). We corrected RVforage so that it was centered on this 

empirical indifference point (RVforage-C = 0) and defined choice difficulty as value similarity 

with respect to this corrected measure (−|RVforage-C|; green-red shading). These data further 

show that in Experiment 1, as in KBMR’s study, the indifference point occurs toward the 

higher end of forage values tested, confounding forage value and choice difficulty. For 

display purposes panels b–c (and Fig. 4b) show the result of a fixed-effects model across all 

participants (error bars reflect s.e.m), but all analyses reported in the main text were based 

on individual participant fits. Note also that continuous data were used in all fits but are 

shown here binned. We have also truncated the x-axis to only show RVforage bins with an 

average of five or more trials per participant, but show complete fits in Supplementary Fig. 

2.
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Figure 3. Experiment 1: Choice difficulty accounts for dACC activation in both stages of 
KBMR’s original task
a) Whole-brain contrast for brain regions tracking KBMR’s estimate of the relative value of 

forage vs. engage options in Stage 1 (RVforage) (top), and the chosen vs. unchosen option in 

Stage 2 (bottom). b) Regions tracking the similarity of option values (i.e. −|RVforage|) for the 

same options represented in Panel a. We replicate the finding of significant dACC activity in 

the contrasts shown in the top panel of a and bottom panel of b (indicated with green arrow), 

consistent with the foraging value account. c) However, using an estimate of value similarity 

corrected to align with the behavioral data (i.e., −|RVforage-C| in Stage 1), the same region of 

dACC is found to be associated with choice difficulty in both Stage 1 and Stage 2 (red 

arrows). A conjunction of these two contrasts (shown in the center) indicates a large degree 

of overlap in dACC. Statistical maps in a–c are thresholded at voxelwise p<0.01, extent 

threshold of 200 voxels.
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Figure 4. Experiment 2 de-confounds foraging value and choice difficulty
a) Because of the original confound (Fig. 2b), forage value (green) and choice difficulty 

(red) accounts make similar predictions with respect to dACC activity in Experiment 1 (Fig. 

3). However, Experiment 2 dissociates the two accounts: foraging value predicts that dACC 

should increase monotonically, whereas choice difficulty predicts that dACC should 

decrease as foraging value increases beyond the indifference point (Fig. 5). b) Like 

Experiment 1, behavior and model fits from Experiment 2 exhibited a shift in the 

indifference point in Stage 1 (compare Fig. 2b), but a wider range of choices allowed us to 

de-confound difficulty and RVforage.
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Figure 5. Experiment 2: Choice difficulty but not foraging value accounts for dACC activation 
when a wider range of foraging values is used
a) Average BOLD activity for each of six RVforage quantiles in Experiment 1, taken from a 

dACC region-of-interest (ROI) around peak coordinates from the contrast shown in Fig. 3a, 

top panel. This is provided for visual reference but note that, unlike the remaining panels, 

this analysis is circular because it is intentionally biased toward the dACC region that is 

maximally sensitive to RVforage. b) Given the high correlation between foraging value and 

choice difficulty in Experiment 1, the same pattern of activity is observed when dACC 

activity is binned by choice difficulty (error bars, between-subject s.e.m). c–d) Results from 

Experiment 2, using a wider range of foraging values that orthogonalized this with respect to 
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choice difficulty. Images in panel c show whole-brain contrasts during Stage 1, showing that 

dACC activity exhibits a quadratic but not linear relationship to RVforage; plot in bottom 

panel confirms that, over the fuller range of RVforage values used, dACC exhibits the non-

monotonic pattern of activity predicted by the choice difficulty account (compare Fig. 4a; 

also see Supplementary Figs. 3 and 8). For ease of comparison with contrasts in d, the color 

map for the quadratic contrast is inverted so that negative coefficients (suggesting an 

inverted U-shape) appear in red-yellow. Panel d shows that a whole brain contrast for a 

linear relationship with choice difficulty again identifies dACC, plotted in bottom panel; 

inset shows conjunction with the same contrast for Stage 2. *This contrast is shown at a 

liberal voxelwise threshold of p<0.05, no cluster extent threshold. All other statistical maps 

are shown at voxelwise p<0.01, extent threshold of 200 voxels.
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