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A B S T R A C T   

Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub 
therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients 
with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co- 
expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and 
protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping 
genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two 
significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and 
differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes 
with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for 
expanding our understanding of the etiology and underlying mechanisms of HF and cancer.   

1. Introduction 

Heart failure (HF) and cancer are global health issues associated with high morbidity and mortality [1,2]. Several epidemiological 
studies have demonstrated an association of HF with subsequently increased risk of cancer [3–6]. In addition to risk factors including 
hypertension, diabetes, obesity, smoking, HF and cancer also share common pathophysiological mechanisms including inflammation, 
oxidative stress, neuro-hormonal activation and a dysfunctional immune system [7–10]. Previous studies showed 
chemotherapy-related cardiotoxicity or cancer itself might lead to HF [11–13]. Conversely, HF could stimulate and promote cancer 
progression and metastasis via cardiac excreted factors [14,15]. HF and cancer affect one another in this bidirectional way. Herein, we 
aimed to investigate the common targets and interactions of HF and cancer by transcriptomic analyses. 

In this study, we obtained gene expression data from the Gene Expression Omnibus (GEO) database and identified differentially 
expressed genes (DEGs) between HF and normal samples using the GSE42955 and GSE57338 databases. Moreover, weighted gene co- 
expression network analysis (WGCNA) was performed on the GSE57338 dataset to screen key co-expression modules to assist in 
candidate hub gene selection. The CytoHubba algorithm was used to screen hub genes. A total of eight hub genes were subjected to 
correlation, immune cell infiltration, and ROC analyses. We further analyzed the roles of two significant genes CENPA and BRCA1 in 33 
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Fig. 1. Identification of differentially expressed genes in IHF datasets. Volcano plots of the differentially expressed genes (DEGs) from GSE42955 
(A) and (C) GSE57338 datasets. Dark red dots in the volcano plots represent down-regulated genes, whereas light red points represent up-regulated 
genes. Heatmaps of the top 10 DEGs from (B) GSE42955 and (D) GSE57338. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 2. The Venn plots of DEGs. (A) Up-regulated and (B) down-regulated DEGs from GSE42955 and GSE57338.  
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tumor types to identify their potential as common targets in HF and cancer. 

2. Results 

2.1. Identification of differentially expressed genes associated with IHF 

The DEGs were screened using GSE42955 and GSE57338 datasets according to the cutoff criterion of a P-value <0.05. The volcanic 
diagram and heat map of the DEGs are shown (Fig. 1A–D). In GSE42955, 1023 genes were up-regulated and 1328 genes were down- 
regulated. In GSE57338, 5041 genes were up-regulated and 5667 genes were down-regulated. We overlapped the DEGs in GSE42955 
and GSE57338 and obtained 393 commonly up-regulated (Fig. 2A) and 572 commonly down-regulated DEGs (Fig. 2B). 

2.2. Enrichment analysis of DEGs identified in IHF profiles 

We performed GO and KEGG enrichment analyses on the 393 up-regulated and 572 down-regulated DEGs. The GO analysis showed 
that these DEGs were mainly related to neutrophil activation and myeloid cell differentiation in biological processes (BP) (Fig. 3A); 
collagen-containing extracellular matrix, secretory granule lumen, and specific granules in cellular components (CC) (Fig. 3B); and 
transcription factor binding, integrin binding, and growth factor binding in molecular function (MF) (Fig. 3C). For the KEGG results, 

Fig. 3. Enrichment analysis in of DEGs associated with IHF. Gene ontology (GO) enrichment analysis of overlapping DEGs, including (A) BP, (B) CC, 
and (C) MF. D. KEGG analysis of overlapping DEGs. The top 20 terms are displayed. 
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the MAPK signaling pathway, coronavirus disease COVID-19, lipid and atherosclerosis, and necroptosis were enriched (Fig. 3D). 
Together, these results showed pathways involved in HF. 

2.3. Construction of a co-expression network and key module identification 

Gene co-expression networks were constructed using GSE57338 based on the common DEGs, and a scale-free topology was used to 
determine the power value. When the power value was 5, the scale-free R2 approached 0.9 (Fig. 4A). We further screened gene modules 
associated with HF and selected the MEdarkorange module to conduct the following analysis (Fig. 4B). Next, we intersected the 
common DEGs and genes from the MEdarkorange module to obtain 85 genes (Fig. 5A). The KEGG analysis indicated that these genes 
were related to transcriptional misregulation in cancer, ubiquitin-mediated proteolysis, and tumor processes (Fig. 5B and C). 

Fig. 4. WGCNA of GSE57338. (A) The selection of best soft threshold. (B) Heatmap of the correlation between the module and clinical features of 
patients in GSE57338. 
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Fig. 5. KEGG enrichement of DEGs from key modules. (A) The intersection between DEGs and genes from the MEdarkorange module. (B) KEGG 
analysis of overlapping genes. (C). The top five KEGG terms and their correlation with the overlapping genes. 

Fig. 6. Identification of hub genes associated with IHF. (A) The protein-protein interaction (PPI) network constructed with the overlapping genes 
using the STRING database. (B) The top eight hub genes identified by cytoHubba algorithms. C. The correlation of eight hub genes in GSE57338. The 
red line represents a positive correlation, green represents a negative correlation, and the deeper the color, the stronger the correlation. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 7. Correlation analysis of immune cell infiltration and IHF hub gene expression. (A) The correlation between each immune cell. (B) Immune 
cell infiltration differences between IHF and normal patients. (C) The correlation of immune cell infiltration level with the indicated hub genes. Only 
significant results (P < 0.05) are displayed. 

Fig. 8. Exploration of hub genes associated with IHF. (A) Heatmap of the hub genes identified in the GSE57338 and GSE42955 datasets represented 
as the log2FC values for those genes. (B) Diagnostic efficacy of the eight hub genes for IHF in the GSE57338 and GSE42955 datasets. 
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2.4. Protein-protein interaction network construction and identification of hub genes 

We imported 85 genes into the STRING online database (https://string-db.org/) to create a protein-protein interaction (PPI) 
network. The PPI network was imported into Cytoscape for visualization (Fig. 6A) and the CytoHubba algorithm was used to identify 
hub genes. The top eight genes were selected as hub genes for the IHF analysis (Fig. 6B). Correlations between the eight hub genes are 
shown in Fig. 6C, which shows that BRCA1 is positively correlated with MED17 and negatively correlated with RXRA. 

2.5. Immune infiltration analysis 

Immune cell infiltration analysis was performed using GSE57338. Fig. 7A shows the correlation with immune cell infiltration. Most 
immune cells were differentially infiltrated between IHF and normal samples (Fig. 7B). For example, macrophage and natural killer T 
cell infiltration were lower in the IHF group than control group. Fig. 7C–I shows the correlation between the hub genes and immune 
cell infiltration (P-value <0.05). 

2.6. Hub gene analysis 

The top eight hub genes (BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2) we identified using the CytoHubba 
algorithm were further analyzed. The log2 (fold-change) value of each gene in the two datasets is shown in Fig. 8A. Moreover, we 
analyzed the diagnostic efficacy of the eight hub genes for IHF in both the GSE42955 and GSE57338 datasets, which showed the great 
performance in distinguishing diseases tissues from normal tissues (Fig. 8B). We explored the functions of these genes in IHF using 
CEPNA and BRCA1. Through correlation analysis, we displayed the expression of the top 50 genes positively and negatively correlated 
with CENPA (Fig. 9A and B) and BRCA1 (Supplemental Fig. 1A and B). GSEA was also performed on the correlation analysis results, 
which indicated that CEPNA was associated with cellular macromolecule localization in GSEA-GO enrichment (Fig. 9C); the viral 
carcinogenesis and PI3K− Akt signaling pathway in GSEA-KEGG enrichment (Fig. 9D); and post− translational protein modification, 
metabolism of proteins, adaptive immune system, and cellular responses to stress in GSEA-reactome enrichment (Fig. 9E). BRCA1 was 
associated with mitochondrion in GSEA-GO enrichment (Supplemental Figure 1C); the valine, leucine and isoleucine degradation and 

Fig. 9. GSEA of CENPA. The correlation analysis of CENPA was performed using GSE57338, and the top 50 genes positively (A) and negatively (B) 
correlated with CENPA are displayed. The GSEA of CENPA based on GO (C), KEGG (D), and reactome databases (E). 
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hippo signaling pathway in GSEA-KEGG enrichment (Supplemental Figure 1D); the citric acid cycle (TCA) and respiratory electron 
transport, protein localization, mitochondrial translation in GSEA-reactome enrichment (Supplemental Figure 1E). 

2.7. Pan-cancer analysis of hub genes 

Next, we selected CENPA and BRCA1 for pan-cancer analysis. We found that CENPA and BRCA1 were highly expressed in tumor 
tissues from the TCGA database compared to normal tissues from TCGA and GTEx databases (Fig. 10A and Supplemental Figure 2A). 
When we analyzed CENPA and BRCA1 expression from the TCGA database, we found that CENPA and BRCA1 were overexpressed in 
tumor tissues compared to matched para-cancerous tissues in most tumor types (Fig. 10B and Supplemental Figure 2B). For CENPA, we 
evaluated the relationship between CENPA expression and patient prognosis in pan-cancer using survival metrics, including overall 
survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). Cox regression analysis of 
33 tumors showed that high CENPA expression was significantly associated with a worse prognosis for multiple cancers, especially 
KIRP, ACC, LIHC, and PAAD, for all survival indices (Fig. 11A–D and Supplemental Fig. 3A-D). 

To explore the biological significance of CENPA and BRCA1 expression in different tumor tissues, we analyzed the correlation 
between their expression and 50 HALLMARK pathways. We found that both CENPA and BRCA1 were most strongly associated with cell 
cycle-related pathways such as the G2M checkpoint and E2F target pathways (Fig. 12A and B). We also analyzed the correlation 
between CENPA, BRCA1, and immune cell infiltration in pan-cancer samples. The results indicated that patients with a higher 
expression of these genes had lower infiltration levels (Fig. 13A and B). 

Finally, we analyzed the relationship between CENPA, BRCA1, and drug resistance to provide suitable medications selections for 
patients (Supplemental Table 1). Among the 192 anti-tumor drugs in the GDSC database, CENPA expression was positively correlated 
with the IC50 of 13 drugs, including BMS-754807, Trametinib, SCH772984, Selumetinib, ERK_6604, and SB216763 (Fig. 14). These 
results suggested that CENPA and BRCA1 have clinical potential as drug targets in multiple cancers. 

Fig. 10. Pan-cancer CENPA expression analysis. (A) Pan-cancer differential expression of CENPA between tumor tissues from TCGA and normal 
tissues from TCGA and GTEx databases. (B) Pan-cancer differential expression of CENPA between tumor tissues and paired adjacent normal tissues. 
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3. Discussion 

Heart failure (HF) and cancer remains the leading causes of mortality and poses major burdens on healthcare worldwide [16–18]. 
Over the years the bidirectional link between HF and cancer has been gradullly uncovered, but the mechanism on the reciprocal effect 
of both diseases and how HF increases the risk of cancer is incompletely understood [9,10,19]. Therefore, it is increasingly important 
to identify common targets for HF and cancer. We used integrated bioinformatics analyses, including differential expression analysis 

Fig. 11. Univariate regression analysis of CENPA expression in pan-cancer. Forest map showing the univariate Cox regression analysis results of 
CENPA from the TCGA pan-cancer data, including (A) OS, (B) DSS, (C) DFI, and (D) PFI. 
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Fig. 12. GSVA of CENPA and BRCA1. The GSVA results of (A) CENPA and (B) BRCA1 based on 50 HALLMARK pathways in pan-cancer. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. 

Fig. 13. Immune infiltration analysis. (A–B) The relationship between gene expression and infiltration levels of different types of immune cells in 
pan-cancer. 
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and WGCNA, to identify hub genes related to IHF. These genes were subjected to GO enrichment analysis, which revealed that they 
were primarily enriched in transcriptional misregulation in cancer, ubiquitin mediated proteolysis, and tumor processes, indicating 
that these genes may be associated with tumor progression. Among the hub genes associated with IHF, BRCA1, MED17, CENPA, RXRB, 
SMARCA2, and PMS2 were up-regulated in patients with IHF, whereas RXRA and CDCA2 were down-regulated in IHF patients. 

Previous studies revealed that multiple immune cells infiltrations and activations, including macrophages, neutrophils, B cells, T 
cells and regulatory T cells, played an important role in the pathological processes of HF and myocardial remodeling [20–22], and 
cancer [23–25]. CALU, PALLD, FOS, DUSP1 have been identified as potential biomarkers of immune cell infiltration in HF [26,27]. 
Disorders of the immune system and abnormal activation of immune signaling pathway could cause the co-occurrence of HF and lung 
cancer [28]. Although the augmented immune response will lead to immune-related HF [29], transient chimeric antigen receptor 
(CAR) T cells in vivo reduced myocardial fibrosis and restored cardiac function after injury [30]. In this study, we found that most 
immune cells were differentially infiltrated in IHF and normal samples, of which macrophage infiltration was low in the IHF group and 
BRCA1 was negatively correlated with macrophage infiltration. These results are partly consistent with previous studies [21,31]. 

HF and cancer accompany each other given the large overlap in risk factors [7]. Indeed, it has been reported that HF and cancer 
often coincide and there is evidence of a direct effect between both diseases [3,7,14,19,32,33]. Our study found that CENPA and 
BRCA1 were biomarkers of HF and cancer, and strongly associated with cell division and cycle-related pathways such as the G2M 
checkpoint and E2F target pathways. The centromere-specific histone H3 variant CENPA and the tumor suppressor BRCA1 have been 
reported the key role in preserving centromeric integrity during cell division or DNA damage [34,35]. BRCA1-deficient cells showed 
impaired localization of CENPA, leading to impaired chromosome inheritance and genome instability [34]. CENPA overexpression 
promoted genome instability in human cells [36]. Furthermore, these genes have been reported to be therapeutic targets in many 
tumor types, including breast [37–39], liver [40,41], and ovarian [42,43] cancers. Thus, we assessed the roles of BRCA1 and CENPA in 
pan-cancer to explore them as common targets of IHF and cancer among the hub genes. We found that CENPA and BRCA1 were 
ubiquitously expressed in tumors and correlated with poor prognosis in patients with cancer. We believe that drugs targeting CENPA or 
BRCA1 might be effective in patients with HF and cancer. 

To conclude, our study identified that CENPA and BRCA1 were potential therapeutic targets associated with immune cell infil
tration for both HF and cancer, which provided new perspectives for expanding our understanding of pathophysiological interaction 
mechanisms of HF and cancer. Meanwhile, the conclusion only originated from the bioinformatic analysis on shared datasets with 
limited sample size. The heterogeneity of patients or heart samples, RNA sequencing platforms and methods may increase the risk of 
bias. Further validation of CENPA and BRCA1 in larger, independent cohorts or investigation on the potential mechanism in labo
ratory, as well as explorations on simple and feasible methods for detections of CENPA and BRCA1 in clinical practice will be suggested 
for future research. 

Fig. 14. CENPA expression and drug resistance are correlated in pan-cancer. Correlation between CENPA expression and the IC50 values of 
anticancer drugs. P = 0 indicates P < 0.0001. 

J. Wang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e28786

12

4. Materials and methods 

4.1. Acquisition of datasets 

Gene expression profiles of GSE42955 and GSE57338 were acquired from human samples and downloaded from the Gene 
Expression Omnibus (GEO) database (http://www.ncbi.nih.gov/geo/). GSE42955 includes transmural heart samples near the apex of 
the left ventricle from 12 ischemic cardiomyopathy patients, 12 dilated cardiomyopathy patients and 5 normal controls. Meanwhile we 
downloaded 95 ischemic cardiomyopathy and 136 normal tissue samples of the left ventricle from the GSE57338 dataset, which 
contained a total of 313 individuals with/without heart failure. The expression of CENPA and BRCA1 in 31 normal tissues was obtained 
from the GTEx portal and was compared between 33 cancer and normal tissues by combining data from TCGA with those from GTEx. 
The combined TCGA and GTEx data were downloaded from the UCSC Xena database (https://xenabrowser.net/datapages/). 

4.2. Identifying key co-expression modules using weighted gene co-expression network analysis 

We used the R package “WGCNA” to construct a gene co-expression network from the GSE57338 dataset GEO series. We analyzed 
the correlation between the modules and clinical features. The modules closely related to HF were used for subsequent analyses. 

4.3. Identification of differentially expressed genes and selection of potential target genes 

To identify differentially expressed genes (DEGs) between IHF and normal controls, we performed DEG analysis based on the gene 
expression profiles of GSE42955 and GSE57338 using the ‘limma” package. The cut-off value was set to a P-value <0.05. The over
lapping genes were selected for subsequent analyses. 

4.4. Enrichment analysis 

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the 
“clusterProfiler” R package to evaluate the biological significance of selected genes. We downloaded 50 HALLMARK pathways from 
the MsigDB database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and used the “GSVA” package to score the pathways and 
calculate their correlation with gene expression in pan-cancer. 

4.5. Construction of protein-protein networks and screening for hub genes 

For partially overlapping genes, we created protein-protein interaction (PPI) networks using the STRING database (https://string- 
db. org). The PPI network was visualized in Cytoscape [44]. The top eight hub genes were identified with the plug-in ‘cytoHubba’ and 
used for the subsequent analysis. 

4.6. Tumor microenvironment analysis 

From the TIMER2 (http://timer.comp-genomics.org/) database, we downloaded pan-cancer immune cell infiltration data. The 
correlation between gene expression and immune cells was calculated. 

4.7. Drug sensitivity analysis 

We downloaded the half-maximal inhibitory concentration (IC50) and gene expression data of tumor cells from the GDSC (https:// 
www.cancerrxgene.org/) database, analyzed the relationship between gene expression and drug IC50, and plotted the correlation 
between CENPA expression for each drug and IC50. 
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