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ABSTRACT

Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub
therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients
with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co-
expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and
protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping
genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two
significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and
differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes
with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for
expanding our understanding of the etiology and underlying mechanisms of HF and cancer.

1. Introduction

Heart failure (HF) and cancer are global health issues associated with high morbidity and mortality [1,2]. Several epidemiological
studies have demonstrated an association of HF with subsequently increased risk of cancer [3-6]. In addition to risk factors including
hypertension, diabetes, obesity, smoking, HF and cancer also share common pathophysiological mechanisms including inflammation,
oxidative stress, neuro-hormonal activation and a dysfunctional immune system [7-10]. Previous studies showed
chemotherapy-related cardiotoxicity or cancer itself might lead to HF [11-13]. Conversely, HF could stimulate and promote cancer
progression and metastasis via cardiac excreted factors [14,15]. HF and cancer affect one another in this bidirectional way. Herein, we
aimed to investigate the common targets and interactions of HF and cancer by transcriptomic analyses.

In this study, we obtained gene expression data from the Gene Expression Omnibus (GEO) database and identified differentially
expressed genes (DEGs) between HF and normal samples using the GSE42955 and GSE57338 databases. Moreover, weighted gene co-
expression network analysis (WGCNA) was performed on the GSE57338 dataset to screen key co-expression modules to assist in
candidate hub gene selection. The CytoHubba algorithm was used to screen hub genes. A total of eight hub genes were subjected to
correlation, immune cell infiltration, and ROC analyses. We further analyzed the roles of two significant genes CENPA and BRCA1 in 33
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Fig. 1. Identification of differentially expressed genes in IHF datasets. Volcano plots of the differentially expressed genes (DEGs) from GSE42955
(A) and (C) GSE57338 datasets. Dark red dots in the volcano plots represent down-regulated genes, whereas light red points represent up-regulated
genes. Heatmaps of the top 10 DEGs from (B) GSE42955 and (D) GSE57338. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 2. The Venn plots of DEGs. (A) Up-regulated and (B) down-regulated DEGs from GSE42955 and GSE57338.
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Fig. 3. Enrichment analysis in of DEGs associated with IHF. Gene ontology (GO) enrichment analysis of overlapping DEGs, including (A) BP, (B) CC,
and (C) MF. D. KEGG analysis of overlapping DEGs. The top 20 terms are displayed.

tumor types to identify their potential as common targets in HF and cancer.

2. Results

2.1. Identification of differentially expressed genes associated with IHF

The DEGs were screened using GSE42955 and GSE57338 datasets according to the cutoff criterion of a P-value <0.05. The volcanic
diagram and heat map of the DEGs are shown (Fig. 1A-D). In GSE42955, 1023 genes were up-regulated and 1328 genes were down-
regulated. In GSE57338, 5041 genes were up-regulated and 5667 genes were down-regulated. We overlapped the DEGs in GSE42955
and GSE57338 and obtained 393 commonly up-regulated (Fig. 2A) and 572 commonly down-regulated DEGs (Fig. 2B).

2.2. Enrichment analysis of DEGs identified in IHF profiles

We performed GO and KEGG enrichment analyses on the 393 up-regulated and 572 down-regulated DEGs. The GO analysis showed
that these DEGs were mainly related to neutrophil activation and myeloid cell differentiation in biological processes (BP) (Fig. 3A);
collagen-containing extracellular matrix, secretory granule lumen, and specific granules in cellular components (CC) (Fig. 3B); and
transcription factor binding, integrin binding, and growth factor binding in molecular function (MF) (Fig. 3C). For the KEGG results,
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2.3. Construction of a co-expression network and key module identification

Fig. 4. WGCNA of GSE57338. (A) The selection of best soft threshold. (B) Heatmap of the correlation between the module and clinical features of
patients in GSE57338.

the MAPK signaling pathway, coronavirus disease COVID-19, lipid and atherosclerosis, and necroptosis were enriched (Fig. 3D).
Together, these results showed pathways involved in HF.

Gene co-expression networks were constructed using GSE57338 based on the common DEGs, and a scale-free topology was used to
determine the power value. When the power value was 5, the scale-free R? approached 0.9 (Fig. 4A). We further screened gene modules
associated with HF and selected the MEdarkorange module to conduct the following analysis (Fig. 4B). Next, we intersected the
common DEGs and genes from the MEdarkorange module to obtain 85 genes (Fig. 5A). The KEGG analysis indicated that these genes
were related to transcriptional misregulation in cancer, ubiquitin-mediated proteolysis, and tumor processes (Fig. 5B and C).
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Fig. 5. KEGG enrichement of DEGs from key modules. (A) The intersection between DEGs and genes from the MEdarkorange module. (B) KEGG
analysis of overlapping genes. (C). The top five KEGG terms and their correlation with the overlapping genes.

Fig. 6. Identification of hub genes associated with IHF. (A) The protein-protein interaction (PPI) network constructed with the overlapping genes
using the STRING database. (B) The top eight hub genes identified by cytoHubba algorithms. C. The correlation of eight hub genes in GSE57338. The
red line represents a positive correlation, green represents a negative correlation, and the deeper the color, the stronger the correlation. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Correlation analysis of immune cell infiltration and IHF hub gene expression. (A) The correlation between each immune cell. (B) Immune
cell infiltration differences between IHF and normal patients. (C) The correlation of immune cell infiltration level with the indicated hub genes. Only

significant results (P < 0.05) are displayed.
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correlated with CENPA are displayed. The GSEA of CENPA based on GO (C), KEGG (D), and reactome databases (E).

2.4. Protein-protein interaction network construction and identification of hub genes

We imported 85 genes into the STRING online database (https://string-db.org/) to create a protein-protein interaction (PPI)
network. The PPI network was imported into Cytoscape for visualization (Fig. 6A) and the CytoHubba algorithm was used to identify
hub genes. The top eight genes were selected as hub genes for the IHF analysis (Fig. 6B). Correlations between the eight hub genes are
shown in Fig. 6C, which shows that BRCA1 is positively correlated with MED17 and negatively correlated with RXRA.

2.5. Immune infiltration analysis

Immune cell infiltration analysis was performed using GSE57338. Fig. 7A shows the correlation with immune cell infiltration. Most
immune cells were differentially infiltrated between IHF and normal samples (Fig. 7B). For example, macrophage and natural killer T
cell infiltration were lower in the IHF group than control group. Fig. 7C-I shows the correlation between the hub genes and immune
cell infiltration (P-value <0.05).

2.6. Hub gene analysis

The top eight hub genes (BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2) we identified using the CytoHubba
algorithm were further analyzed. The log2 (fold-change) value of each gene in the two datasets is shown in Fig. 8A. Moreover, we
analyzed the diagnostic efficacy of the eight hub genes for IHF in both the GSE42955 and GSE57338 datasets, which showed the great
performance in distinguishing diseases tissues from normal tissues (Fig. 8B). We explored the functions of these genes in IHF using
CEPNA and BRCA1. Through correlation analysis, we displayed the expression of the top 50 genes positively and negatively correlated
with CENPA (Fig. 9A and B) and BRCA1 (Supplemental Fig. 1A and B). GSEA was also performed on the correlation analysis results,
which indicated that CEPNA was associated with cellular macromolecule localization in GSEA-GO enrichment (Fig. 9C); the viral
carcinogenesis and PI3K—Akt signaling pathway in GSEA-KEGG enrichment (Fig. 9D); and post—translational protein modification,
metabolism of proteins, adaptive immune system, and cellular responses to stress in GSEA-reactome enrichment (Fig. 9E). BRCA1 was
associated with mitochondrion in GSEA-GO enrichment (Supplemental Figure 1C); the valine, leucine and isoleucine degradation and
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Fig. 10. Pan-cancer CENPA expression analysis. (A) Pan-cancer differential expression of CENPA between tumor tissues from TCGA and normal
tissues from TCGA and GTEx databases. (B) Pan-cancer differential expression of CENPA between tumor tissues and paired adjacent normal tissues.

hippo signaling pathway in GSEA-KEGG enrichment (Supplemental Figure 1D); the citric acid cycle (TCA) and respiratory electron
transport, protein localization, mitochondrial translation in GSEA-reactome enrichment (Supplemental Figure 1E).

2.7. Pan-cancer analysis of hub genes

Next, we selected CENPA and BRCA1 for pan-cancer analysis. We found that CENPA and BRCA1 were highly expressed in tumor
tissues from the TCGA database compared to normal tissues from TCGA and GTEx databases (Fig. 10A and Supplemental Figure 2A).
When we analyzed CENPA and BRCA1 expression from the TCGA database, we found that CENPA and BRCA1 were overexpressed in
tumor tissues compared to matched para-cancerous tissues in most tumor types (Fig. 10B and Supplemental Figure 2B). For CENPA, we
evaluated the relationship between CENPA expression and patient prognosis in pan-cancer using survival metrics, including overall
survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). Cox regression analysis of
33 tumors showed that high CENPA expression was significantly associated with a worse prognosis for multiple cancers, especially
KIRP, ACC, LIHC, and PAAD, for all survival indices (Fig. 11A-D and Supplemental Fig. 3A-D).

To explore the biological significance of CENPA and BRCA1 expression in different tumor tissues, we analyzed the correlation
between their expression and 50 HALLMARK pathways. We found that both CENPA and BRCA1 were most strongly associated with cell
cycle-related pathways such as the G2M checkpoint and E2F target pathways (Fig. 12A and B). We also analyzed the correlation
between CENPA, BRCA1, and immune cell infiltration in pan-cancer samples. The results indicated that patients with a higher
expression of these genes had lower infiltration levels (Fig. 13A and B).

Finally, we analyzed the relationship between CENPA, BRCA1, and drug resistance to provide suitable medications selections for
patients (Supplemental Table 1). Among the 192 anti-tumor drugs in the GDSC database, CENPA expression was positively correlated
with the IC50 of 13 drugs, including BMS-754807, Trametinib, SCH772984, Selumetinib, ERK 6604, and SB216763 (Fig. 14). These
results suggested that CENPA and BRCA1 have clinical potential as drug targets in multiple cancers.
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DSs

Fig. 11. Univariate regression analysis of CENPA expression in pan-cancer. Forest map showing the univariate Cox regression analysis results of
CENPA from the TCGA pan-cancer data, including (A) OS, (B) DSS, (C) DFI, and (D) PFIL

3. Discussion

Heart failure (HF) and cancer remains the leading causes of mortality and poses major burdens on healthcare worldwide [16-18].
Over the years the bidirectional link between HF and cancer has been gradullly uncovered, but the mechanism on the reciprocal effect
of both diseases and how HF increases the risk of cancer is incompletely understood [9,10,19]. Therefore, it is increasingly important
to identify common targets for HF and cancer. We used integrated bioinformatics analyses, including differential expression analysis
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and WGCNA, to identify hub genes related to IHF. These genes were subjected to GO enrichment analysis, which revealed that they
were primarily enriched in transcriptional misregulation in cancer, ubiquitin mediated proteolysis, and tumor processes, indicating
that these genes may be associated with tumor progression. Among the hub genes associated with IHF, BRCA1, MED17, CENPA, RXRB,
SMARCA2, and PMS2 were up-regulated in patients with IHF, whereas RXRA and CDCAZ2 were down-regulated in IHF patients.

Previous studies revealed that multiple immune cells infiltrations and activations, including macrophages, neutrophils, B cells, T
cells and regulatory T cells, played an important role in the pathological processes of HF and myocardial remodeling [20-22], and
cancer [23-25]. CALU, PALLD, FOS, DUSP1 have been identified as potential biomarkers of immune cell infiltration in HF [26,27].
Disorders of the immune system and abnormal activation of immune signaling pathway could cause the co-occurrence of HF and lung
cancer [28]. Although the augmented immune response will lead to immune-related HF [29], transient chimeric antigen receptor
(CAR) T cells in vivo reduced myocardial fibrosis and restored cardiac function after injury [30]. In this study, we found that most
immune cells were differentially infiltrated in IHF and normal samples, of which macrophage infiltration was low in the IHF group and
BRCA1 was negatively correlated with macrophage infiltration. These results are partly consistent with previous studies [21,31].

HF and cancer accompany each other given the large overlap in risk factors [7]. Indeed, it has been reported that HF and cancer
often coincide and there is evidence of a direct effect between both diseases [3,7,14,19,32,33]. Our study found that CENPA and
BRCA1 were biomarkers of HF and cancer, and strongly associated with cell division and cycle-related pathways such as the G2M
checkpoint and E2F target pathways. The centromere-specific histone H3 variant CENPA and the tumor suppressor BRCA1 have been
reported the key role in preserving centromeric integrity during cell division or DNA damage [34,35]. BRCA1-deficient cells showed
impaired localization of CENPA, leading to impaired chromosome inheritance and genome instability [34]. CENPA overexpression
promoted genome instability in human cells [36]. Furthermore, these genes have been reported to be therapeutic targets in many
tumor types, including breast [37-39], liver [40,41], and ovarian [42,43] cancers. Thus, we assessed the roles of BRCA1 and CENPA in
pan-cancer to explore them as common targets of IHF and cancer among the hub genes. We found that CENPA and BRCA1 were
ubiquitously expressed in tumors and correlated with poor prognosis in patients with cancer. We believe that drugs targeting CENPA or
BRCA1 might be effective in patients with HF and cancer.

To conclude, our study identified that CENPA and BRCA1 were potential therapeutic targets associated with immune cell infil-
tration for both HF and cancer, which provided new perspectives for expanding our understanding of pathophysiological interaction
mechanisms of HF and cancer. Meanwhile, the conclusion only originated from the bioinformatic analysis on shared datasets with
limited sample size. The heterogeneity of patients or heart samples, RNA sequencing platforms and methods may increase the risk of
bias. Further validation of CENPA and BRCAI in larger, independent cohorts or investigation on the potential mechanism in labo-
ratory, as well as explorations on simple and feasible methods for detections of CENPA and BRCA1 in clinical practice will be suggested
for future research.
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4. Materials and methods
4.1. Acquisition of datasets

Gene expression profiles of GSE42955 and GSE57338 were acquired from human samples and downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nih.gov/geo/). GSE42955 includes transmural heart samples near the apex of
the left ventricle from 12 ischemic cardiomyopathy patients, 12 dilated cardiomyopathy patients and 5 normal controls. Meanwhile we
downloaded 95 ischemic cardiomyopathy and 136 normal tissue samples of the left ventricle from the GSE57338 dataset, which
contained a total of 313 individuals with/without heart failure. The expression of CENPA and BRCA1 in 31 normal tissues was obtained
from the GTEx portal and was compared between 33 cancer and normal tissues by combining data from TCGA with those from GTEx.
The combined TCGA and GTEx data were downloaded from the UCSC Xena database (https://xenabrowser.net/datapages/).

4.2. Identifying key co-expression modules using weighted gene co-expression network analysis

We used the R package “WGCNA” to construct a gene co-expression network from the GSE57338 dataset GEO series. We analyzed
the correlation between the modules and clinical features. The modules closely related to HF were used for subsequent analyses.

4.3. Identification of differentially expressed genes and selection of potential target genes

To identify differentially expressed genes (DEGs) between IHF and normal controls, we performed DEG analysis based on the gene
expression profiles of GSE42955 and GSE57338 using the ‘limma” package. The cut-off value was set to a P-value <0.05. The over-
lapping genes were selected for subsequent analyses.

4.4. Enrichment analysis

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the
“clusterProfiler” R package to evaluate the biological significance of selected genes. We downloaded 50 HALLMARK pathways from
the MsigDB database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and used the “GSVA” package to score the pathways and
calculate their correlation with gene expression in pan-cancer.

4.5. Construction of protein-protein networks and screening for hub genes

For partially overlapping genes, we created protein-protein interaction (PPI) networks using the STRING database (https://string-
db. org). The PPI network was visualized in Cytoscape [44]. The top eight hub genes were identified with the plug-in ‘cytoHubba’ and
used for the subsequent analysis.

4.6. Tumor microenvironment analysis

From the TIMER2 (http://timer.comp-genomics.org/) database, we downloaded pan-cancer immune cell infiltration data. The
correlation between gene expression and immune cells was calculated.

4.7. Drug sensitivity analysis

We downloaded the half-maximal inhibitory concentration (IC50) and gene expression data of tumor cells from the GDSC (https://
www.cancerrxgene.org/) database, analyzed the relationship between gene expression and drug IC50, and plotted the correlation
between CENPA expression for each drug and IC50.
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