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Abstract

Original Article

IntroductIon

Artificial intelligence (AI) is the defining characteristic of the 
new epoch of information technology. AI-powered devices 
have transformed our daily lives in the form of smartphones, 
self-driving cars, and intelligent home appliances. One of the 
domains where AI has made significant advances is image 
analysis and object recognition.[1] We have attempted to apply 
an AI model for categorization of thyroid cytology smears. In 
the present study, we have chosen a neural network paradigm 
to classify microphotographs of thyroid fine‑needle aspiration 
cytology (FNAC) smears into two categories, papillary thyroid 
carcinoma (PTCA) and non‑PTCA (non‑PTCA). A neural network 
model has been chosen because has proven to be the most successful 
among machine learning models in image recognition tasks.[2,3] We 
have chosen to train the network only with cytologically diagnosed 

of papillary carcinoma, which were later confirmed on resection 
and biopsy, and not to include borderline cases for the present study.

Artificial neural networks (ANNs) are a large family of trainable 
models, where each subfamily of models is optimized for 
different functions. For the specific task of tumor classification, 
we chose the ANN subfamily, known as convolutional neural 
networks (CNNs), the state‑of‑the‑art networks of which 
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are shown to perform image‑based object classification.[4] 
Briefly, CNNs are feed forward neural networks which take 
a whole image as input and classifies the image in defined 
categories. The input image is passed through multiple “layers” 
in a feedforward manner, each layer comprising multiple, 
independent, and linear convolutional filters.[5,6] The input for 
each layer is the output of the previous one, with an overlaid 
nonlinearity. The architecture is based on the hierarchical 
image classification and object recognition pathway of the 
primate brain, the ventral visual pathway,[7‑9] where the layers 
represent a particular retinotopic area of the brain, while the 
filters represent the receptive field of a neuron in that area. The 
image “features” extracted by the layers are finally fed into a 
classifier that determines the category the image belongs to. 
Further details about CNNs, the significance of each of their 
components, and how they perform image classification have 
been described by Karpathy et al.[10]

In the present study, we have chosen a CNN to classify 
microphotographs of thyroid FNAC smears into two categories, 
PTCA and non‑PTCA. We have chosen to train the network 
only with cytologically confirmed cases of papillary carcinoma 
and not to include borderline cases for the present study. PTCA 
is the most common malignant neoplasm of the thyroid;[11] 
in one of the largest series of resections for hypopharyngeal 
carcinoma, occult papillary carcinoma was found in 2% of 
all thyroids; an incidence varying between 0.25%–7% has 
been reported in previous studies.[12] FNAC is usually part 
of the initial investigations to investigate a solitary thyroid 
nodule.[11] Papillary carcinoma presents with cytopathologic 
findings which are easily discernible to the trainee pathologist. 
However, the features are not unique to papillary carcinoma, 
and thus, recognition of papillary carcinoma on smears is 
a nontrivial machine learning problem. The sensitivity of 
FNAC in detecting papillary carcinoma has been found to be 
76.47%–95.2% in various studies, with specificity between 
68.4%–94.2%.[13‑15] However, small focus of papillary 
carcinoma is often encountered in smears showing only benign 
findings elsewhere.[16] It is because of its reasonable sensitivity, 
specificity, and screening requirements that we have chosen 
FNAC thyroid for training the neural network.

SubjectS and MethodS

A retrospective study design was chosen. We collected 
material from two different tertiary care centers of North 
India. Archived and well‑preserved slides of thyroid FNACs 
with good material were chosen for the purpose of the study. 
Only FNACs done within the last 2 years were selected, and 
any faded slides were discarded. The slides were stained 
with Romanowsky stain (Leishman Giemsa/May–Grünwald 
Giemsa) or Papanicolaou stain, to increase the extent of 
training of the software. Microphotographs were taken at ×10 
and ×40 magnification. In keeping with the principle of training 
a neural network with diverse array of material, a subset of the 
slides was photographed in a Labomed ATC 2000 microscope, 
the other in a Nikon DSFi1c. Using two different microscopes 

provides the requisite variations in illumination and color of 
images, ultimately leading to a different set of pixel values 
captured. Thus, the ANN can be trained to recognize PTCA 
even in varying conditions of illumination.

The “non‑PTCA” category included images from smears of 
colloid goiter, cytologically diagnosed follicular neoplasms 
and lymphocytic thyroiditis. In the “PTCA” category, 
cytologically diagnosed (and histologically confirmed by an 
oncopathologist, one of the authors) papillary carcinoma smears 
were photographed. The photos were then segregated into 
two categories: the “training” category for teaching the neural 
network and “test” category for concurrent evaluation of its 
performance. The distributions of the images in the different 
categories are listed in Table 1. All images were then cropped to 
a dimension of 512 × 512 pixels, focusing on the areas of interest 
in the smear. A total of 370 cropped images (184 non‑PTCA, 
186 PTCA) photographed from 20 cytology smears (from 
20 patients) were used for training of the software. Several 
microscopic foci from a single smear were photographed.

The CNN was developed in the Python programming language, 
using the TensorFlow[17] backend and the Keras library[18] (all 
open source), extending the method by Chollet.[19]

A color image is a three‑dimensional array of size width × height × 3, 
where the values of the red, green, and blue channels are the depth 
of the image, i.e., 3. A convolutional network applies several 
arrays of a smaller size with randomly initiated value (i.e., a 5 × 5 
array) and applies it iteratively over the image. Such smaller 
arrays are called “masks,” and the several such masks can be 
applied over the image. The final output after this operations is 
the element-wise multiplication of the two arrays and results in 
an array which is smaller in width and height, but its depth is the 
same as the number of such masks applied. Thus, the original 
information in the image is mathematically redistributed into an 
array of a different shape after a convolution.[10] Convolution is 
usually followed by pooling operation, which takes slices of an 
array of specified size and returns the maximum value within the 
slice, thus reducing the size of the array.

The architecture of the CNN is shown in Figure 1. The CNN 
takes a 512 × 512 color image as input, which is an array of 
dimensions 512 × 512 × 3. This is because each pixel of the 
image has three color components red, green, and blue, the sum 
of which is displayed on screen as the final color. A number 
of convolution and pooling layers then extract features of 
that image and generate local maxima values from adjacent 
pixels. The CNN finally confers an output “0” (non‑PTCA) 
or “1” (PTCA).

The CNN was then trained on the set of images in Table 1 
over 10 epochs, with a batch size of 16, after which 97.15% 
accuracy was achieved in the ×10 magnification.

After completion of training, in the performance evaluation 
stage, the CNN was evaluated against a different set of images. 
Sixty‑six foci of non‑PTCA lesions and 21 images of PTCA 
were photographed from 10 smears. Multiple foci were 
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photographed from each smear. Every focus was photographed 
at two magnifications (×10 and ×40), for a total of 174 
microphotographs. The cropped images (512 × 512 pixels) 
were then were examined by the CNN. The sensitivity, 
specificity, diagnostic accuracy, and positive and negative 
predictive value of the CNN were then determined from the 
results, using OpenEpi statistical software (Emory University, 
Rollins School of Public Health).[20]

reSultS

The CNN used for smear classification is shown in Figure 1. 
The network takes in an input image and each subsequent 
layers extracts the relevant features from the previous 
layer [Figure 1]; the features extracted by the final layer is 
used to classify the image to PTCA or non‑PTCA. During the 
training phase, after each epoch of learning, accuracy on the 
test dataset was measured concurrently. After 10 epochs of 
training, a contingency table was drawn [Table 2].

A number of false positives were met during the training 
session; specifically, 2 of the 14 (14.28%) images in 
the “non‑PTCA × 10” set were identified wrongly as 
PTCA [Figure 2a]. Most other lesions were correctly 
characterized as in Figure 2b and c. This shows that in the 
initial phase of the training, the network is prone to false 
positives, classifying any structure vaguely resembling a 
papilla as papillary carcinoma. This is attributable to the fact 
that papillary formations are not unique to papillary carcinoma. 
Such papillary formations are regarded as “noise” in the 
image, whereas the nuclear features are the actual “data” to 
be trained on. Neural networks are prone to recognize noise, 
a phenomenon known as “overfitting” to the training data.[21]

Once training was over, performance of the CNN was on 
the evaluation dataset was analyzed. Eighty‑seven foci were 
photographed 10 smears (from 10 patients); multiple foci were 
photographed from each smear. Each focus was photographed 
at two magnifications ×10 and ×40, for a total of 174 images. 
The results were as follows:
a. When using OR-based decision criteria, i.e., a focus is 

reported by the CNN to be PTCA in either of ×10 and ×40 
magnification, the performance data are shown in Table 3, 
showing 90.48% sensitivity, 83.33% specificity, and 
85.06% diagnostic accuracy

b. When using AND‑based criteria, i.e., a focus is reported by 
the CNN to be PTCA in both ×10 and ×40 magnification, the 
specificity of the CNN showed significant improvement, 
at the cost of sensitivity [Table 4].

Within the evaluation, dataset images containing thick colloid, 
macrophages, and stain deposits (objects that are frequently 
seen on FNAC slides) were also included in the evaluation 
dataset as true negatives. Except from one focus showing only 
thick colloid, all of these were reported to be not PTCA by the 
CNN [Figure 3], i.e., they were correctly classified.

dIScuSSIon

The conventional approach to computerized image analysis 
involves segmentation, blurring, edge detection, and watershed 
transform to identify geometrical properties in biological 
images. However, when analyzing cytology smears, the 
geometrical solution to the problem is inadequate. There are 
innumerable variations that might be encountered in cytological 
images, and any fixed program will fail to recognize a large 
number of them. Instead, we have focused on the “machine 
learning” approach. In this paradigm, learning is imparted to 
a model through a didactic manner, i.e., demonstrating a large 

Table 1: Distribution of microphotographs in two magnifications and categories (n=370) during the training phase

10× 40×

Training Test Training Test

Non‑PTCA PTCA Non‑PTCA PTCA Non‑PTCA PTCA Non‑PTCA PTCA
92 89 14 14 68 73 10 10
PTCA: Papillary thyroid carcinoma

Figure 1: Architecture of the convolutional neural network
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“non‑PTCA” and “PTCA,” is shown to the machine. The 
parameters of the model to arrive at the right answer are left 
for the machine to figure out by trial and error. Over many 
epochs of training, the machine figures out a set of rules (matrix 
transformations) which provide the right answer in majority 
of the cases.

The use of ANN has been examined by Dey who concluded that 
they are capable of reasoning tasks and can be used for diagnostic 
difficulties.[22] In a study from PGI Chandigarh, Savala et al. 
applied a neural network to distinguish follicular adenoma from 
carcinoma in thyroid FNAC smears.[23] They used 39 cases in 
training set and 9 cases each in validation and test sets. Their model 
successfully distinguished all 9 cases successfully. A similar tool, 
based on support vector machines, was used by Gopinath et al. to 
examine 110 thyroid FNAC smears, which achieved a diagnostic 
accuracy of 96.7% with sensitivity and specificity of 95% and 
100%, respectively.[24] As per existing literature, the present study 
is the only one which employs an ANN to segregate PTCA from 
nonpapillary lesions. The ANN model has been chosen because 
of consistently better performance in image analysis than other 
models, in previous studies.[1-4]

The task, stated in context of papillary carcinoma thyroid, is 
to identify the following features:
a. At ×10 magnification – syncytial aggregates and 

sheets with a distinct border, three-dimensional tissue 
fragments, and papillary tissue fragments

b. At ×40 magnification – nuclear crowding, nuclear 
overlapping, nuclear grooves, and intranuclear cytoplasmic 
pseudoinclusions.[25]

Each of these features may be approached in a geometric 
manner, i.e., an intranuclear pseudoinclusion might be 

Table 2: Performance characteristics of the convolutional neural networks on the concurrent test dataset during training 
(n=48)

Actual 
diagnosis

10× 40× Total

CNN detected “non‑PTCA” CNN detected “PTCA” CNN detected “non‑PTCA” CNN detected “PTCA”
Non‑PTCA 12 (TN) 2 (FP) 10 (TN) 0 (FP) 24
PTCA 0 (FN) 14 (TP) 0 (FN) 10 (TP) 24
CNN: Convolutional neural networks, FP: False positive, TN: True negative, FN: False negative, TP: True positive, PTCA: Papillary thyroid carcinoma

Table 3: Performance characteristics of the convolutional 
neural networks when using criteria that a focus must 
be reported papillary thyroid carcinoma in any of ×10 
and ×40 magnification to be diagnosed papillary thyroid 
carcinoma (n=87)

Diagnosis on FNAC by 
pathologist

Total

PTCA Non‑PTCA
Diagnosis by CNN
Detected PTCA 19 (TP) 11 (FP) 30
Detected not PTCA 2 (FN) 55 (TN) 57

Total 21 66

Statistics Value (%) Lower‑upper 
95% CI

Method

Sensitivity 90.48 71.90‑97.35 Wilson score
Specificity 83.33 72.57‑90.43 Wilson score
Positive predictive value 63.33 45.51‑78.13 Wilson score
Negative predictive value 96.49 88.08‑99.03 Wilson score
Diagnostic accuracy 85.06 76.1‑91.05 Wilson score
TP: True positive, FP: False positive, TN: True negative, FN: False 
negative, CI: Confidence interval, FNAC: Fine‑needle aspiration cytology, 
PTCA: Papillary thyroid carcinoma, CNN: Convolutional neural networks

Figure 2: Examples of true and false image classification by the convolutional neural network on the training set. (a) False positiveclassification by 
the CNN; normal follicular cell cluster identified as carcinoma. (b) True negative classification by the CNN. (c) True positive classification by the CNN

a b c

number of example data. The method is similar to the way 
the human pathologist is trained to distinguish between cell 
types, between benign and malignant. Reinforcement learning 
over several epochs of repetition of example data calibrates a 
machine learning model to correctly classify images.

Success with one of the modalities of machine learning, namely 
support vector machines, has already been demonstrated 
by Gopinath et al.[24] CNNs provide another approach to the 
problem, where a variety of images belonging to a category, 
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Figure 4: Intranuclear cytoplasmic pseudoinclusion correctly classified 
by the convolutional neural network

Figure 5: Processing an image by intermediate layers of the convolutional neural network

characterized as a “circle within a circle.” But considering the 
nearly endless variations encountered on cytological smears 
on this same theme, it is improbable that the “circle within a 
circle” rule will fit in all the cases [Figure 4].

The CNN has to convert an image to a single number, namely 
“1” (PTCA) or “0” (not PTCA). This conversion happens in 
the intermediate layers of the CNN. The layers extract features 
and shape of the image over successive convolutions and 
pooling operations, each time reducing and simplifying the 
information, and passing on to the next layer, until the image 
array is converted to either “1” or “0” [Figure 5].

It is important to appreciate the limitations of a CNN: the 
network can operate only on images from thyroid FNACs. 

Given any random image of any object, the network will 
produce a result, either of “PTCA” and “Non‑PTCA,” i.e., it 
cannot distinguish between FNAC microphotographs and other 
photographs. However, implemented in the proper context, 
especially with an automated microphotography and slide 
scanning system, the CNN can provide actionable results.

The principal difficulties met during the training of the CNN 
were to distinguish between vague papillary formations 
by normal follicular cells [Figure 2a], which in the ×10 
magnification was identified wrongly as papillae by the CNN. 
Furthermore, an area of thick colloid was wrongly identified as 
papillary carcinoma. This might be attributable to “overfitting” 
on training data, i.e., recognizing the signal (papillary 
formations) as well as the noise (overall basophilia of the image) 
of the training dataset.

When using the criteria that an image must be classified by 
the CNN as PTCA in both ×10 and ×40 magnification, the 
sensitivity is 90.49% and specificity only modest, 83.33%. 
This is lower than reported by Gopinath et al.[9] or Savala 
et al.;[8] however, the present CNN has been evaluated on a 
larger dataset than the aforementioned.

Table 4: Performance characteristics of the convolutional 
neural networks when using criteria that a focus must 
be reported papillary thyroid carcinoma in both of ×10 
and ×40 magnification to be diagnosed papillary thyroid 
carcinoma (n=87)

Diagnosis on FNAC by 
pathologist

Total

PTCA Non‑PTCA
Diagnosis by ANN
Detected PTCA 7 (TP) 1 (FP) 8
Detected not PTCA 14 (FN) 65 (TN) 79

Total 21 66

Statistics Value (%) Lower‑upper 
95% CI

Method

Sensitivity 33.33 17.19‑54.63 Wilson score
Specificity 98.48 91.9‑99,73 Wilson score
Positive predictive value 87.5 52.91‑97.76 Wilson score
Negative predictive value 82.28 72.42‑89.14 Wilson score
Diagnostic accuracy 82.76 73.48‑89.26 Wilson score
FNAC: Fine‑needle aspiration cytology, PTCA: Papillary thyroid 
carcinoma, ANN: Artificial neural network, TP: True positive, FP: False 
positive, TN: True negative, FN: False negative, CI: Confidence interval

Figure 3: Examples of true and false classification by the convolutional 
neural network on artifacts. (a) True negative classification by the CNN. 
(b) False positive classification by the CNN

a b
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Unlike the study by Savala et al.,[8] false positives were met at 
both magnifications, which remain a shortcoming. However, 
it has to be noted here that a typical state-of-the-art deep 
convolutional network is trained on much larger datasets than 
the ones available for specific medical diagnostics.[26] This is 
to introduce sufficient variation in the training dataset and 
prevent the networks from overfitting to the data. Thus, it is 
time to develop such diverse repository of images containing 
large number of diverse pathological images to build a very 
strong and reliable image classifier. 

concluSIon

With further training on larger and more diverse datasets, the 
CNN has potential to develop into an accurate image classifier 
for thyroid fine needle aspiration cytology.
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