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High-throughput technologies such as DNA microarrays and RNA-sequencing are
used to measure the expression levels of large numbers of genes simultaneously. To
support the extraction of biological knowledge, individual gene expression levels are
transformed to Gene Co-expression Networks (GCNs). In a GCN, nodes correspond to
genes, and the weight of the connection between two nodes is a measure of similarity in
the expression behavior of the two genes. In general, GCN construction and analysis
includes three steps; 1) calculating a similarity value for each pair of genes 2) using
these similarity values to construct a fully connected weighted network 3) finding
clusters of genes in the network, commonly called modules. The specific
implementation of these three steps can significantly impact the final output and the
downstream biological analysis. GCN construction is a well-studied topic. Existing
algorithms rely on relatively simple statistical and mathematical tools to implement
these steps. Currently, software package WGCNA appears to be the most widely
accepted standard. We hypothesize that the raw features provided by sequencing data
can be leveraged to extract modules of higher quality. A novel preprocessing step of
the gene expression data set is introduced that in effect calibrates the expression levels
of individual genes, before computing pairwise similarities. Further, the similarity is
computed as an inner-product of positive vectors. In experiments, this provides a
significant improvement over WGCNA, as measured by aggregate p-values of the gene
ontology term enrichment of the computed modules.

Keywords: Gene co-expression networks, Similarity function, Clustering, Gene Ontology, Topological Overlap
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1 INTRODUCTION

The availability of high-throughput technologies like DNAmicroarrays (Reshef et al., 2011) or RNA-
sequencing (Hrdlickova et al., 2017) (RNA-seq) has motivated several approaches for developing a
computational understanding of genes and their functionalities. A prominent example are gene co-
expression networks (GCNs) that are used to perform tasks such as functional annotations (Serin
et al., 2016; Ma et al., 2018), biological process (Emamjomeh et al., 2017), pathway analysis (Ma et al.,
2018; van der Wijst et al., 2018), and disease mechanism understanding (Parsana et al., 2019). In a
GCN, nodes correspond to genes, and the weight of the connection between two nodes is a measure
of similarity in the expression behavior of the two genes (Tieri et al., 2019).

In general, given a gene expression data set (provided by DNA microarray or RNA-seq) a GCN
pipeline includes the following steps; 1-Similarity: Calculation of a similarity value for each pair of
genes, 2-Adjacency: Further processing of these similarity values to construct a network encoded by
its adjacency matrix, 3-Clustering: Computation of clusters of genes in the network, commonly called
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modules (Schaefer et al., 2017; van Dam et al., 2017), and 4-
Evaluation: Evaluation of the modules based on measuring their
enrichment with Gene Ontology (GO) terms (Khatri and
Drǎghici, 2005). Modules can later divulge significant
biological intuition.

The specific implementation of these steps can significantly
impact the final output and the downstream biological analysis.
In particular, the similarity and adjacency steps can be
implemented in various ways. For example, framework Petal
(Petereit et al., 2016) instantiates them as follows: 1)
Similarity: Computation of the Spearman correlation, 2)
Adjacency: Construction of an initial network using the
signum function and further modification so that it follows
certain scale-free and small-world criteria (Barabási and
Albert, 1999). On the other hand, WeiGhted Correlation
Network Analysis (WGCNA) which is the most widely
acceptable framework for GCN construction takes the
following steps: 1) Similarity: Computation of the Pearson
correlation, 2) Adjacency: Conversion of the negative
correlation values into positive, further powering the
coefficients so that the resulting network follows the scale-free
criteria and adding information about second-order
neighborhoods of the network, in the form of what is called
the Topological Overlap Measure (TOM) of the network (Zhang
and Horvath, 2005; Langfelder and Horvath, 2008).

GCN construction and analysis is well studied, for over a
decade. But given its widespread use and applicability, the
possibility of improving existing frameworks is tantalizing and
motivates further research. We hypothesize that the raw features
provided by sequencing data can be leveraged to extract modules
of higher quality. To this end, we introduce a novel step that
precedes the steps of the standard pipeline and is performed
directly on the gene expression data set. This is a further
processing of the level of the expression provided by the DNA
microarrays: this in effect calibrates the expression levels of
individual genes, before computing pairwise similarities.
Further, we deviate from standard frameworks that use
statistical measures for the similarity computation (Liu, 2017),
and instead use a geometric measure, cosine similarity.
Specifically we compute similarity as a simple inner-product of
vectors of positive numbers. This is appropriate for our context,
since expression levels are positive numbers, and avoids
complications related to the interpretation of negative
coefficients that are artificially inserted in the analysis via
correlation measures. While simple, these steps have not been
considered in earlier literature, to the best of our knowledge. As
WGCNA appears to be the most widely accepted standard, we
implement the proposed steps as modifications to the WGCNA
framework, so that they can be easily incorporated into the
current GCN construction and analysis workflow. The rest of
the process for network construction is the same with WGCNA,
to make things comparable. In multiple experiments, our
modifications seem to provide an overall significant
improvement over WGCNA on real data, as measured by
aggregate p-values of the gene ontology (GO) term enrichment
of the computed modules. Specifically, we run a set of
experiments on six different data sets with sample sizes

between 44 up to 438 and we found that in all but one cases,
calibration combined with geometric similarity results in more
enriched modules.

2 METHODS

2.1 Proposed Steps
We describe the two novel steps that constitute our proposed
modification to the standard pipeline.

2.1.1 Calibration Step
Let G be an m × n gene expression matrix where m and n are the
number of samples and genes respectively, and the entry gi,j is the
value of the expression gene j in sample i, as shown in Eq. 1.

G �
g1,1 g1,2 . . . g1,n

g2,1, g2,2 . . . g2,n

« « 1 «
gm,1 gm,2 . . . gm,n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

In the calibration step, we filter the raw level of the expressions
provided in G. Concretely, let Gj denote the jth column of G that
contains the expression of gene j. Also define μj and σ2j as the
mean and variance of gene vector Gj. Then for every gene j and
sample i we calculate a calibrated expression si,j as follows:

si,j � 1

1 + exp − 1
σ2j
(gi,j − μj)( ) (2)

It should be noted that si,j > 0. In the sequel, we denote by
S � [si,j] the gene expression matrix after the calibration step, and
Sj the jth column of S.

2.1.2 Similarity
We consider two variants of a similarity measure based on
computing simple inner products between positive vectors.

In the first variant, we initially set S′ � STS. Note that si,j′ is the
inner product between the calibrated expression levels of genes i
and j. These similarity values si,j′ may not be in the interval (0, 1).
Therefore, in order to compute similarity values in the range (0, 1)
we compute the final similarities mi,j via the following
normalization:

mi,j �
si,j′ −min

i,j

max
i,j

−min
i,j

(3)

where mini,j and maxi,j denote the minimum and maximum

entry over row i and column j of S′.
In the second variant, we let

mi,j � STi Sj
‖Si‖2‖Sj‖2 (4)

where Si denotes the ith column of S, and ‖ ·‖2 denotes the
Euclidean norm of a vector. This is precisely the cosine similarity
between the two vectors Si and Sj.

In both variants we have mi,j � mj,i and 0 < mi,j < 1.
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2.2 Adjacency
As we discussed earlier, the main goal of this study is to compare
the effectiveness of the proposed steps with WGCNA. Let us
summarize the WGCNA pipeline:

2.2.1 WGCNA
1) Calculate the Pearson correlation on gene expression.
2) Convert the negative values to positive using Eq. 3.
3) Power the similarity matrix (element-wise) so that the

network becomes scale-free.
4) Add topological information (TOM) to the network

using Eq. 5.

Two remarks are due here.

1) A network is scale-free if the degree of its nodes follow a power
law p(k) ∼ k−Γ where k is a non-negative real number. The
scale-freeness criteria of a network can be measured using the
R2

fitting index of the linear model of log (p(k)) that regresses
on log(k). If R2 approaches 1, then the scale-freeness criteria
holds for the network.

2) T1he topological overlap measure (TOM) calculates the
weight ωi,j between genes i and j in the adjacency matrix
by including second-order neighborhood information in gene
interactions. For instance, if for two genes i and j there are
multiple genes k showing a strong interaction with both i and
j, then that adds extra strength in the weight ωi,j. More
formally the weight is given in Eq. 5 (Zhang and Horvath,
2005).

ωi,j � li,j + ai,j
min(ki, kj) + 1 − ai,j

(5)

where li,j �∑u ai,uau,j, and ai,j is the similarity value between gene i
and j from previous step, and ki � ∑u aiu is the degree of node i.

2.3 Calibration-Based Pipeline Variants
We now describe three pipelines for constructing a network
from the raw expression data. They all use steps described in
Sections 2.1, 2.2. We name the variants and specify them as
follows:

2.3.1 Alpha
1) Apply the calibration step and calculate matrix S according

to Eq. 2.
2) Compute similarities according to Eq. 3.
3) Power the similarity matrix so that the network becomes

scale-free.

2.3.2 Beta
1) Apply the calibration step and calculate matrix S according

to Eq. 2.
2) Compute similarities according to Eq. 4.
3) Power the similarity matrix so that the network becomes

scale-free.

2.3.3 Gamma
1) Follow steps 1-3 of Beta.

2) Add TOM to the network, according to Eq. 5.

All three variants include the calibration step and will be
compared against the standard pipeline of WGCNA. We include
Alpha to contrast it with the pure cosine similarity measure used
in Beta and Gamma. Gamma includes TOM and its comparison
with Beta shows that including second-order neighborhood
information remains an effective tool in synergy with our
proposed steps.

2.4 Clustering
Several algorithms for detecting modules in the network have
been proposed; among them hierarchical clustering, partitioning,
and neural networks have received the most attention (van Dam
et al., 2017). In this study we used the “Dynamic Tree Cut”
(Langfelder et al., 2007) package in R (R Core Team, 2013), which
is the de facto standard and used with WGCNA. Dynamic Tree
Cut is a version of hierarchical clustering that dynamically cuts
the dendrogram depending on its shape which results in more
flexibility in cluster identification. The authors have suggested
that their method is capable of identifying nested clusters, and the
resulting modules are more enriched with known GO (Langfelder
et al., 2007).

3 DATA, EVALUATION AND RESULTS

In this section we discuss the evaluation of our three calibration-
based pipelines and their comparison against WGCNA. We use
six real datasets. For each dataset, we compute modules with the
four different pipelines and then compare their quality. The only
differentiation in these four different computations is in the
construction of the network, as described in the previous
section, and all other steps remain the same as in WGCNA.

3.1 Data Sets
The gene expression data sets have been downloaded from NCBI
Gene Expression Omnibus GEO (Barrett et al., 2012). They are
distinguished by their unique GEO Series (GSE) number. The
first data set is the gene expression data of Drosophila
melanogaster GSE34400 (Lundberg et al., 2012), and it
contains 44 samples. The second data set is the gene
expression data of kidney transplantation in human being
patients GSE1291666 (Van Loon et al., 2019), and it contains
212 samples. The third data set is the gene expression data of
transcriptional consequences of pharmacologic PPAR a, d, and g
agonist administration in murine liver, heart, kidney, and skeletal
muscle in Mus musculus organism GSE279481, and it contains
300 samples. The fourth data set is the gene expression data of
PAXgene allergic asthma patients at baseline GSE13739 (Choy
et al., 2016) and it contains 309 samples. The fifth data set is the
gene expression data of livers of F2 mice (C57BL/6 X DBA/2)
deficient in leptin receptor (db/db) of Mus musculus GSE30140
(Davis et al., 2012) and it contains 435 samples. The last (sixth)

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE27948.
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data set is the gene expression data of changes in HK-2 cells
following exposure to nephrotoxic compounds of Homo sapiens
GSE272112 and it contains 438 samples. The data sets are ordered
by size, and their results are presented accordingly.

3.2 GO Enrichment and Module Quality
The quality of the computed modules is evaluated by measuring
their enrichment with respect to GO annotation, following a
methodology that was established and used in previous works,
among else in (Song et al., 2012; Hu and Zhao, 2016).

Concretely, for each computed module we perform a number
of non-conditional hypergeometric tests using function
hyperGTest of GOstats (Falcon and Gentleman, 2006). To be
more specific, we note that GOstats provides an option to choose
among three GO ontologies (“Biological Process”, “Cellular
Component”, “Molecular Function”), and also an option to
choose a “test direction”, i.e., checking for overrepresented or
underrepresented terms. Collectively, there are six different ways
of calling the non-conditional hyperGTest. We perform all these
six tests on each module2.

These tests return a set of terms and corresponding p-values
for each module. As usual, smaller p-values indicate a higher
statistical significance. Following previous works (Song et al.,
2012; Hu and Zhao, 2016), we keep the five smaller p-values for
each module, and their geometric mean is viewed as measure of
module quality.

More precisely, let pi,j be the ith-order p-value calculated for
module j. We define the quality of module j to be the negative
logarithm of the geometric mean of the five best p-values for
module j:

Qj � − ∑5
j�1

log10 pi,j
⎛⎝ ⎞⎠/5 (6)

3.3 Pipeline Evaluation and Comparison
3.3.1 Average Cluster Quality
Following previous convention and methodology (Song et al.,
2012; Hu and Zhao, 2016), we evaluate the performance of each
pipeline by calculating an average module quality over all
modules computed by the pipeline. More precisely, suppose
that pipeline x outputs a number nx of different modules.
Then, given definition six the average module quality is
defined as

�Q � ∑nx
j�1

Qj
⎛⎝ ⎞⎠/nx (7)

Figure 1 depicts in bars the average quality �Q (def. 7) for
each pipeline. It can be seen that Gamma yields better
average module quality in all six data sets, with the
exception of GSE30140. In the same Figure we also
observe that in half of the data sets Alpha outperforms
Beta, and Alpha performs better on data sets with larger
sample size.

FIGURE 1 | Gene ontology enrichment analysis comparing Alpha, Beta, Gamma with WGCNA in six real data sets. The five best GO enrichment p-values from all
modules are log transformed, averaged and shown as barplots. Higher is better. Error bars indicate the 95% confidence intervals that have been calculated based on the
standard deviation of the p-values.

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE27211.
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3.3.2 Ordered Cluster Quality
It has been observed in (Gibbons and Roth, 2002) that
expression-based clustering methods produce multiple
clusters of relatively low enrichment. In view of this, we
take a mode detailed look at the p-values for each module
individually. To this end, we calculate the quality (as defined
in Section 3.2) for each module, then sort the modules

according to their quality and plot up to 20
corresponding values, whenever available. As shown in
Figure 2, the difference between the four pipelines is
more pronounced for the higher-quality modules and it
becomes less clear for the lower-quality modules that are
presumably less important from a biological point of view
due to their lower quality.

FIGURE 2 |Gene ontology enrichment analysis of clusters produced by Alpha, Beta, Gamma with WGCNA in six empirical data sets. For each data set the sorted
quality values (def. 6) of the modules are plotted. The x-axis and y-axis indicate the module indices and the module quality respectively.
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Figure 3 is similar to Figure 2, except that it focuses on the
three best modules for each pipeline, for reading clarity. It can be
seen that, in all data sets, Gamma returns the module with the
highest enrichment, with the exception of GSE34400 and
GSE30140. We note that GSE34400 has the least number of
samples which is 44. In GSE30140, as discussed earlier, WGCNA
is better on average (Figure 1) but even in this, case Beta produces
a module of higher quality relative to WGCNA. Notably, in
GSE30140, Beta’s top cluster is by far better than those of Gamma
and WGCNA. This demonstrates a case where TOM leads to
lower quality in the top module. The dominance of calibration-
based methods, in general, extends to the order-2 module and,
while still present in some data sets, diminishes in the order-3
module.

3.3.3 Other comparisons.
Besides comparing the enrichment of the computed clusters,
multiple other related questions can be considered. Here we
perform two additional types of comparisons in order to
demonstrate that the modules computed by the calibration-
based methods can be significantly different than those
computed by WGCNA.

The clustering algorithm used in WGCNA has a number of
parameters that can affect the clustering outcome, but in this
work, we use the default settings for all four pipelines. With these
default settings, the algorithm rejects a number of trivial clusters
of small size, and the corresponding genes do not appear in the
clustering output. In Table 1 we wish to highlight the percentage
of such genes that are not assigned to any module. In general,
WGCNA leaves unassigned more nodes relative to calibration

methods, and in particular Gamma. For example, in GSE30140,
WGCNA ignores over 90% of the genes for the clustering,
i.e. these genes are not included in any module; in
comparison, Gamma assigns 82% of the genes to modules.
We also observe that there is a significant variance in the
number of clusters computed by the four pipelines and that
WGCNA has a tendency to produce more clusters than
Gamma (with the “slight” exception of GSE137394).
These two facts combined imply that the sizes of the
clusters computed by our pipeline are on average bigger
than the standard WGCNA pipeline. The precise cluster
sizes can be found along with the code and data in the public
code repository. We also note that the very recent work in
(Hou et al., 2021) has also identified the issue with
unassigned genes in WGCNA, and introduced an
additional clustering step that assigns all genes to an
appropriately selected module, claiming higher module
enrichment. The tendency of our pipeline to
automatically do much of what (Hou et al., 2021) does in
a “forced” way, is an interesting feature of our pipeline.

Recall that in the computation of the quality measures, we kept
the five GO terms with the smallest p-values for each module. In
Table 2 we focus on the top module, and report how many of
these five GO terms are shared between each pair of methods. We
see that in two datasets (GSE129166 and GSE27211) the overlap
between Gamma and WGCNA is significant (5 and 4
respectively). In other datasets, it can be as low as zero. This
indicates that the computed clusters are potentially different
(relative to WGCNA) in terms of their biological meaning and
significance.

FIGURE 3 | Gene ontology enrichment analysis of 10 best modules produced by Alpha, Beta, Gamma, and WGCNA in six real data sets. The mean over the five
best GO enrichment p-values from the 10 top modules of each pipeline are compared. The x-axis and y-axis indicate the 10 best modules and the module performance
respectively.
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4 DISCUSSION

WGCNA is a widely used software package for identifying
biologically meaningful clusters of genes. As highlighted in the
title of the original work (Zhang and Horvath, 2005), WGCNA is
in fact a versatile general framework that can be instantiated in
multiple ways into concrete data-processing pipelines. The
research community has adopted the GO enrichment of the
computed modules as a proxy of the biological utility of a
pipeline (Song et al., 2012; Hu and Zhao, 2016). Indeed,
several research articles have been devoted to studying
individual algorithmic components of WGCNA and their
impact on GO enrichment, up until recently (Hou et al.,
2021). For example, the current practice of using Pearson
correlation as similarity measure for pairs of genes has been
influenced by the outcome of an extensive study that considered
various other similarity measures (Song et al., 2012).

In this work, we go beyond modifying the existing WGCNA
components and propose an “architectural” change with the
inclusion of a novel calibration layer that precedes the
computation of pairwise similarities between the genes. The
proposed calibration is a sigmoid transformation of the raw
gene expressions that is applied separately to each gene. In
addition, we replace Pearson correlation as similarity measure
with an even simpler geometric measure (cosine similarity)
that–somewhat curiously–has not been considered before,
possibly due to “cultural” reasons related to the background of
the research groups that undertook earlier efforts (Song et al.,
2012). As discussed in Section 3, calibration appears to help the
clustering algorithm capture modules with a higher average
enrichment in Gene Ontology terms, with the effect being
more pronounced for the modules of highest enrichment. It
also appears to result in modules that can be qualitatively
quite different than those computed by WGCNA.

Ultimately the biological utility of a specific pipeline can only
be confirmed by applied biological discovery. While we are
encouraged by our results in terms of the GO enrichment, we
do not regard our methods as antagonistic to WGCNA but rather
as alternatives that can be easily incorporated into existing
WGCNA-based pipelines and hopefully provide an additional
tool to biologists. For that reason, we provide code that can work
directly with the existing WGCNA codebase.

4.1 Future Considerations
We wish to highlight an additional interesting fact. Topological
Overlap (TOM), i.e., the formation of the final network based not on
just pairwise similarities but also on second-order neighborhoods of
the genes, appears to yield more enriched modules in our calibrated
setting, as it has also been observed for other pipelines that are
markedly different. This independent confirmation leads to the
natural question of whether higher-order neighborhoods can
enhance cluster quality as it has been observed recently in other
types of datasets [e.g., see Qiu et al. (2017)]; we feel that this is a topic
worth of more exploration. We have also found (although not
reported in this paper) that dropping the scale-freeness step from
our pipeline reduces module quality, as it does in the standard
WGCNA pipeline. Interestingly, the single dataset (GSE30140)
where TOM leads to a deterioration in module enrichment for
the top module is also the only dataset where powering the network
does not yield in practice a good fit to the scale-freeness criterion
used by WGCNA. The notion of scale-freeness in biological
networks has received significant criticism [e.g., see Broido and
Clauset (2019)] and indeed the existence of datasets where scale-
freeness is not present may provide a very interesting lead for further
research on graph-theoretic alternatives to scale-freeness especially
in terms of its synergy with topological overlap. We leave these
questions open for future research.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: The public GitHub
repository https://github.com/ikoutis/bioNets.

TABLE 1 | A Clustering summary. The number of modules and percentages of
unassigned genes for the four pipelines Alpha (A), Beta (B), Gamma (Γ),
WGCNA (W).

Data set Pipeline # Clusters % Of unassigned genes

GSE34400 A B Γ W 34 42 27 39 0.58 32.0 13.0 22.0
GSE129166 A B Γ W 60 35 8 9 0.01 15.5 2.13 6.50
GSE27948 A B Γ W 58 60 24 41 2.4 4.5 0.0 29.2
GSE137394 A B Γ W 29 53 48 40 0.8 62.3 56.00 74.1
GSE30140 A B Γ W 22 60 3 11 1.3 0.45 18.0 91.1
GSE27211 A B Γ W 31 66 51 84 0.56 50.0 32.0 38.13

TABLE 2 | Overlapping in the five GO terms of the top module for each pair of
pipelines. Each table contains two data sets: the first data set is shown in the
upper-triangular part of the table, and the second in the lower-triangular part. For
instance, the number of GO terms shared between WGCNA and Gamma in
GSE27211 can be found in the corresponding cell of the lower part of the third
table (�4 in this case).

Data set Alpha Beta Gamma WGCNA

GSE34400 Alpha 3 1 0
Beta 2 0 0

GSE129166 Gamma 4 3 0
WGCNA 4 3 5

GSE27948 Alpha 2 0 0
Beta 0 0 0

GSE137394 Gamma 0 2 0
WGCNA 0 0 2

GSE30140 Alpha 5 0 0
Beta 5 0 0

GSE27211 Gamma 0 5 4
WGCNA 0 4 4
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