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Abstract: Actinomycin V, extracted and separated from marine-derived actinomycete Streptomyces sp.,
as the superior potential replacement of actinomycin D (which showed defect for its hepatotoxicity)
has revealed an ideal effect in the suppression of migration and invasion in human breast cancer
cells as referred to in our previous study. In this study, the involvement of p53 in the cell cycle
arrest and pro-apoptotic action of actinomycin V was investigated in human non-small-cell lung
carcinoma A549 cells. Results from the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide
assay showed that cytotoxic activity of actinomycin V on A549 cells (with wild-type p53) was stronger
than the NCI-H1299 cells (p53-deficient). Actinomycin V upregulated both of the protein and
mRNA expression levels of p53, p21"Vafl/CiPl and Bax in A549 cells. For this situation, actinomycin V
decreased the M-phase related proteins (Cdc2, Cdc25A and Cyclin B1) expression, arrested cells in
G2/M phase and subsequently triggered apoptosis by mediating the Bcl-2 family proteins’ expression
(Bax and Bcl-2). Furthermore, the effects of cell cycle arrest and apoptosis in A549 cells which
were induced by actinomycin V could be reversed by the pifithrin-«, a specific inhibitor of p53
transcriptional activity. Collectively, our results suggest that actinomycin V causes up-regulation of
p53 by which the growth of A549 cells is suppressed for cell cycle arrest and apoptosis.
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1. Introduction

P53, a tetramer phosphoprotein, is known as a tumor suppressor and nuclear transcription factor
that can mediate several major cellular functions such as gene transcription, DNA synthesis or repair,
cell cycle regulation, senescence and cell death [1,2]. Each type of biological function of p53 is largely
regulated by transcriptionally regulating various downstream genes. For instance, p53 can induce
cell cycle arrest through regulating gene CDKN1A which encodes p21Vafl/CiP1 expression and can
induce apoptotic cell death by increasing the expression of Bax [3]. However, p53 is short-lived and
expressed at lower concentrations with a low level of activity in most cell types [4]. Thus, strategies
and mechanisms for small molecules that target the p53 pathway, including activating wild-type p53
and temporal combination with mitotic inhibitor, are encouraged and supportive for developing new
ways of anti-cancer drug application and therapy [5,6].

Actinomycin D is widely described as a DNA-interacting transcriptional blocker with
anti-cancer activity. It is an older chemotherapy drug that has been well used to cure different
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types of cancers [7,8]. Its use is however limited by its toxicity, especially the hepatotoxicity at
high dose. Therefore, attention has been focused on the combination treatment together with other
drugs which permit the usage of actinomycin D at a lower concentration [9]. In this connection, reports
found that using a low concentration of actinomycin D is very specific for inducing p53 activity and
can be utilized for treatment in cooperation with leptomycin B or nutlin-3a to trigger p53 activation
and subsequent p53-dependent cellular responses [10].

Another effective member of the actinomycins is actinomycin V (Figure 1), produced by
marine-derived actinomycete Streptomyces sp., showing stronger inhibitory effects on various cell lines
such as A549 and MCEF-7 cells in comparison to actinomycin D, whose cytotoxic effect was not so
obvious [11-13]. Our previous research also showed that actinomycin V may decrease the snail and
slug expressions, suppress the EMT process and reduce the viability of human breast cancer cells [14].
However, the role of actinomycin V in the p53 pathway still remains unclear. In this article, we confirm
the G2/M phase arrest and pro-apoptotic effects of actinomycin V in A549 cells, and this action is
associated with the p53 activation. These findings may provide a new strategy for the therapy of
human p53-positive tumors.

2. Results

2.1. Cytotoxicity of Actinomycin V on Human Non-Small Lung Carcinoma Cells

To compare the activities of actinomycin V on human non-small-cell lung carcinoma cells,
3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) analyses were carried out to measure
the cytotoxicity of actinomycin V on A549 (with wild-type p53), NCI-H1299 (p53-deficient) and
normal human bronchial epithelial cells (BEAS-2B). According to Table 1, both actinomycin V and
actinomycin D showed greater inhibitory effects on non-small lung carcinoma cells than doxorubicin,
which is widely used in clinics for cancer treatment. Surprisingly, actinomycin V showed the
remarkable activity on A549 cells while the inhibitory effect in the p53-deficient NCI-H1299 cells was
not so ideal. Actinomycin V’s ICsg values for 48 h treatment to A549, NCI-H1299 and BEAS-2B were
0.68 + 0.06 nmol/L, 16.37 + 1.07 nmol/L and 4.20 + 0.48 nmol/L, respectively.
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Figure 1. Structure of actinomycins.

Table 1. Cytotoxicity of actinomycins and adriamycin on different cell lines.

Compounds
1C50 (nmol/L) BEAS-2B A549 NCI-H1299
Actinomycin V 420+0.48 0.68 + 0.06 16.37 + 1.07
Actinomycin D 16.52 + 1.03 12.84 + 0.72 26.64 +£1.32
Doxorubicin 1091.00 £ 11.01 941.60 + 15.37 1546.33 + 41.09

Cytotoxicity of actinomycins and doxorubicin on BEAS-2B, A549 and NCI-H1299 cells. Cells were exposed to
varying concentrations of compounds then the IC5j values (concentration resulting in 50% inhibition of cell growth)
were measured via 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay after 48 h incubation.
Equal volumes of dimethyl sulfoxide (DMSO) were used as the negative control. We presented the data as the
mean + SD (standard deviation) of triplicate independent examinations.
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2.2. Actinomycin V Induces Apoptosis in A549 Cells

To study the apoptotic effect of actinomycin V, we chose two non-small lung carcinoma cell
lines, A549 and NCI-H1299, to be dual stained with annexin V—fluorescein isothiocyanate (FITC) and
propidium iodide (PI) and then measured via flow cytometry (Figure 2). Results showed a strong
increase of annexin V-stained cells after actinomycin V treatment in A549 cells. However, the effect
of actinomycin V-induced apoptosis was less dramatic in NCI-H1299 cells when compared to the
A549 cells. The proportion of annexin V-stained cells increased with the percentages raised from 6.19%,
14.83%, 29.90% to 45.23% (A549) and from 4.23%, 4.32%, 5.12% to 6.39% (NCI-H1299), sequentially.
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Figure 2. Pro-apoptotic activity of actinomycin V on A549 (with wild-type p53) and NCI-H1299
(p53-deficient) cells. Results from flow cytometry analysis; the quantification of the apoptotic cells after

treatment with 0 nmol/L to 2 nmol/L actinomycin V for 24 h. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. the
control group.

To further confirm the activities of actinomycin V on the morphology of A549 cells during
apoptosis, cells were stained with 4’,6-diamidino-2-phenylindole (DAPI) then captured by Cytation 5
Imaging Reader (Bio Tek, Winooski, VT, USA). Compared to the controls in Figure 3A, actinomycin V
treatment resulted in obvious apoptotic morphological alterations, involving nuclear condensation
and apoptotic bodies formation.

The B-cell lymphoma-2 family proteins, especially the balance between anti-apoptotic protein Bcl-2
and pro-apoptotic protein Bax, exert critical roles in regulating both intrinsic and extrinsic apoptosis.
In this present study, we measured the expression levels of Bcl-2 and Bax via Western blot analysis
after treatment with actinomycin V for 24 h. Actinomycin V significantly decreased the expression of
Bcl-2 and increased that of Bax in a dose-dependent manner (Figure 3B). As a result, we concluded that
actinomycin V treatment induced apoptosis in A549 cells.

2.3. Actinomycin V Induces G2/M Phase Arrest in A549 Cells

Apart from apoptosis, we next examine the cell cycle distribution of A549 cells and NCI-H1299 cells to
investigate whether actinomycin V exerted its cytotoxic effects by blocking the cell cycle process. As shown
in Figure 4, actinomycin V altered the distribution of the cell cycle in A549 cells while the NCI-H1299 cells
were unaffected. After treatment with 0-2 nmol/L actinomycin V for 24 h, the percent of A549 cells arrested
in G2/M phase increased along with a decrease of cells in G1 phase. As the control group of A549 cells,
only 6.34% of cells were in G2/M phase. However, a remarkable generation in G2/M phase after 0.5 nmol/L
to 2 nmol/L actinomycin V treatment (26.97%, 36.06% and 43.44%) was observed in A549 cells.
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Figure 3. Actinomycin V treatment causing apoptosis in A549 cells. (A) Fluorescence micrographs of
Ab549 cells with DAPI staining. Magnification: 100x. (B) Western blot showing that actinomycin V
induced apoptosis via enhancing Bax and decreasing Bcl-2 protein expressions. *** p < 0.001 vs. the
control group.
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Figure 4. Effects of actinomycin V on cell cycle distribution in A549 (with wild-type p53) and NCI-H1299
(p53-deficient) cells. Flow cytometry analysis detected the cell cycle distribution (each phase presented
as G1-5-G2/M: red-stripes-red) of A549 and NCI-H1299 cells after treatment with actinomycin V for
24 h. *p <0.05; ** p < 0.01; *** p < 0.001 vs. the control group.
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2.4. Actinomycin V Modulates the Expression of M-Phase-Related Proteins

The earliest confirmed M-phase-related proteins include Cdc25, Cdc2 and Cyclin Bl. Specially,
Cyclin Bl may form a complex with Cdc2 to regulate mitosis in eukaryotic cells. Also, the complexes
can be activated by Cdc25 to arouse the initiation to mitosis [15]. In this connection, we analyzed the
expression levels of these M-phase-related proteins using Western blotting following actinomycin
V treatment. In response to actinomycin V treatment, we observed an induction of phosphor-Cdc2
and the reduction of Cyclin B1, Cdc2 and Cdc25A (Figure 5). These results indicated that A549 cells
arrested in G2 phase without entering M phase after actinomycin V treatment.
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Figure 5. Actinomycin V treatment altered the expressions of M-phase-promoting members. Cells were
treated with actinomycin V for indicated hours and the relative protein expressions were detected via
Western blotting. ** p < 0.01; *** p < 0.001 vs. the control group.

2.5. Actinomycin V Induces the Expression of p53 and p21"V¥/1/Cip1

To further perceive and recognize the underlying theory of actinomycin V-induced G2/M phase arrest
and apoptosis in A549 cells, we tested the expression of p53 and p21"Vaf/CiP® yising Western blot analysis.
Treatment with actinomycin V increased the protein expressions of p53 and p21Vafl/CiP1 in A549 cells
(Figure 6A).

We also evaluated the effect on the mRNA levels of p53, p21"Vafl/CiP1 and Bax, another critical
downstream mediator of p53. Our results showed that actinomycin V time-dependently increased
p53, p21Wafl/Cipl and Bax gene expressions. P53 was activated before p21Wafl/CiP1 and Bax, and the
activation of p53 mRNA reached the highest levels early, at about 6 h (Figure 6B). Hence, we predict that
p53-dependent pathway is associated with G2/M phase arrest and pro-apoptotic effects of actinomycin V.

2.6. Inhibition of p53 Blocked Actinomycin V-Induced Cell Cycle Arrest and Apoptosis

Pifithrin-oc (PFT-) can specifically inhibit the transcriptional activity of p53. Thus, we pre-treated
cells with 5 umol/L PFT-« to find out whether the cell cycle arrest and also the pro-apoptotic effects of
actinomycin V were associated with p53 activation. Figure 7A revealed that inhibition of p53 lessened
the rate of cell arrest in G2/M phase. Also, the inhibitory effect of PFT- on p53 led to the reduction of
apoptotic cells from 19.73% to 8.58% and 29.56% to 14.38% in the presence of 0.5 nmol/L and 1 nmol/L
actinomycin V, respectively (Figure 7B). These data confirmed the involvement of p53 in actinomycin
V-mediated G2/M phase arrest and apoptosis.
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Figure 6. Trends of actinomycin V on p53, p21 Wafl/CiPl and Bax expression. (A) Expressions of relative
proteins were measured by Western blotting; (B) Relative mRNA expression values were calculated by
real-time PCR after 1 nmol/L actinomycin V treatment. The quantity of each mRNA was relative to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels. *** p < 0.001 vs. the control group.
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Figure 7. Inhibition of p53 blocked the pro-apoptotic and G2/M phase arrest effect of actinomycin V on
A549 cells. Pifithrin-oc was used for inhibiting the transcriptional activity of p53; (A) cell cycle distribution
and (B) the quantification of actinomycin V-induced apoptosis were detected via flow cytometry. * p < 0.05;
** p < 0.01 vs. the control group.

In addition, after treatment with 5 pmol/L PFT-«, the expressions of p53, p21waﬂ/ Cipl and Bax
decreased significantly when compared to the cells treated with actinomycin V only (Figure 8A).
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Figure 8. Diminution of p53 changed effects of actinomycin V on the relative protein expressions
and the proliferation inhibition toward A549 cells. (A) Cells pre-treated with or without 5 umol/L
pifithrin-« for 1 h and exposed to various concentrations of actinomycin V for another 24 h, then
analyzed by Western blotting to measure the alteration of relative protein expressions. * p < 0.05;
**p < 0.01; *** p < 0.001 vs. the control group. (B) Cells were treated with various concentrations of
actinomycin V (with or without 5-10 uM pifithrin-o pretreatment) for 48 h. Data are presented as the
mean =+ SD (standard deviation) of triplicate experiments.

2.7. Inhibition of p53 Decreased the Cytotoxicity of Actinomycin V

Moreover, we also monitored by MTT assay to determine whether p53 mediated the cytotoxic
effect of actinomycin V. Figure 8B illustrates that cells pre-treated with 5-10 umol/L PFT-« reduced
the cytotoxicity of actinomycin V on A549 cells. Hence, we can be certain that the cytotoxicity of
actinomycin V on A549 cells is at least partially induced via its p53 protein activation.

3. Discussion

Over the past decade, the prospect of new anti-cancer agents research has undergone
a tremendous renaissance, especially in the rapidly growing field of small-molecule and biological
agents with outstanding clinical activity and lower toxicity when compared to the conventional
cytotoxic chemotherapy. Nevertheless, these novel agents are always extremely specific and only valid
in a small group of cancers diagnosed as specific genetic lesions or epigenetic alterations. For example,
lapatinib, which targets HER?2, is efficacious in clinical treatment of breast cancer [16]. The frustration
in this field is the inability to discover new agents that focus on the alterations more frequently found
in human cancer, key examples include the widespread alteration of the p53 pathway [17]. The p53
protein is a stress-inducible tumor suppressor and nuclear transcription factor. The activation of
p53 can trigger several major cellular functions including cell cycle regulation and apoptosis [18].
Moreover, it was confirmed that the p53 protein may malfunction in most human cancers. p53 is
inactivated directly (by mutation or deletion) or indirectly (suppress wild type p53 function) in these
human cancers [19]. Therefore, the induction of p53 pathway is an effective target for new anti-cancer
drug development.

Actinomycin V showed to be more sensitive to the A549 cells when compared to actinomycin D.
Our previous study reported that actinomycin V reduced the viability of human breast cancer cells and
inhibited the epithelial-mesenchymal transition process. Also, the reduction of snail and slug proteins
were associated with the anti-migration and -invasion effects of actinomycin V [14]. In this present
study, we chose A549 (wild-type p53) and NCI-H1299 (with deficient p53) cells to study actinomycin
V’s functions in p53-mediated cell cycle arrest and apoptosis.

According to the MTT assay, actinomycin V significantly reduced A549 cells’ viability and the
effect was less dramatic in NCI-H1299 cells. Moreover, actinomycin V induced G2/M phase arrest
and apoptosis in A549 cells but these induction effects on NCI-H1299 cells were not so obvious.
Therefore, we speculate that p53 protein plays an essential role in actinomycin V-induced G2/M phase
arrest and apoptosis. In this connection, we confirmed the induction effects of actinomycin V in both
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the protein and the mRNA expression of p53, and also in p21 Wafl/Cip1

targets of p53.
p21 Wafl/Cipl
not only the G1 to S but also G2 to mitosis transitions [19-21]. CDKs usually interact with cyclin
proteins to perform their functions in regulating the cell cycle. In particular, the Cdc2/Cyclin Bl
complexes are recognized as the M-phase-related protein in eukaryotic cells [22]. Actinomycin V
induced phosphor-Cdc2 but reduced Cyclin Bl and Cdc2 expressions, thereby leading to cell cycle

arrest in G2 phase without entering the M phase. Moreover, the p53-specific transcriptional inhibitor,
1 Wafl/Cipl

and Bax, two major downstream

is described as the cyclin-dependent kinases (CDKs) inhibitor which is critical in

PFT-«, partially reversed the effects of actinomycin V on cell cycle arrest and p2 induction.
These results indicated the p53-dependent activation of p21Wafl/CiP1 is implicated in the actinomycin
V-induced G2/M phase arrest.

p53 can also affect the transcription of Bax and break the balance between the pro-apoptotic
and anti-apoptotic protein, leading to apoptosis [23,24]. Actinomycin V induced Bax and reduced
Bcl-2, consequently apoptosis occurred and finally resulted in its proliferation inhibition in A549 cells.
Furthermore, the effects of actinomycin V on apoptosis and proliferation inhibition in A549 cells can be
partially reversed by the p53-specific transcriptional inhibitor.

Therefore, actinomycin V inhibits the proliferation of A549 cells through triggering p53 expression
and inducing p53-dependent cellular responses, including cell cycle arrest and apoptosis. These findings
will be useful for new anti-cancer drug development. However, the limitation is that the selectivity
index between cancer and normal cell lines still not ideal. For this reason, toxicity investigation is
strongly warranted for actinomycin V to be further developed as marine-derived anti-cancer agent.

4. Materials and Methods

4.1. Reagents, Cell Lines and Cell Culture

Actinomycin V (>98%) and actinomycin D (>98%) were dissolved and their concentration adjusted
by dimethyl sulfoxide (DMSO) when required while the control group was treated with DMSO only.
MTT and DAPI were acquired from Sigma-Aldrich Crop. (St. Louis, MO, USA). Annexin V-FITC
Apoptosis Detection Kit was obtained from BD Biosciences (San Jose, CA, USA). Phosphor-Cdc2, Cdc2,
Cdc25A, Cyclin B1, p53 and p21"Vafl/CiP1 were supplied by Cell Signaling Technology (CST, Inc, Beverly,
MA, USA). Bcl-2, Bax and GAPDH antibodies were supplied by Abcam, Inc. (Cambridge, MA, USA).
Propidium iodide and Pifithrin-a (PFT-) were purchased from Beyotime Institute of Biotechnology
(Shanghai, China). RNeasy mini kit and Rever Tra Ace qPCR RT kit were purchased from QIAGEN
(Hilden, Germany) and Toyobo (Osaka Prefecture, Japan), respectively.

Human non-small-cell lung carcinoma cell lines A549, NCI-H1299 (p53-deficient) and normal
human bronchial epithelial cells BEAS-2B were obtained from the Shanghai Institute for Biological
Sciences (SIBS), Chinese Academy of Sciences (Shanghai, China) and we cultured the cells according to
the supplier’s instructions.

4.2. MTT Assay

Ab549 cells were treated with actinomycin V at the indicated concentration range from 0 to
20 nmol/L in the absence or presence of 5 pmol/L PFT-o pretreatment for 1 h. Then, cytotoxic effects of
actinomycin V with or without PFT-o pre-treatment were evaluated by MTT assay as is previously
mentioned [14]. In particular, we set the negative group with equal volumes of DMSO to calculate
IC5p values.

4.3. DAPI Staining

DAPI staining assay, as previously described [25], was used to observe the change of the nucleus
after 24 h treatment with actinomycin V among A549 cells.
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4.4. Apoptosis Detection via Flow Cytometry

The apoptosis rate of A549 and NCI-H1299 cells through 24 h treatment with actinomycin V with
or without PFT-« pretreatment was evaluated by Annexin V-FITC and PI double staining according to
our previous description [25].

4.5. Cell Cycle Distribution

Indicated concentrations of actinomycin V (with or without 5 pmol/L PFT-« pretreatment) were
used to treat A549 and NCI-H1299 cells for 24 h. As previously described [25], cells stained with
PI were tested by flow cytometry in order to measure the cell cycle distribution, and the data were
analyzed using the Modfit program.

4.6. Western Blot Analysis

After pre-treating with or without 5 umol/L PFT-«, cells were incubated with indicated
concentrations of actinomycin V for 24 h. Western blot analysis, which we performed as previously
described [14], was performed to measure the expressed situation of the indicated protein.

4.7. Real-Time PCR Analysis

Real-time PCR assay, as described in our previous work [14], was carried out to
measure the mRNA levels of the p53, p21"#/Cirl and Bax genes. We designed all needed
primers using primer premier 5 and synthesis by Sangon Biotech Co Ltd. (Shanghai, China)
for the p53 gene (forward primer: 5-GTTTCCGTCTGGGCTTCT-3" and reverse primer:
5-CCTCAGGCGGCTCATAG-3'), p21"V#U/CirT (forward primer: 5-CCCGTGAGCGATGGAAC-3’
and reverse primer: 5- AAATCTGTCATGCTGGTCTGC-3’) and Bax gene (forward primer:
5-TCAACTGGGGCCGGGTTGTC-3" and reverse primer: 5-CCTGGTCTTGGATCCAGCC-3’).
GAPDH gene (forward primer: 5-CATCAAGAAGGTGGTGAAGCAGG-3’ and reverse primer:
5-TCAAAGGTGGAGGAGTGGGTGTCGC-3"), was used as a control to calculate the relative
mRNA levels.

4.8. Statistical Analysis

Data are presented as mean + standard deviation from triplicate experiments. All data were
analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test
(conducted using GraphPad Prism 5.01). * p < 0.05; ** p < 0.01; *** p < 0.001 vs. the control group.
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