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The imbalance between acetylation and deacetylation of histone proteins, important for epigenetic modifications, is closely
associated with various diseases, including cancer. However, knowledge regarding the modification of histones across the
different types of digestive cancers is still lacking. The purpose of this research was to analyze the role of histone acetylation
and deacetylation in pan-digestive cancers. We systematically characterized the molecular alterations and clinical relevance of
13 histone acetyltransferase (HAT) and 18 histone deacetylase (HDAC) genes in five types of digestive cancers, including
esophageal carcinoma, gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Recurrent mutations
and copy number variation (CNV) were extensively found in acetylation-associated genes across pan-digestive cancers.
HDAC9 and KAT6A showed widespread copy number amplification across five pan-digestive cancers, while ESCO2, EP300,
and HDAC10 had prevalent copy number deletions. Accordingly, we found that HAT and HDAC genes correlated with
multiple cancer hallmark-related pathways, especially the histone modification-related pathway, PRC2 complex pathway.
Furthermore, the expression pattern of HAT and HDAC genes stratified patients with clinical benefit in hepatocellular
carcinoma and pancreatic cancer. These results indicated that acetylation acts as a key molecular regulation of pan-digestive
tumor progression.

1. Introduction

Posttranslational modifications (PTMs) are chemical alter-
ations of amino acids that act as regulatory switches that
extend the functional execution of proteins and regulate pro-
tein interactions in cell signaling networks [1]. Histone func-
tion is modulated by PTMs such as ubiquitination and
acetylation, and PTMs have been increasingly observed in
numerous biological processes [2, 3]. Specific mutations in
PTM sites may alter networks and lead to changes in the cel-
lular phenotype that are involved in disease development [4,
5]. Previous studies have shown that abnormalities that
emerge during PTMs can both activate carcinogenic path-
ways and suppress the associated control mechanisms,
resulting in alterations to the transcription of oncogenes

and tumor suppressor genes [6]. More than 100 types of
PTMs have been described to date [7].

As an important form of PTM, protein acetylation is
associated with tumor-related diseases. Acetylation is the
reversible addition of the N-terminal ε-amino group of a
lysine to histones by two families of enzymes, histone acetyl-
transferases (HATs) and histone deacetylases (HDACs).
Hence, abnormal alternations in histone acetylation are asso-
ciated with the silencing of tumor suppressor genes and can-
cer progression [8, 9]. For example, Fraga et al. found that
histone H4 is abnormally altered in human cancer with loss
of acetylation at lysine 16 and an additional alteration at
lysine 20 [10]. In addition, protein acetylation can affect mul-
tiple biological behaviors in eukaryotes, such as transcription
regulation, energy metabolism, stress response, cell signal
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transduction, protein folding and proliferation, and apopto-
sis [11–14]. Wu et al. reported that HMGA2 acetylation
can enhance its binding to the target gene and suppress its
ubiquitination and proteasome degradation, resulting in
HMGA2 accumulation. This in turn promotes the growth
of esophageal squamous cell carcinoma [15]. Previous studies
on histone acetylation in tumors have suggested that this
reverse process is mainly dependent on the activity of HATs
and HDACs. HAT1 is highly expressed in multiple cancers
and is associated with poor patient prognosis. As an induc-
ible gene, HAT1 assists in histone production, acetylation,
and glucose metabolism, enhancing the proliferation of
tumor cells [16].

Digestive cancers were reported the leading cause of
cancer-related death worldwide and have high risks of mor-
bidity [17]. Previously, the role of histone methylation in the
development of digestive cancers was systematically investi-
gated [18]. As another critical form of posttranslational
modifications, protein acetylation was also studied in cancer
development, but much effort was usually focused on single
cancer. Therefore, this study proposes the possibility of com-
prehensively investigating the histone acetylation-associated
genes in pan-digestive tract cancer.

The Cancer Genome Atlas (TCGA) database contains
the largest number of publicly available pan-digestive cancer
samples and serves as a cornerstone for research. To date, 13
classical HATs and 18 HDACs have been documented in the
human proteome [19], each of which is involved to varying
degrees in the key steps of human physiological and patho-
logical processes. However, the role of the HAT and HDAC
gene families in the development of pan-digestive cancers
remains unclear. This study was aimed at analyzing the
functions and mechanisms of the above genes in pan-
digestive cancers to ultimately identify novel treatment tar-
gets. Towards this goal, we analyzed the relationship
between HAT- and HDAC-regulated gene alterations and
explored the clinical prognostic value of HATs and HDACs
(Figure 1).

2. Materials and Methods

2.1. Collection of Multiomics Data of Pan-Digestive Cancer
Samples. The publicly available mutation annotation files
and CNV information of 5 pan-digestive cancer samples
from TCGA were downloaded from the University of Cali-
fornia Santa Cruz (UCSC) Xena browser (https://
xenabrowser.net/datapages/). The expression data of inde-
pendent validation datasets for each cancer type were also
collected from the ArrayExpress database of EMBL-EBI
(https://www.ebi.ac.uk/arrayexpress/) and the Gene Expres-
sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)
database (Table 1).

To further depict the somatic mutations and CNV
features of HAT and HADC genes, cancer cell lines were
retrieved and analyzed. Mutation and CNV data were
obtained from the Cancer Cell Line Encyclopedia (CCLE)
(https://portals.broadinstitute.org/ccle) and the Genomics
of Drug Sensitivity in Cancer (GDSC) (https://www
.cancerrxgene.org/) databases. In total, 199 cell lines

across the five types of cancer were identified from the
CCLE and 298 from the GDSC database. Several datasets
were downloaded from the GEO and the International
Cancer Genome Consortium (ICGC) (https://icgc.org/)
databases for the prognostic analysis of HATs and
HDACs.

2.2. Identification of Differentially Expressed Genes. To iden-
tify differential expression patterns of HAT and HADC
genes, we downloaded raw counts of RNA-seq data for
both tumor and normal samples. Then, the R package
limma was used to identify the differentially expressed
genes. This identification was performed independently
for each digestive cancer type. Genes with log 2 ∣ FC ∣ ≥1
and adjusted p values < 0.05 were identified as differen-
tially expressed genes. The FDR method was applied to
adjust the p value.

2.3. Somatic Mutation and CNV Analysis. Maftools R pack-
age was used for data processing. The mutation frequency in
each gene was calculated by dividing the number of samples
with mutations in the gene by the total number of cancer
samples. Variants that affect protein coding (i.e., nonsynon-
ymous mutations) were retained, including missense, non-
sense, translation start site, in-frame, frameshift, splice site,
and nonstop mutations. We further analyzed CNV alter-
ations of acetylation regulators using the cBioPortal and
applied significant targets in the cancer algorithm (GISTIC
2.0), which was provided by GenePattern (https://cloud
.genepattern.org/gp/pages/index.jsf). The parameters in the
GISTIC method were set at Q ≤ 0:05 for the significance of
alternation and at 0.95 for the confidence level of the peak
interval.

2.4. Correlation Analysis between HAT and HADC Genes
and Oncogenic Pathway Activity. We first calculated the
activity of cancer hallmark pathways. After scaling the
FPKM expression value into a z-score statistic using the R
package zFPKM, we performed gene set variation analysis
(GSVA) to obtain the activity score of each pathway. The
Pearson correlation coefficient (PCC) was used to measure
the associations between the expression of acetylation and
deacetylation genes and the activity score of each pathway.
The ∣PCC ∣ >0:5 with FDR-adjusted p value < 0.01 was con-
sidered the significance threshold.

2.5. Gene Set Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) was performed using the GSEA v2.0 tool
(http://www.broad.mit.edu/gsea/). Before computation, we
converted the mouse gene ID in the expression profile of
the KAT6A knockdown model (GSE108242) into human
homologous genes using R package homologene.

2.6. Survival Analysis of Acetylation and Deacetylation
Genes. To inspect the survival correlation of each acetylation
and deacetylation gene, we divided the samples based on the
mean value of gene expression. Then, the log-rank test was
used to determine the differences between high-expression
and low-expression groups. In addition, the hazard ratio
(HR) and the 95% confidence interval were calculated using

2 Journal of Oncology

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://portals.broadinstitute.org/ccle
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://icgc.org/
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
http://www.broad.mit.edu/gsea/


Figure 1: Flow chart of this research. Here, we analyzed HAT and HDAC gene expressions, CNV patterns, and prognostic relevance of
ESCA, STAD, LIHC, PAAD, and COADREAD samples from TCGA, GDSC, CCLE, and GEO databases.

3Journal of Oncology



the univariate Cox regression. The Kaplan-Meier survival
curves with the log-rank test were performed to determine
the differences among different patient groups. This process
was performed using the survival R package. Statistical sig-
nificance was set at p < 0:05.

3. Results

3.1. Widespread Genetic Alterations of HAT and HDAC
Genes in Pan-Digestive Cancers. Previous studies identified
13 acetylation genes (KAT2A, KAT2B, KAT5, KAT6A,
KAT6B, KAT7, KAT7, ESCO1, ESCO2, HAT1, ATAT1,
CREBBP, and EP300) and 18 deacetylation genes
(HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6,
HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, SIRT1,
SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIR7)
(Figure 2(a)). Similar analyses of the GDSC and CCLE
datasets showed consistent findings with those of TCGA
analysis. That is, CREBBP and EP300 had relatively high
mutation frequencies in the GDSC and CCLE cell lines
(Figures 2(b) and 2(c)). Analysis of the global mutation
frequency of the above genes showed that the frequency
ranged from 0.014 to 0.474 in the five types of pan-
digestive cancers (Figure 2(d)). We found a higher muta-
tion frequency in the acetylated than deacetylated gene
group. In addition, mutation of the acetylated and deace-
tylated gene was likely to be cancer-specific. For example,
KAT6A showed a relatively higher mutation frequency in
pancreatic and gastric cancers, and the majority of the
mutations were missense mutations (Supplementary
Figure 1), whereas CREBBP showed the highest mutation
frequency than other genes in gastric and colorectal
cancers. The difference is that CREBBP enriched different
types of mutations (Supplementary Figure 1).

3.2. The Landscape of CNV Alterations of HATs and HDACs
in Pan-Digestive Cancers. The analysis of the CNV alteration
features for all acetylation and deacetylation genes in TCGA,
GDSC, and CCLE databases showed a high prevalence of
CNV alterations (Figure 3). In the TCGA dataset, HDAC9
and KAT6A showed widespread CN amplification across
all five types of pan-digestive cancers (Figure 3(a)). Similar
conclusions were obtained in the GDSC and CCLE datasets
(Figures 3(b) and 3(c)). Moreover, ESCO2, EP300, and
HDAC10 had prevalent CN deletions in the TCGA dataset.
We also analyzed alternations in the different CNV expres-
sion patterns of these genes and found that the CN amplifi-
cation group had higher expression levels than the CN
deletion group (Supplementary Figure 2), and this was

partially verified in the cell line dataset. Although there
was no significant difference in CNVs between acetylated
and deacetylated genes, acetylation and deacetylation
undoubtedly played important roles in pan-digestive
cancers.

3.3. Differential Expressions of HAT and HDAC Genes. We
further analyzed the differential expression of these genes
between cancer and adjacent normal samples of five pan-
digestive cancer types (Figure 4). The results showed that
KAT2A had accordingly higher expression, whereas KAT2B
had accordingly lower expression in the tumor samples
compared to normal samples of five pan-digestive cancers
from TCGA (Figures 4(a)–4(c)). The differential expression
pattern was in agreement with the copy number status of
the two genes; that is, copy number amplification of KAT2A
and copy number deletion of KAT2B were found in pan-
digestive cancers (Figure 3(a)). Independent validation data-
sets also supported similar expression patterns of the two
genes (Table 1 and Figures 4(d)–4(f)). Notably, the differen-
tial expression pattern was in agreement with the copy num-
ber status of the two genes; that is, copy number
amplification of KAT2A and copy number deletion of
KAT2B were found in pan-digestive cancers (Figure 3(a)).
We also verified the effect of CNV on expression patterns
of these genes and found that the copy number amplification
induced higher expression levels than copy number deletion
(Supplementary Figure 3).

3.4. Oncogenic Pathways Regulated by HAT and HDAC
Genes. To further investigate the molecular mechanisms
involved in the acetylation and deacetylation of genes in
pan-digestive cancers, we examined the correlation between
the expression of individual acetylated and deacetylated
genes, which were involved in the 50 cancer hallmark-
related pathways. We found that the expressions of acety-
lated and deacetylated genes were correlated with the activa-
tion or inhibition of multiple oncogenic pathways (Figure 5).
The expressions of KAT6A, HDAC9, HDAC7, and SIRT5
were positively correlated with multiple pathways, including
HALLMARK_TGF_BETA_SIGNALING and HALL-
MARK_HALLMARK_HEDGEHOG_SIGNALING
(Figure 5(a)). TGF_BETA_SIGNALING belongs to trans-
forming growth factor β (TGF-β), which promotes
epithelial-mesenchymal transition in late-stage cancer by
being highly involved in cell migration [20]. The latter path-
way controls cell fate, proliferation, and differentiation [21,
22]. Abnormal activation of these pathways causes tumori-
genesis. In addition, different HAT and HDAC genes were

Table 1: Validation RNA-seq datasets of pan-digestive cancers.

Cancers No. of normal No. of tumor References

Colon/rectum adenocarcinoma 121 1393 E-MTAB-6698

Stomach adenocarcinoma 46 691 E-MTAB-6693

Liver hepatocellular carcinoma 137 264 E-MTAB-6695

Pancreatic adenocarcinoma 70 108 E-MTAB-6690

Esophageal carcinoma 19 21 GSE26886
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Figure 2: Widespread genetic alterations in HAT and HDAC genes for 5 digestive system cancers. (a) The proportion of HAT and HDAC
genes. (b and c) Mutation frequency distributions of HAT and HDAC genes in samples from the GDSC database and CCLE database,
respectively. Each circus represents one specific cancer type, and bar graphs within the circle indicated the mutation frequency of each
gene. The inner boxplot represented the overall mutation frequency of HAT and HDAC genes in all five digestive cancer types. (d)
Scaled mutation frequency of HAT and HDAC genes in 5 pan-digestive system cancers from TCGA.
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associated with distinct cancer pathway alterations. These
genes also showed heterogeneous effects of histone modifica-
tions (Figure 5(b)).

The analysis of the expression profile (GSE108242)
obtained from the KAT6A gene knockdown model revealed
that the expression of this gene was closely associated with
several cancer hallmark-related pathways (Figure 6(a)).
G2M signal checkpoint pathway (HALLMARK_G2M_
CHECKPOINT) was found upregulated after the knock-
down of KAT6A (Figure 6(b)), whereas the TGF-β signaling
pathway was inhibited after KAT6A knockdown
(Figure 6(c)); this observation was also supported by previ-
ous analysis [23].

Genes do not function in isolation, and previous studies
have shown the collaboration between HAT and HDAC
genes in the context of cancer [1, 24]. Thus, we investigated
the coexpression of the acetylated and deacetylated gene

groups (Figure 7(a)). We found that HAT and HDAC genes
within the same functional class showed highly correlated
expression patterns. For instance, the acetylated gene
CREBBP was significantly correlated with EP300
(r = 0:8043, p = 0). There were also negative correlations
between HAT and HDAC modifications, such as those in
KAT6A and SIRT3 (Figure 7(a), r = −0:6087 and p = 0). Fur-
thermore, we constructed protein-protein interaction net-
works for HATs and HDACs and found that they were
closely correlated (Figure 7(b)).

3.5. Correlation between HAT and HDAC Genes and PRC2
Complex Activity. H3K27me3 is a very important histone
modification that plays an important role in X chromosome
inactivation, embryonic development, and disease progres-
sion by inhibiting gene expression [25–27]. The formation
of H3K27me3 is mediated by the polycomb inhibitor
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Figure 3: CNV alteration landscape of HAT and HDAC genes in 5 digestive system cancers. (a) Frequency of copy number amplification
and deletion of genes across cancer types from TCGA. The gray part indicated no CNV alterations of the genes in the corresponding cancer
type. (b and c) CNV frequency of HAT and HDAC genes in samples from the GDSC database and CCLE database, respectively. Each circus
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complex 2 (PRC2) [28, 29]. We investigated the correlation
between the expression of acetylated and deacetylated genes
and the activity of the PRC2 complex pathway (BIO-
CARTA_PRC2_PATHWAY). The results showed that acet-
ylation was positively correlated with PRC2 pathway
activity, whereas deacetylation was mostly negatively corre-
lated (Figure 7(c)). The other study showed that the dual
suppression of EZH2 and HDAC led to the dissociation of
PRC2, and HDAC 1/2 was positively correlated with PRC2
activity [30], which was also demonstrated by our study.

3.6. Survival Analysis of HAT and HDAC Family Genes. We
further analyzed the correlation between the expression
levels of HAT and HDAC genes and the prognosis across
five pan-digestive cancers. All HAT and HDAC genes were
associated with the overall survival of patients in at least
one cancer. The prognoses of gastric cancer, hepatocellular
carcinoma, pancreatic cancer, and colorectal cancer were
associated with HAT and HDAC genes (Figure 8(a)). We
found that 12 HAT and HDAC genes were highly expressed,
and the upregulation of these genes was associated with a
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Figure 4: Differential expression analysis of HAT and HDAC genes in 5 pan-digestive system cancers. (a) The heat map indicated the fold
changes of HAT and HDAC genes (column) in 5 pan-digestive system cancers (row) compared to adjacent normal samples from TCGA,
with red representing upregulated genes and blue representing downregulated genes in tumor samples. (b and c) Comparison of
expression levels between tumor and normal samples for KAT2A and KAT2B. Significance was assessed by the Wilcoxon rank-sum test.
(d) The same as panel (a) but for independent validation sets (Table 1). (e and f) The same as panels (b and c) but for independent
validation sets. ns: p > 0:05, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:0001.
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better prognosis of hepatocellular carcinoma. Nine genes,
including KAT2A, were highly expressed in pancreatic can-
cer and were associated with poor prognosis. Particularly,
KAT2A was significantly upregulated in all five types of can-
cer (p = 0:028). In addition, high expression of HDAC6 was
associated with a poor prognosis of hepatocellular carci-
noma (p = 0:046) and pancreatic cancer (p = 0:028). The
prognostic role of HDAC6 was further verified in the hepa-
tocellular carcinoma (GSE14520) and pancreatic cancer
(PACA-AU) datasets in GEO and ICGC (Figure 8(b)), and
the findings were consistent with that in the TCGA dataset.

Previous studies indicated that the HAT and HDAC
families were associated with the prognosis of hepatocellular
carcinoma and pancreatic cancer. Thus, we clustered hepa-
tocellular carcinoma and pancreatic cancer samples based
on the integration of HAT and HDAC gene expressions
(Figures 8(c) and 8(e)) and compared the survival differ-
ences between the clusters. The two clusters of patients
showed significant differences in overall survival (log-rank
test p = 0:0098 for pancreatic cancer, Figure 8(d); log-rank
test p < 0:0001 for hepatocellular carcinoma, Figure 8(f)).

Finally, a graphic prognostic nomogram based on the sam-
ple clusters was developed for 0.5-, 1-, 3-, and 5-year predic-
tion of OS. The tumor stage, age, and gender were also
included (Supplementary Figure 4). As a whole, the
expression of histone acetylation genes might help guide
the prognostic status of patients.

4. Discussion

In this study, we comprehensively analyzed multiomics data
on acetylation-associated signatures. According to the previ-
ous analysis, metabolomics, transcriptomics, epigenetics,
and proteomics data were integrated to investigate the role
of the acetylation-related signatures in cancer. Multiomics
data enable us to predict novel functional interactions
between molecular mediators at multiple levels [31, 32].
Additionally, these data can be potentially used to uncover
crucial biological observations into hallmark pathways that
would otherwise not be determined through single-omics
studies [33]. PTM acetylation has recently received wide-
spread attention. Zheng et al. found that HDAC3-mediated
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Figure 5: Oncogenic pathways regulated by the HAT and HDAC genes in pan-digestive system cancers. (a) Network diagram
demonstrating the correlation between HAT and HDAC genes and cancer pathways. Red represents a positive correlation, and blue
represents a negative correlation. The size of the nodes corresponds to the number of links. HDAC group is marked as green color and
HAT group is marked as blue color. (b) The number of pathways is correlated with individual HAT and HDAC genes. The right panel
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deacetylation induces ENO2 activation and glycolysis
enhancement, thus promoting the metastasis of pancreatic
cancer [34]. Pote et al. reported that HAT hMOF promotes
vascular invasion in hepatocellular carcinoma [35]. KAT2A
was highly expressed in pancreatic cancer; its mediated
expression of 14-3-3ζ and β-catenin has been shown to pro-
mote glycolysis, proliferation, epithelial-mesenchymal tran-
sition, and migration in pancreatic cancer cells [36].
However, molecular descriptions of the 13 HAT and 18
HDAC gene signatures in pan-digestive cancer tissues and
cell lines are still lacking. As such, we performed a compre-
hensive analysis of acetylation signatures to provide a useful
resource for future related research.

CNVs are nearly ubiquitous in cancer and markedly
affect the cancer genome as a key type of genomic varia-
tion [37–39]. The CNV landscape of genes varies across
different types of cancer, and specific CNVs are related
to cancer outcomes [40]. Some genes with CN amplifica-
tion, such as KAT2A, are highly expressed. Yin et al.
reported upregulated KAT2A mRNA levels, induced by
the transcription factors c-MYC and E2F1, in colon cancer
[41]. Some genes with CN deletions, such as KAT2B, have
low expression. Particularly, KAT2B was downregulated in
all five cancers as well as in approximately 3000 other can-
cer samples. These findings are consistent with those
reported by Li et al. and Ying et al. They showed that
KAT2B expression was lower in gastric cancer and hepato-
cellular carcinoma tissues than that in adjacent normal tis-
sues [42, 43]. Zhang et al. found that ferroptosis is an
outcome of metabolic disorders and is closely linked to
hepatocellular carcinoma. Importantly, the occurrence of
ferroptosis was possibly dependent on the HAT KAT2B
[44]. The Kaplan-Meier analysis by Li et al. showed that
the downregulation of KAT2B expression was associated
with lower overall survival in hepatocellular carcinoma
[42]. In our analysis, the CN gains of ESCO2 and
HDAC10 were found to be risk factors for colorectal and

pancreatic cancer, respectively. Therefore, CNVs of HAT
and HDAC genes may be used to predict the prognosis
in some cancers.

We evaluated the correlation between the 13 HAT gene
signatures and the expression of 18 HDAC genes and found
that genes within the same functional class showed signifi-
cant cooccurrences of genetic alterations and highly corre-
lated expression patterns. However, there was also a high
correlation between HAT and HDAC modifications. For
instance, the acetylation gene CREBBP was significantly cor-
related with EP300 expression. EP300, also known as p300
and CREBBP, serves as a scaffold that bridges sequence-
specific DNA binding factors and the basal transcriptional
machinery. Further, it facilitates transcription through acet-
ylation of histones, transcription factors, and autoacetylation
[45–47]. Many studies have shown that EP300 and CREBBP
play a major role in promoting cell growth and cell cycle
progression [46]. There are more than 16,000 genes in
human cells that bind to EP300 and CREBBP in the tran-
scriptional regulation process [48, 49]. In response to DNA
damage, EP300 and CREBBP augment the p53-dependent
transcriptional activation of genes required for cell cycle
arrest and DNA repair [50]. However, to the best of our
knowledge, no study investigated the correlation between
the expressions of KAT6A and SIRT3 in cancer, despite their
potential importance in tumorigenesis.

Prognosis prediction is crucial in cancer management
because it can aid in the subsequent clinical treatment of
patients. However, although remarkable improvement has
been achieved in cancer research over the past several
decades, prognostic prediction remains a challenge [39].
Thus, we also attempted to evaluate the impact of HAT gene
signatures on cancer prognosis. The univariate Cox regres-
sion analysis revealed that over half of the examined genes
were associated with prognosis in at least one of the cancers.
High KAT2A expression was associated with a poorer prog-
nosis in pancreatic cancer. A risk score based on the
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Figure 7: Gene expression relations and PPI network among HAT and HDAC genes. (a) Correlation among the expression of HAT and
HDAC genes. The scatter plot shows the correlation between KAT6A and SIRT3. (b) The protein-protein interactions among HAT and
HDAC genes. (c) HAT and HVAC genes are associated with PRC2 complex activity in five pan-digestive system cancers. The lower
triangle represents the correlation between HAT and HDAC genes and the PRC2 complex. The red color represents the positive
correlation and the blue color represents the negative correlation; the upper triangle represents the correlation between HAT and HDAC
genes and PRC2 complex; the dark green represents significant correlations.
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Figure 8: Survival analysis of HAT and HDAC family genes in pan-digestive system cancers. (a) A summary of the correlation between
expression of HAT and HDAC genes and patient survival. Red represents a higher expression of HAT and HDAC genes associated with
worse survival, and blue represents an association with better survival. (b) The HDAC6 forest map in hepatocellular carcinoma and
pancreatic cancer of GEO and ICGC datasets. (c) Heat map showing the clustering for pancreatic cancer patients based on the
expression of HAT and HDAC genes. (d) Kaplan-Meier survival plot of patients grouped by the global expression pattern of HAT and
HDAC genes. (e) Heat map showing the clustering for hepatocellular cancer patients based on the expression of HAT and HDAC genes.
(f) Kaplan-Meier survival plot of patients grouped by the global expression pattern of HAT and HDAC genes.
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expression of HATs and HDACs could be useful for distin-
guishing between high- and low-risk patients with hepato-
cellular carcinoma and predicting their prognosis.

There are some limitations to this study. It is difficult to
process and analyze several data sources under a unifying
framework, given the diversity of methodological work in
this area [51]. Genomic mutations and gene expression need
to be validated. In addition, some data were collected from
retrospective studies wherein certain critical parameters
were not recorded, and influencing factors could bias the
selection of controls. Further prospective clinical studies
are required to validate our findings.

In conclusion, we demonstrated the prevalent genetic
and expression alterations of histone modifications across
five pan-digestive cancers. These HAT and HDAC gene
mutations are highly correlated with the activation and inhi-
bition of cancer pathways and with the prognosis of pancre-
atic cancer and hepatocellular carcinoma. This systematic
analysis of the landscape of molecular alterations and clini-
cal relevance of acetylation lays a critical foundation for
understanding the dysregulation of PTM in pan-digestive
cancers. Further, it provides insights that can be useful for
the development of related therapeutic targets.
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