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Introduction: A third of the world’s population is classified as having Metabolic

Syndrome (MetS). Traditional diagnostic criteria for MetS are based on three or more

of five components. However, the outcomes of patients with different combinations

of specific metabolic components are undefined. It is challenging to be discovered

and introduce treatment in advance for intervention, since the related research is

still insufficient.

Methods: This retrospective cohort study attempted to establish a method of visualizing

metabolic components by using unsupervised machine learning and treemap technology

to discover the relations between predicting factors and different metabolic components.

Several supervised machine-learning models were used to explore significant predictors

of MetS and to construct a powerful prediction model for preventive medicine.

Results: The random forest had the best performance with accuracy and c-statistic of

0.947 and 0.921, respectively, and found that body mass index, glycated hemoglobin,

and controlled attenuation parameter (CAP) score were the optimal primary predictors

of MetS. In treemap, high triglyceride level plus high fasting blood glucose or large waist

circumference group had higher CAP scores (>260) than other groups. Moreover, 32.2%

of patients with high CAP scores during 3 years of follow-up had metabolic diseases are

observed. This reveals that the CAP score may be used for detecting MetS, especially

for the non-obese MetS phenotype.

Conclusions: Machine learning and data visualization can illustrate the complicated

relationships between metabolic components and potential risk factors for MetS.

Keywords: machine learning, metabolic syndrome, non-obese phenotype, data visualization, preventive medicine,

artificial intelligence
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INTRODUCTION

Because of the increasing prevalence of obesity, metabolic
syndrome (MetS) has become a common metabolic disorder.
There are several diagnostic criteria for MetS including
National Cholesterol Education Program’s Adult Treatment
Panel III (ATP III), Modified ATP III for Asians, International
Diabetes Federation (IDF) Criteria, National Heart, Lung,
and Blood Institute (NHLBI) Criteria, and Joint Interim
Statement of the International Diabetes Federation Task Force
on Epidemiology and Prevention; National Heart, Lung,
and Blood Institute; American Heart Association; World
Heart Federation; International Atherosclerosis Society; and
International Association for the Study of Obesity (JIS) (1–4). A
comparison of the above diagnostic criteria for MetS, which is
relevant for Asians can be found in Supplementary Table 1. In
general, these different Mets criteria are very similar, all of them
looks at the presence of≥ three anthropometric characteristics or
clinical factors as listed below: large waist circumference (WC),
high triglyceride level (TG), high blood pressure (BP), high
fasting blood glucose (FBG), and low high-density lipoprotein
(HDL) cholesterol level. When evaluating Mets for Asians, the
modified ATP III, JIS, and NHLBI criteria are almost identical.
The IDF criteria are the most different from the above three
criteria as the criteria insist that a Mets person must have
abdominal obesity.

In previous studies, Beydoun et al. assessed the adiposity
indices forMetS from a cohort data, the performance of detecting
MetS was 0.680 and 0.733 for men using body fat mass and WC,
respectively, and women (0.581 vs. 0.686) (5). Zhang et al. used a
routine biomarker-based risk in Cox regression to predict MetS
in an urban Han Chinese population, the performance was 0.796
and 0.897 for males and females (6). Both studies only had a
better performance on females, and the selection of predictors is
not objective and automated.

Non-alcoholic fatty liver disease (NAFLD) is a common
comorbidity that is correlated with overweight andMetS. NAFLD
is now primarily considered as a hepatic manifestation of
MetS. Nevertheless, plenty of research has shown that NAFLD
affects not only the liver but other chronic diseases such as
chronic kidney disease (CKD), type 2 diabetes mellitus, and
cardiovascular disease. Therefore, many chronic MetS-related
diseases are directly caused by NAFLD, and better diagnoses
and therapies of fatty liver disease are highly necessary (7–11).
Currently, the detection of NAFLD has been enhanced with
the capability of quantifying hepatic steatosis via measuring
ultrasonic attenuation at the central frequency of the Fibroscan,
termed the controlled attenuation parameter (CAP) (12–14).
Previous study has found that CAP score alone can detect Mets
with reasonable high accuracy of 0.79 and the combined use with

machine learning can improve Mets accuracy detection to 0.904

(15, 16).
Machine learning is an artificial intelligence technique in

which can the algorithm automatically learns and improves from
experience or large amounts of data without being explicitly
programmed. The kernel of machine learning is a statistical
analysis that provides a powerful and purposeful method of

observing specific patterns and correlations in health care issues
by exploring undiscovered data, resulting in the establishment of
data-driven prediction models (16–21). Several clinical issues—
such as chronic kidney disease, postoperative sepsis, and
alexithymia in fibromyalgia—have been explored using machine
learning (22–24).

Data visualization is a useful technique that enhances
clinicians’ ability to analyze and summarize complex and large
volumes of clinical data. Treemap visualization in particular is a
conceivably advantageous method of visualizing clinical health
care data. It enables the representation of high-dimensional
hierarchical data in one diagram (21, 25, 26).

In this study, we will like to combine the use of data
visualization and machine learning to find out if different levels
of Mets will have different prediction accuracies. This is because
the non-obese MetS population is difficult to discover, and this
population is always the most challenging target in preventive
medicine. In addition, we will like to find out if the CAP
score alone can detect non-obese patients, as currently there are
limited tools to detect non-obese patients without the invasive
blood draw and inconvenient starvation. Use of CAP score for
screening offers the clinical advantage of non-invasiveness, and
no requirement for overnight starvation.

METHODS

Setting and Study Design
This retrospective cohort study was executed at Taipei Medical
University Hospital (TMUH), a private teaching hospital
with 800 beds in Taiwan. The electronic health care records
of all participants were analyzed. The ability of treemap
visualization and supervised machine learning to cluster different
combinations of five metabolic components was assessed using
patients who took a self-paid health examination at the
Healthcare Center (HC) of TMUH, which has approximately
60 visits per day. This study was approved by the Institutional
Review Board of TMUH (TMU-JIRB No.: N202003088).

Data Collection and Criteria
Patients had to meet the following inclusion criteria: older
than 17 years, underwent a self-paid health examination at
the HC of TMUH between March 2015 and May 2019, and
underwent abdominal transient electrography inspection using
the FibroScan 502 Touch (Echosens, Paris, France).

All patients underwent the regular processes of the HC
(Supplementary Table 2). The blood samples required were
collected from laboratory tests, and other anthropometric
characteristics were also recorded (Supplementary Table 3).
The definitions of measurement cut-offs and calculations are
presented in Supplementary Tables 1, 4. The included patients
were than follow-up for 3 years at Taipei Medical University
Hospital (Figure 1), and it was found that ∼60% of patients do
not have follow-up data.

Statistical Analysis
The chi-square test and Kruskal–Wallis rank sum test were used
to compare the groups of various participants with different
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numbers of metabolic components. Descriptive characteristics
were also analyzed and are presented as discrete or continuous
variables with frequencies or percentages and medians or

interquartile ranges, respectively. A box plot was drawn
for presenting data distributions and comparing groups.
Multinomial stepwise logistic regression was used to determine

FIGURE 1 | Flowchart from data collection to clinical follow-up. Multimodal Data. The input variables are divided into three types of sources in the clinical data

collection. The detail list of inputs can be found in Supplementary Table 3. AI-Based Analysis. This study used both supervised machine learning model and

unsupervised machine learning along with data visualization techniques. Clinical Follow-up. The result of the AI-based analysis feedback to physicians, and the

physicians investigate the outcome of the patients through EMRs screening.

TABLE 1 | Descriptive statistics and non-parametric multinomial test for multiple levels of metabolic syndrome in health examination data.

Factors Health (0/5) Met (1/5) Met (2/5) MetS (3/5) MetS (4/5) MetS (5/5) p-value

n0 = 477 n1 = 295 n2 = 200 n3 = 102 n4 = 42 n5 = 13

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

CKD

No 279 (58.5%) 148 (50.2%) 84 (42%) 39 (38.2%) 16 (38.1%) 4 (30.8%) <0.001

Yes 198 (41.5%) 147 (49.8%) 116 (58%) 63 (61.8%) 26 (61.9%) 9 (69.2%)

Sex

Female 296 (62.1%) 126 (42.7%) 64 (32%) 26 (25.5%) 6 (14.3%) 1 (7.7%) <0.001

Male 181 (37.9%) 169 (57.3%) 136 (68%) 76 (74.5%) 36 (85.7%) 12 (92.3%)

MEDIAN (IQR)

Age 42 (36–48) 45 (37–51) 45 (40–52) 45 (40–52) 45 (39–51) 44 (40–50) <0.001

BMI 21.5 (19.9–23.2) 23.9 (22.3–25.9) 25 (23.3–27.5) 26.8 (24.9–29.8) 28.2 (26.6–30.9) 28.8 (25.8–31.7) <0.001

Cholesterol 182 (163–202) 193 (170–213) 195 (172–219) 195 (166–214) 190 (158–215) 190 (139–241) <0.001

LDL 112 (95–132) 128 (107–149) 134 (114–155) 134 (107–155) 124 (90–158) 135 (86–173) <0.001

HbA1C 5.3 (5.1–5.4) 5.4 (5.2–5.6) 5.5 (5.3–5.7) 5.6 (5.3–5.9) 5.7 (5.4–6.0) 6.5 (6.0–7.3) <0.001

GOT 19 (16–23) 20 (17–25) 21 (18–26) 23 (18–30) 26 (21–35) 26 (22–52) <0.001

GPT 16 (12–22) 21 (15–31) 25 (17–35) 30 (20–47) 40.5 (24–58) 43 (23–99) <0.001

γGT 13 (10–19) 18 (13–27) 22 (17–36) 25 (18–42) 35 (26–55) 37 (23–74) <0.001

T_bilirubin 0.6 (0.4–0.8) 0.6 (0.5–0.8) 0.7 (0.4–0.9) 0.65 (0.5–1.0) 0.6 (0.4–0.9) 0.8 (0.5–1.2) 0.221

ALKp 55 (46–65) 58 (49–69) 62 (53–74) 61 (53–71) 67 (58–79) 59 (52–70) <0.001

AFP 2.21 (1.56–3.02) 2.15 (1.57–3.2) 2.36 (1.72–3.24) 2.31 (1.62–3.07) 2.31 (1.66–3.15) 2.83 (2.28–4.70) 0.068

E score 3.9(3.3–4.6) 4.0 (3.4–4.7) 4.3 (3.5–5.1) 4.9 (4.0–5.5) 5.1 (4.4–6.8) 6.1 (4.6–6.8) <0.001

CAP score 221(197–248) 250 (217–281) 272 (242–310) 298 (251–331) 327 (296.5–359) 323 (276–370) <0.001

Albumin 4.6 (4.4–4.7) 4.6 (4.4–4.8) 4.6 (4.4–4.8) 4.6 (4.5–4.8) 4.6 (4.4–4.9) 4.8 (4.5–5.0) 0.007

BUN 12 (10–14) 12 (10–14) 12 (10–15) 12 (10–15) 13 (11–16) 12 (11–15) 0.009

Creatinine 0.7 (0.6–0.9) 0.8 (0.6–0.9) 0.8 (0.7–1.0) 0.9 (0.7–1.0) 0.9 (0.8–1.0) 1.0 (0.8–1.1) <0.001

UA 4.8 (4.1–5.9) 5.5 (4.6–6.7) 6.0 (5.2–7.1) 6.3 (5.4–7.1) 6.9 (5.8–7.8) 7.1 (6.7–7.9) <0.001

TSH 1.87 (1.24–2.61) 1.83 (1.30–2.48) 1.91 (1.24–2.54) 1.74 (1.25–2.45) 1.82 (1.12–2.75) 2.12 (1.39–2.65) 0.971
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which variables had significant differences and the odds ratios
among the groups of patients with different numbers ofmetabolic
components. Receiver operating characteristic (ROC) curves
were plotted to demonstrate the diagnostic ability of machine-
learning prediction models for MetS. Model performance was
measured using c-statistic, sensitivity (recall), and specificity in
ROC plots (27, 28).

Figure 1 describes the procedure of this study from
data collection to clinical outcomes. In data preprocessing,
multimodal data were summarized; a series of machine learning
models were then constructed, and statistical analyses were
performed. A feedback mechanism was working clinically as
a prospective survey when remarkable findings were obtained
by the machine learning models. A recommended threshold of
risk factor was targeted before clinical physician scrutinized the
potential MetS patients’ follow up (16).

Machine Learning
Several supervised machine-learning models—k-nearest
neighbor classification (KNN), linear discriminant analysis
(LDA), logistic regression for classification, ensemble learning,
support vector machine (SVM), naive Bayes classification (NB),
and hierarchical clustering analysis (HCA)—were also executed
using R (version 3.6.3). The factors used as input to each machine
learning models were listed in Supplementary Table 3. And a
series of data preprocessing, including structured query language
command, database merging and text mining, were applied to
integrate these databases in the study.

KNN has relatively simple implementation and is robust
because the classes do not have to be linearly separable in the
searching space. This advantage was the reason it was applied to
missing value mutation in our study (29, 30). Variables will be
excluded if the number of missing values is more than 10% of the
sample size in this study.

LDA is a statistical method in which a linear combination of
features separating two or more classes of objects is located. It
can handle multivariate problems because its linear combination

is more commonly used for dimensionality reduction before
classification (31, 32).

Logistic regression is usually used in machine learning for
classification because the probability of some obtained event is
represented as a linear function of a combination of predictor
variables. The technique is used when the response variable
is categorical in nature, for instance, when it has the value
yes/no or true/false. In contrast to linear regression, a linear
relationship between dependent and independent variables is not
required (33).

The main advantage of ensemble models in machine learning
is that decisions from multiple models are combined to improve
overall performance (34, 35). Random forest is a parallel
ensemble method used for classification, regression, or other
applications and is based on the structure of a decision tree. It
eliminates the possibility of bias that a decision tree model may
induce in the system. Moreover, it improves the predictive power
considerably (36). Adaptive boosting (AdaBoost) is a sequential
ensemble method in which the base learners are generated in
series. The underlying purpose of sequential learning is to use the
dependence between the base learners, and overall performance
can be improved by giving previously mislabeled samples higher
weights in the sequential training processes (37, 38).

SVM model constructs a hyperplane or set of hyperplanes
in a high-dimensional space, which is used for classification,
regression, or outlier detection. Although SVM performs
relatively favorably when a clear margin of separation
exists between classes, and it is effective in high-dimensional
spaces (39).

NB classifiers are probabilistic classifiers based on the use of
Bayes’ theoremwith naive assumptions of independence between
features. They are simple and easy to implement and do not
require as much training data as other methods. The leading
advantage of NB classification is that it is highly scalable with the
number of predictors and data points (40).

Themachine learning algorithmswere executed in R program,
the library, package and function using in this study are listed in
Supplementary Table 5.

TABLE 2 | Multinomial stepwise logistic regression analysis of risk factors related to metabolic syndrome.

Factor Met (1/5) Met (2/5) MetS (3/5) MetS (4/5) MetS (5/5) Likelihood

n1 = 295 n2 = 200 n3 = 102 n4 = 42 n5 = 13 Ratio Test

OR p-value OR p-value OR p-value OR p-value OR p-value p-value

Age 1.011 0.295 1.037 0.003 1.038 0.016 1.047 0.037 1.055 0.132 0.032

BMI 1.392 <0.001 1.525 <0.001 1.825 <0.001 1.795 <0.001 1.877 <0.001 <0.001

γGT 1.025 <0.001 1.033 <0.001 1.027 0.001 1.035 <0.001 1.039 <0.001 <0.001

CAPscore 1.003 0.230 1.005 0.051 1.009 0.008 1.024 <0.001 1.017 0.027 <0.001

UA 0.930 0.277 1.064 0.430 1.035 0.734 1.282 0.067 1.772 0.005 0.014

Cholesterol 0.985 0.028 0.962 <0.001 0.983 0.154 0.990 0.490 0.975 0.304 0.002

LDL 1.029 <0.001 1.056 <0.001 1.030 0.017 1.016 0.301 1.034 0.189 <0.001

HbA1C 1.559 0.087 3.264 <0.001 4.717 <0.001 4.403 <0.001 7.447 <0.001 <0.001

The baseline of multinomial logistic regression for the health group is (0/5) without any metabolic syndrome disorders. After stepwise regression, only eight factors were retained. High

odds ratios are in bold.
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FIGURE 2 | Treemaps of significant predictors within different combinations of metabolic components for non-MetS and MetS subjects. Body mass index (BMI) is the

upper panel and CAP score is the lower panel.
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Data Visualization
In data analysis, visualization is always the most intuitive and
sufficient method of exploring a specific pattern in data reflecting
unknown or complicated issues. In this study, we used an
unsupervised learning model called HCA in heatmap and a large
and complex data-mapping technique called treemap to depict
the characterization of metabolic components, because these
approaches clearly enable recognition of special patterns in high-
dimensional data through the use of gradient colors and grids of
different areas (26, 41).

RESULT

The statistical distribution and differences between patient
groups with different numbers of metabolic components are
shown in Table 1. The combinations of metabolic components

are listed in Supplementary Table 6. Stepwise multinomial
logistic regression reveals the odds ratios, compared with the
healthy group without any metabolic components, among the
significant variables in Table 2. When the number of metabolic
components increases, a significant difference was observed in
several predictors, such as age, body mass index (BMI), gamma-
glutamyl transferase (γGT), CAP score, serum uric acid (UA),
cholesterol, low density lipoprotein (LDL), and glycosylated
hemoglobin (HbA1C) (p < 0.01).

In the treemaps presented in Figure 2 and
Supplementary Figure A, gradient colors display specific
patterns of significant predictors comparing groups with

different numbers of metabolic components. The non-obese
potential MetS populations are highlighted with color rectangles
as comparison in treemaps. In Figure 2, the upper panel on
BMI shows there is general positive correlation between BMI

FIGURE 3 | Heatmap for clustering patients according to the results from the medical records.
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and waist circumference (WC). However, the highlighted yellow
rectangles show some patients without elevated WC/ has low
BMI, and yet many of these subjects have Mets. CAP score.
Figure 2’s lower panel on CAP score, shows the distribution of
CAP score for different types of subjects. The highlighted red
rectangles show the non-obese subjects, where the mean of CAP
score is∼260.

Unsupervised hierarchical clustering determined the
similarity and classification between groups with different
numbers of metabolic components; the corresponding heatmap
is displayed in Figure 3. Patients with similar physiological
records were clustered into the same group via hierarchical

clustering analysis. In general, the upper red rectangle contains
subjects with increased numbers of metabolic components,
and the lower red rectangle contains healthy subjects
(green), which do not have any Mets components. However,
occasionally a few of the subjects do not follow the above
described pattern.

Several supervised learning models were used to predict MetS
according to both ATP III and International Diabetes Federation
(IDF) criteria as the ground truth, and the performance of these
models is illustrated in Figures 4A,B and Table 3. The rank of
variable importance for ensemble learning summarization of
multiple classifiers is represented in Figure 4C.

FIGURE 4 | (A) ROC curves of several machine-learning models based on the comparison of ATP III criteria. (B) ROC curves of several machine-learning models

based on the comparison of IDP criteria. (C) Ranking of predictors according to ensemble learning. The respective C-statistics for each model, are given according to

the chosen color for the model.
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TABLE 3 | Performance of different machine-learning models on predicting

metabolic syndrome using ATP III, JIS, NHLBI, and IDF criteria.

Model Criteria Accuracy Sensitivity Specificity c–statistic

Logistic ATPIII 0.902 0.520 0.950 0.862

LDA & 0.898 0.545 0.936 0.875

SVM JIS 0.902 0.400 0.965 0.880

Random Forest & 0.922 0.440 0.980 0.893

Adaboost NHLBI 0.893 0.440 0.950 0.888

Naïve Bayes 0.853 0.720 0.870 0.853

Logistic IDF 0.929 0.619 0.961 0.887

LDA 0.916 0.545 0.956 0.901

SVM 0.916 0.476 0.961 0.885

Random Forest 0.947 0.571 0.985 0.921

Adaboost 0.911 0.429 0.961 0.885

Naïve Bayes 0.893 0.810 0.902 0.880

AUC, area under curve.

The relationship between CAP score and obesity, as well
as MetS, is shown in Figures 5A,B. The box plots presented
in Figure 5B show that CAP score was positively related to
MetS. Four attending physicians conduct an approximately 3
year follow-up of the patients with a CAP score higher than
260, and recorded metabolically associated diseases—including
diabetes, cardiovascular disease, stroke, CKD, and dyslipidemia.
The follow-up results are presented in Figure 5C, which shows
that 32.2%, 22.4%, 18.6%, and 16.4% of the patients had
metabolic diseases, liver-related diseases, kidney diseases, and
cardiovascular diseases, respectively.

DISCUSSION

In statistical analysis, significant differences between groups with
different numbers of metabolic components were discovered
for several predictors. Because patients who have the same
number of metabolic components may nonetheless have
different combinations of the five components, their physical
characteristics are diverse.

Furthermore, the classification of patients with different
numbers of metabolic components that was visualized using
clustering and a heat map revealed an overlapping representation
at the left cluster label, although unsupervised machine learning
made a strong contribution to the separation of the group with
severe MetS (more than three components) and group with mild
MetS (fewer than two components). Most patients with MetS
were clustered in the upper portion, whereas healthier patients
were clustered in the lower portion. Therefore, we applied several
supervised learning models to predict MetS and found some
representative predictors—such as CAP score, BMI, HbA1C, and
γGT—that resulted in high accuracy and performance without
any of the five criteria being involved in the models. Ensemble
learning of random forest had highest performance in both ATP
III and IDF criteria as ground truth with respective accuracy
of 0.922 and 0.947 and c-statistic of 0.893 and 0.921; BMI with

obesity, HbA1C, and CAP score were observed to be the best
primary predictors for MetS (Figure 4C).

CAP score represents the severity of MetS because it reveals
the extent of NAFLD (15, 42, 43). In previous research of several
decision tree algorithms for MetS prediction, the threshold range
of CAP score is also found to be approximately 290–300 (16).
Similar to previous study, we found that if the goal is to identify
both obese and non-obese patients, the cut off is ∼290 (average
of the 320 obese cut-off and 260 non-obese cut-off). Using
the 260 non-obese CAP cut-off, we found that ∼60% (43/72)
of non-obese patients can be identified. This is likely because
CAP is detecting NAFLD. In liver cells, NAFLD is caused by a
considerable accumulation of triglycerides (44). Many evidence
supports the connection between MetS and NAFLD. NAFLD is
actually considered as the hepatic manifestation of MetS. Insulin
resistance is the failure of cell to normally respond to insulin to
reduce blood glucose level and is the key pathogenic feature of
MetS. Insulin resistance is now identified as the most common
risk factor for development and progression of NAFLD (45–47).
In clinical laboratory examination, TG and FBG measurements
are easily disturbed by many factors including incomplete fasting
and medication. Therefore, CAP score measurements are more
convenient and may be an alternative tool for detecting MetS,
especially for the hard-to-detect non-obese patients.

The patients in the WC plus TG and WC plus BP metabolic
component groups had higher BMI than those in the other
groups (Figure 2). This implies that obesity is one of the leading
risk factors for MetS (16). Moreover, multiple machine-learning
models had high accuracy and performance for both the ATP
III and IDF criteria. In particular, CAP score is also one of the
primary variables in ensemble learning, giving machine-learning
models high prediction ability (Figure 4C and Table 3). In
addition, Figure 5A reveals that CAP score was proportional to
degree of obesity. Fibroscan, a non-invasive method of screening
for liver disease, is widely applied in detecting and treating
NAFLD patients with MetS may be taken into consideration by
experts and physicians.

Numerous cross-sectional and prospective studies have
investigated the relationship between baseline γGT and
the development of MetS (48–51). According our study,
γGT is a valuable predictor of MetS because patients with
TG and FBG metabolic components have elevated γGT
(Supplementary Figure A). The non-obese metabolic health
patients can be detected early to prevent progress of metabolic
disorders to MetS. Moreover, the more glycemic level increases,
the higher prevalence of NAFLD is (52). Several methods can
evaluate the ranges of glycemia, containing HbA1c and FBG.
HbA1c reflects the mean of glycaemia over the past 8–12 weeks
and is applied to assess chronic glycemic level (53). Insulin
resistance is a primary factor of NAFLD, and HbA1c correlates
more strongly with insulin resistance than does FBG (54, 55).

A prominent relationship was illustrated between serum UA
level and the risk for metabolic disorders in a meta-analysis
of prospective studies. A linear relationship was speculated to
exist between elevated UA and MetS/NAFLD incidence (56).
Hyperuricemia is associated with histologically severe NAFLD
(57). Furthermore, several research has identified UA as an
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FIGURE 5 | (A) Boxplot of CAP score comparing patients with and without obesity. (B) Boxplot of CAP score comparing patients with and without MetS. (C)

Percentage of outcome diseases among patients with CAP score of higher more than 260. Patients that were loss during follow-up were deleted in the calculation of

percentage.

independent risk factor for cardiometabolic diseases, indicating
that UA can be regarded as a essential therapeutic target
for patients with these diseases and particularly those with
hyperuricemia (58).

This study has some limitations. First, the data only represent
an Asian population; the CAP score cut-off at which fatty
liver disease increases metabolic risks may vary for different
races. Second, the data are collected from one HC and reflected
the information of healthier population. Therefore, the bias in
data distribution cannot be avoided. The more the information

included on patients with severe MetS, the more robust is
the distribution represented. Because of this limitation, this
study focused on early intervention for patients to prevent the
occurrence of MetS. Third, this is a single-center study involving
self-paid health examination subjects that were prospectively
follow-up in the same hospital, and only 40.4% of patients with
CAP score >260 were successfully tracked in our hospital. A
large number of patients with loss of follow-up implies that the
metabolic-related risks may have been underestimated; therefore,
the significance of fatty liver disease, measured using FibroScan,

Frontiers in Medicine | www.frontiersin.org 9 April 2021 | Volume 8 | Article 626580

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yu et al. Artificial Intelligence Exploring Metabolic Syndrome

in MetS is probably higher than that determined in our study. In
the future, it will be interesting to follow-up the medical record
of these patients at other hospitals and apply machine learning in
improving the prediction for cardiometabolic events for different
types of Mets patients.

CONCLUSION

Machine learning and big data visualization can depict the
complicated relationships between metabolic components and
potential risk factors. The potentialMetS patients can be captured
by machine learning for prevention especially for those non-
obese population. In the future, more data on CAP scores from
the healthy population and those with severe MetS should be
collected to establish a more robust investigation. Moreover,
analyzing data of different races could enhance the achievement
of data visualization to describe the association between CAP
score cut-off and MetS for different particular populations.
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